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Abstract: In the process of gas prediction and early warning, outliers in the data series are often
discarded. There is also a likelihood of missing key information in the analysis process. To this
end, this paper proposes an early warning model of coal face gas multifactor coupling relationship
analysis. The model contains the k-means algorithm based on initial cluster center optimization
and an Apriori algorithm based on weight optimization. Optimizing the initial cluster center of all
data is achieved using the cluster center of the preorder data subset, so as to optimize the k-means
algorithm. The optimized algorithm is used to filter out the outliers in the collected data set to
obtain the data set of outliers. Then, the Apriori algorithm is optimized so that it can identify more
important information that appears less frequently in the events. It is also used to mine and analyze
the association rules of abnormal values and obtain interesting association rule events among the gas
outliers in different dimensions. Finally, four warning levels of gas risk are set according to different
confidence intervals, the truth and reliable warning results are obtained. By mining association
rules between abnormal data in different dimensions, the validity and effectiveness of the gas early
warning model proposed in this paper are verified. Realizing the classification of early warning of
gas risks has important practical significance for improving the safety of coal mines.

Keywords: apriori algorithm; association rules; k-means algorithm; outlier detection; gas risks warning

1. Introduction

In most countries, coal mines are threatened by natural disasters such as gas, coal dust,
fire, roof collapse and water inrush to varying degrees during the mining process [1–3].
Among the many accidents in coal mines, gas accidents are the most prominent. From 2013
to 2020, a total of 225 gas accidents of various types occurred in China, with 1304 deaths
accounting for 8.3% of the total accidents and 28.05% of the total deaths. The need for
coal mine gas control remains urgent [4,5]. To date, many scholars around the world have
conducted research on gas prediction and early warning [6,7]. Song et al. [8] used the
R/S analysis method to analyze the gas chaotic characteristics of a gas drainage pipeline
in the 1203 working face of the Hongyang No. 2 Mine and used the Hurst index to
analyze the trend of gas changes and forecast an early warning of the coexistence of
coal and gas. Hu et al. [9] established a grey target model, analyzed the influence of gas
pressure, initial speed of diffusion, coal stiffness and damage type on coal and gas outbursts
and predicted coal and gas outbursts, indicating the model’s performance feasibility.
Cheng et al. [10] improved a BP neural network by adjusting the weight of the network
with additional momentum and applied it to predict coal and gas outburst disasters,
which proved the superiority of the improved algorithm. Kumari et al. [11] introduce a
uniform manifold approximation and projection (UMAP) and long short-term memory
(LSTM) deep learning model have been proposed to forecast a sealed-off area’s fire status
in underground coal mines, and experimental research shows that the prediction efficiency
of the proposed UMAP-LSTM model is higher than that of the existing SVR and ARIMA
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models. Slezak et al. [12] introduced a new approach for learning forecasting models over
large multi-sensor data sets, including the steps of sliding-window-based feature extraction
and rough-set-inspired feature subset ensemble selection, and used it to predict the coal
mine methane concentration, and obtained good experimental results. Borowski et al. [13]
analyzed the possibility of electricity production using gas engines fueled with methane
captured from the Budryk coal mine in Poland, and artificial neural networks with different
properties were tested. The developed models have a high value of correlation coefficient
but showed deviations concerning the very low values persisting for a short time. The
study shows that electricity production forecasting is possible, but it requires data on
many variables that directly affect the production capacity of the system. Jo et al. [14]
introduced a real-time monitoring, event-reporting and early warning platform, based on
cluster analysis for outlier detection, spatiotemporal statistical analysis, and an RSS range-
based weighted centroid localization algorithm for improving safety management and
preventing accidents in underground coal mines, and experimental research shows that this
system is helpful for solving the problems of accessibility, serviceability, interoperability
and flexibility associated with safety in coal mines.

During informatization and intelligentization of coal mines, “massive data and a lack
of information” are common problems [15–17]. Analyzing and researching mine monitor-
ing data and guiding production based on the analysis results are of great significance to
coal mine enterprises to achieve high-quality development of the coal industry and related
industries in the new era. Gas monitoring data are related to coal mine production safety,
and many abnormal data points often appear in gas monitoring data [18–20]. Although the
underground coal mine gas monitoring system has gradually become more complete, the
analysis and processing of the data collected by the system remain insufficient. Most of the
gas data are only researched using mathematical statistics and prediction based on a time
series, and association rule mining analysis based on different dimensional influencing
factors for outliers is lacking, which makes it difficult to meet the needs of coal mine safety
production. Due to their inherent attributes, coal mine gas data tend to have clustering
characteristics. When the label information in the sample data is unknown, to reveal the
internal relevance of the sample, it is necessary to use a clustering algorithm. Tang et al. [21]
proposed a new fuzzy clustering algorithm driven by data and knowledge, named den-
sity viewpoint-induced possibilistic fuzzy C-means (DVPFCM). Through experimental
studies, including some comparative analyses, this algorithm exhibited better performance
in determining the distance between computed clustering centers and reference centers.
S. Askari et al. [22] proposed a generalized entropy-based possibilistic fuzzy C-means
(GEPFCM) algorithm for clustering noisy data and showed that GEPFCM is more accurate
than the PFCM algorithm. Tang et al. [23] proposed a new robust fuzzy C-means (FCM)
algorithm for image segmentation called the patch-based fuzzy local similarity C-means
(PFLSCM) and demonstrated that it achieves improved segmentation performance in
comparison with the results produced by some related FCM-based algorithms. Association
rules are primarily used to mine the associations between different data, and they are
commonly used in association rule mining algorithms such as the Apriori algorithm and
FP-growth algorithm [24–26]. However, because of the performance of the algorithm in the
execution of different problems, there are certain limitations, so most research is based on
the actual problems that solve the algorithm corresponding to optimization and improve-
ment [27,28]. Sudhakar Singh et al. [29] proposed the improved Apriori algorithms VFPC
and ETDPC based on MapReduce, conducted a quantitative analysis of the calculation
cost, and concluded that the optimized calculation cost reduction results are substantial
and more efficient in terms of execution time. Anindita Borah et al. [30] proposed a rare
association rule extraction method based on a one-way tree. This method can generate
a complete set of frequent and rare patterns, eliminating the need to repeatedly scan the
database and rebuild the tree. The effectiveness and superiority of the method were experi-
mentally verified. Ji et al. [31] optimized and improved the Apriori algorithm in terms of
performance and used the grid coverage model as the basic model. The improved Apriori
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algorithm was applied to a WSN coverage optimization process of mobile nodes, and
the results showed that the improved algorithm can solve the problem more effectively.
Guo et al. [32] proposed an efficient data mining method for mining the association rules
of passenger flow between different service lines in an urban rail transit network. The
researchers used the Beijing subway network as an example to verify the feasibility of this
method. R. Uday Kiran et al. [33] proposed an improved approach algorithm to extract rare
association rules and showed the efficiency of the method through the experimental results
of synthetic datasets and real datasets. Xin et al. [34] proposed using a reinforcement learn-
ing algorithm to improve a treap’s large-scale database association rule mining algorithm
and conducted an experimental analysis of the algorithm. The results showed that the
algorithm can complete the task of mining variable relationships in large databases in a
short time. Wang et al. [35] created a new algorithm, TREAP, which combines intermediate
values and adjusted p-values for target inference.

Some data objects are included in the data sequence, which are inconsistent with the
general behavior or model of the data. These data objects are discrete points. However,
outliers are discarded which regarded as noise by most of the data mining methods used in
the above studies. These prediction methods are likely to result in the loss of very important
information. Rare discrete points in gas data may be more interesting than normal data.
In fact, any abnormal point of gas concentration may cause gas disasters. However, the
sudden emergence of discrete points in the real-time prediction of gas concentration is
likely to cause data mining algorithms to discard them in the data preprocessing process.
Therefore, there is a certain lag in the gas warning, and it is difficult to perform accurate
warning. In order to improve the accuracy of gas warning, it is necessary to accurately
distinguish the outliers in the dataset to determine whether they are interesting outliers.
In this paper, based on an optimized k-means clustering algorithm and improved Apriori
algorithm, an early warning model for multifactor coupling relationship analysis of gas
concentration of working face is constructed. We extract abnormal data in four different
dimensional data sets that can directly or indirectly affect gas concentration through cluster
analysis and build the association rule learning set between each dimension. It can not
only accurately identify the outliers in the data set, but also analyze and find interesting
association rule events. Finally, a hierarchical early warning mechanism is established to
achieve hierarchical early warning of gas risks, and improve the timeliness and accuracy of
early gas warning.

2. Materials and Methods
2.1. Apriori Algorithm Based on Weight Optimization

The FP-growth and Treap algorithms are more difficult to implement in software code,
and the algorithms have higher requirements for the dataset. Performance may decrease in
the process of mining certain datasets. The FP-growth algorithm is prone to dwarfs and flat
trees when constructing the FP-tree. Although the Apriori algorithm is more traditional, its
ideas and processes are easier to understand and more flexible, and it can be optimized
and improved according to different situations encountered in the mining process with
strong applicability. At the same time, considering the data structure characteristics and
application scenarios of this article, the Apriori algorithm is selected as the association rule
mining algorithm of this paper.

The Apriori algorithm uses a layer-by-layer search iterative method, searches (k + 1)
itemsets with k itemsets, finds all frequent itemsets, and generates strong association
rules from frequent sets [36–38]. Let Φ = {I1, I2, . . . , Im} be a collection of items, and let
task-related data D be a collection of database transactions in which each transaction T
is a nonempty item set such that T⊆Φ. Each transaction has an identifier called TID. Let
A be an itemset; transaction T contains A if and only if A⊆T. The association rule is an
implication of the form A⇒B, where A⊂Φ, B⊂Φ, A 6= ∅, B 6= ∅ and A∩B=∅. Rule A⇒B is
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established in the transaction concentration and has a support degree of s, where s is the
percentage of transactions in D that contain A∪B, which is the probability of P(A∪B).

support(A⇒ B) = P(A ∪ B) =
support_count(A ∪ B)

D
(1)

However, in the process of mining frequent itemsets, the traditional Apriori algorithm
discards itemsets below the minimum support threshold standard during the initial prun-
ing process. As for the research content of this paper, if part of the data have a greater
impact on the gas risks on the working face, the detected few gas anomaly value data points
may not be able to reach the set support threshold size. At this point, the algorithm deletes
it, thus missing part of the risk rules. In view of this omission, the algorithm support is
optimized, and a weight parameter is added in the support calculation process so that the
gas anomaly value with low frequency can be added to the frequent itemset. The design
support threshold function is

f (X) =
support(X) · λX

D
(2)

where support(X) is the support of the given item set, λX is the weight parameter and D is
the transaction set. For any x = {x1, x2, . . . , xr} where xi∈I (i = 1, 2, . . . , r), if x is a single
term, then its weight coefficient is assigned after the item set is generated; otherwise, the
weight parameter must be obtained from the included items.

λx = F(λx1, λx2, · · · , λxr) = min(λx1, λx2, · · · , λxr) (3)

This equation indicates that the weight parameter calculation function has the smallest
value among the weight parameters.

Rule A⇒B has confidence c in transaction set D, where c is the percentage of trans-
actions that include A in D and B. This has a conditional probability of P(A∪B), which
is

con f idence(A⇒ B) = P(B|A) =
support_count(A ∪ B)

support_count(A)
(4)

where support_count(A∪B) is the number of transactions containing itemset A∪B, and
support_count(A) is the number of transactions containing itemset A. The rule that meets the
minimum support threshold (min_sup) and the minimum confidence threshold (min_conf)
at the same time is a strong rule [39,40].

Lift represents the probability of containing X and Y at the same time and reflects the
correlation between X and Y in association rules. |Lift| > 1 and higher indicates higher
correlation, and Lift = 1 indicates no correlation, as shown in the following formula:

Li f t(A⇒ B) =
P(B|A)

P(B)
(5)

2.2. K-Means Algorithm for Outlier Detection Based on Optimal Selection of the Cluster Centre
Initial Value
2.2.1. K-Means Clustering Algorithm

The outliers in the gas data can be considered outliers in the clustering process.
Therefore, the extraction of outliers can be based on the clustering method to detect outliers
by examining the relationship between the object and the cluster. Using k-means clustering,
for each object o, an outlier score can be assigned to the object according to the distance
between the object and the nearest cluster center. Assuming that the closest center to o
is co, the distance between o and co is dist (o, co), and the average distance between co
and the object assigned to co is dist (o, co). The ratio dist (o, co)/lco measures the degree
of difference between dist (o, co) and the average, and points far from the corresponding
center are suspected to be outliers. The purpose of the k-means algorithm is to cluster n
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m-dimensional data X = {x1,x2, . . . ,xn} and xi∈Rm (1 ≤ i ≤ n) into k sets. The algorithm
steps are as follows.

First, randomly initialize k cluster centres c = {c1,c2, . . . ,ck}, cj∈Rm (1 ≤ j ≤ k), and
denote the set of each cluster center cj Gj.

Second, put each clustered data point into a unique cluster set, and calculate the
Euclidean distance between the data to be clustered xi and cluster centre cj.

d(xi, cj) =
√
(xi1 − cj1)

2 + (xi2 − cj2)
2 + . . . + (xim − cjm)

2 (6)

Among them, 1 ≤ i ≤ n, 1 ≤ j ≤ k.
Put each xi into the cluster set where the nearest cluster center is located, namely,

argmin
cj∈c

d(xi, cj) (7)

Then, according to the data contained in each cluster set, update the cluster center
value of the cluster set, namely,

cj =
1∣∣Gj
∣∣ ∑

xi∈Gj

xi (8)

Next, repeat steps (2) and (3) until the change in the category center (cluster center) is
less than a given threshold or the number of iterations is greater than a given number.

Finally, mark each sample data xi as the cluster category with the nearest cluster center.

2.2.2. Improved K-Means Clustering Algorithm

The above algorithm uses the method of randomly extracting initial cluster centers
to cluster data, which causes different initial values to correspond to different clustering
results. Thus, the selection method for initial cluster centers must be optimized. Because
the production of the coal mining face is cyclical, that is, the shearer feed-cuts coal-loads,
transports and moves the frame three shifts a day during cyclic operation or during the
period of maintenance, drilling, support and other processes, the daily production process
is relatively fixed. Therefore, the cluster centers of the preorder data in the collected dataset
are similar to those of the postorder data. Optimizing the initial cluster center of all data is
feasible using the cluster center of the preorder data subset. Cluster centers are iterated by
minimizing the variance of each cluster. Minimizing the variance of each cluster makes the
data contained in each set in the final clustering result show the smallest difference. After
optimizing the cluster centers, the data are divided into k categories using the k-means
algorithm. Among them, the k value is determined by the contour coefficient method. The
distance between the data in the class to the cluster center is calculated. If the distance of
certain data from the cluster center exceeds a given threshold, then it is determined to be
abnormal-value data.

The algorithm is described as follows.
Suppose the gas monitoring dataset is n m-dimensional data X = {x1,x2, . . . ,xn}, xi∈Rm

(1 ≤ i ≤ n), clustered to k sets. The algorithm steps are as follows.
Extract the preorder data subset of the gas dataset X, Xpre ⊆ X.
Use the contour coefficient to determine the most suitable clustering value k of the

preorder dataset Xpre.
For the preorder dataset Xpre, randomly determine k cluster centers cpre = {cpre1, cpre2,

. . . , cprek} and use Equation (9) to calculate the distance between the data xi to be clustered
and the cluster centers cproj according to the data contained in each cluster set. Equation (10)
is used as the criterion function to update the iterative cluster center value until the final
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clustering result is determined, and the final cluster center set cpro = {cpro1, cpro2, . . . , cprok}
of the preorder data subset is obtained.

argmin
cproj∈cpro

k

∑
i=1

var(Gproi) (9)

var(Gproi) =
1∣∣Gproi
∣∣ ∑

xi∈Gproi

‖xi − Gproi‖
2 (10)

Set the k initial cluster centers c = cpro of the dataset X and apply the k-means algorithm
to determine the final cluster centers.

A distance between a certain data value and the cluster center greater than the thresh-
old θ is considered an abnormal value. The threshold can be set as follows:

For a dataset without outlier data identification (the dataset has no outliers by default),
calculate the sum of the average distance for each cluster and 1.5 times the standard
deviation as the threshold. Calculate the distance from the outlier data to the cluster center
in the training dataset with the outlier data identifier and take the smallest distance as the
threshold. When the maximum distance to take outlier data fails, different thresholds are
manually entered to detect the abnormal values of the training set until the number of
abnormal points detected when k is taken is close to the known number.

2.3. Multifactor Coupling Relationship Analysis and Early Warning Model of Gas in the
Working Face

Conventional gas early warning methods are mainly achieved by setting thresholds.
When the monitored value has an abnormal value higher than the threshold, an alarm is
issued. However, it is impossible to distinguish whether the outlier is an interesting outlier.
The main idea of this model is to comprehensively judge gas risk events and establish a
hierarchical warning mechanism by the interrelationship of the gas concentration in the
working face, the gas concentration in the coal seam, the gas concentration in the upper
corner and the pressure on the working face. The relationship among the gas concentration
in the working face, the gas concentration in the mining coalbed, the gas concentration in
the upper corner and the pressure on the working face is described next.

During the mining process of a working face, the dirty air which passes through the
working face carries a large amount of gas to the upper corner and causes the accumulation
of gas in the upper corner, which affects the gas concentration of the working face in
the underground mine. Because of the influence of mine pressure, geological structures
and other factors in the mining coalbed, the gas concentration occurring in the mining
coalbed changes accordingly, which directly affects the gas concentration during mining.
The supporting pressure data of the working face reflect the changes in the geological
structure of the coal seam, and the roof pressure of the mining machine is disturbed during
operation. As the roof pressure changes, the gas concentration in the goaf fluctuates, which
affects the gas concentration in the downhole working face. There is a certain coupling
relationship between the upper corner gas concentration, mining coalbed gas concentration,
face pressure and working face gas concentration. Once the four dimensions of data have
different degrees of abnormality, this may lead to gas disasters.

To further explore the coupling relationship between the four-dimensional data of the
upper corner gas concentration, mining coalbed gas concentration, gas concentration of the
working face and working face pressure and the correlation between the four-dimensional
data and the underground gas risk events, this paper establishes an early warning model for
the multifactor coupling relationship analysis of coal face gas, conducts in-depth analysis
of the upper corner and mining coalbed determines the coal face gas concentration and
abnormal data values of the working face pressure and determines the association rules.

The model is mainly composed of two parts: the outlier detection of the k-means
algorithm based on cluster center optimization and the correlation analysis of the Apriori
algorithm based on support optimization. Firstly, the optimized k-means algorithm is used
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to cluster the data and filter out the outliers in the data of each dimension. Secondly, the
outlier data are reduced in dimensionality and converted into a 0–1 Boolean matrix. The
optimized Apriori algorithm is used to analyze the association rules of the 0–1 Boolean ma-
trix. Parameters such as support, confidence and lift are set to filter interesting association
rule events. Finally, a hierarchical early warning mechanism for gas risk events is built to
achieve hierarchical early warning of gas risk events.

3. Experimental Data Processing
3.1. Data Sources

A working face of a mine in Shaanxi was used as a test site to verify the above model.
Gas concentration sensors were installed on the mining coalbed drainage pipeline, mining
face and upper corner, and pressure sensors were added for hydraulic support of the
face. The sensor that collects gas concentration is model KG9001C. The relevant technical
parameters of the gas sensor are shown in Table 1 below. The sensor layout diagram is
shown in Figure 1. U is the upper-corner gas sensor on the working surface, W is the
working face gas sensor, C is the gas concentration sensor of the mining coalbed drainage
pipeline, and S1–S156 are bracket pressure sensors arranged on the working face.

Table 1. Technical parameters of gas sensor.

Model Measuring Range Measurement Error Response Time

KG9001C (0–100)% CH4

(0–1)% CH4 ≤ 0.1% CH4

≤30 s
(1–2)% CH4 ≤ 0.2% CH4
(2–4)% CH4 ≤ 0.3% CH4
(4–10)% CH4 ± 1% CH4

(10–100)% CH4 ± 10% CH4
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The gas data of the working face, mining coalbed and upper corner are collected at
intervals of 5 s, and the maximum gas value within 5 min is taken as the experimental data
value. The pressure data are taken every 5 min and correspond to the time node of the
gas data extraction value. A total of 7 days of data are sorted and recorded as UX, WX, CX
and SX, and 2016 groups of data are collected in 4 dimensions. Part of the data is shown
in Table 2 below. A three-dimensional distribution diagram of gas concentration data
extracted from the upper corner, working face and mining coalbed is shown in Figure 2,
and a pressure data scatter diagram is shown in Figure 3. This figure shows that abnormal
points exist in the data. An outlier detection algorithm must be used to detect them. At the
same time, the gas monitoring system recorded 55 gas risk alarm events during the data
collection period.
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Table 2. One-minute record sheet for collecting raw data.

Data Collection
Time/s

Working
Face/%

Mining
Coalbed/%

Upper
Corner/%

Working Face
Pressure/MPa

3 May 2020 0:00:05 0.15 1.53 0.16 24
3 May 2020 0:00:10 0.15 1.55 0.16 24
3 May 2020 0:00:15 0.13 1.44 0.14 24
3 May 2020 0:00:20 0.17 1.45 0.16 24
3 May 2020 0:00:25 0.21 1.48 0.18 24
3 May 2020 0:00:30 0.19 1.5 0.16 24
3 May 2020 0:00:35 0.17 1.49 0.18 24
3 May 2020 0:00:40 0.15 1.44 0.2 24
3 May 2020 0:00:45 0.17 1.41 0.18 24
3 May 2020 0:00:50 0.11 1.48 0.16 24
3 May 2020 0:00:55 0.15 1.53 0.18 24
3 May 2020 0:00:60 0.17 1.51 0.18 24
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3.2. K-Means Outlier Detection Based on Initial Cluster Centre Optimization
3.2.1. Correlation Analysis of Preorder and Postorder Gas Data

The gas data of two adjacent days are randomly taken to analyze the fit degree. The
change trend of the gas concentration value between any two days in different dimensions
has a certain similarity. As shown in Figure 4a–c, the first 4 days of data are extracted from
the three-dimensional dataset of the mining coalbed, upper corner and working face. We
analyze the data of the first two days as the preorder data and the data of the latter two
days as the postorder data. It is concluded that the gas data of the working face, upper
corner and mining coalbed have a strong fit. Therefore, outlier detection is feasible using
the method of clustering initial cluster centers based on the preorder gas concentration
data clustering cluster center optimization of postorder data using the k-means algorithm.

Using gas concentration data for the upper corner, working face and mining coalbed
for the first 2 days, the preamble datasets are UXpre, WXpre and CXpre of 576 groups each,
and the datasets for the next 5 days are UXpost, WXpost and CXpost of 1440 groups each. The
maximum, minimum and mean characteristics of the preorder and postorder gas datasets
are listed in Table 3 below. Thermal correlation analysis was performed on sequential data.

Table 3. Characteristic description of preorder and postorder datasets.

Dataset
Characteristics UXpre% WXpre% CXpre% UXpost% WXpost% CXpost%

Max 0.84 0.9 8.46 1.63 1.97 3.49
Minimum 0.02 0.08 0.52 0.05 0.09 1.15

Average value 0.13 0.20 1.72 0.15 0.21 1.71

The thermal correlation coefficient reflects the degree of correlation between two
variables. The higher the correlation coefficient is, the greater the degree of linear correla-
tion between variables. The calculation involves two statistics: covariance and standard
deviation. Covariance is an indicator used to measure the linear relationship between two
random variables and is defined as follows:

Cov(x, y) =
∑n

i=1 (xi − µx)(yi − µy)

n− 1
(11)

where µx and µy represent the mean values of random variables x and y, respectively.
Covariance is used to reflect the degree of correlation between two variables. When the
covariance is greater than 0, this indicates a positive correlation, and when the covariance
is less than 0, this indicates a negative correlation. When there are abnormal points in the
data or the degree of dispersion of the data changes, the value of the covariance is affected.
Therefore, to better characterize the degree of dispersion of the data and standardize the
data, the covariance and standard deviation are introduced to define the correlation, which
is defined as follows:

ρxy =
∑n

i=1 (xi − µx)(yi − µy)√
∑n

i=1 (xi − µx)
2
√

∑n
i=1 (yi − µy)

2
(12)
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The thermal correlation coefficient diagram is shown in Figure 5. The figure shows that
the correlation coefficient of the sequence data of the upper corner is 0.13, the correlation
coefficient of the sequence data before the work is −0.16 and the correlation coefficient of
the sequence data of the coal seam is−0.55. The absolute value of the correlation coefficient
is greater than 0.1, so there is a strong correlation.
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3.2.2. Cluster Analysis and Abnormal Point Detection of Gas Concentration Data

The k-means clustering algorithm is used to divide the data for classification into k
clusters. The contour coefficient method is used to calculate the distance from each vector
in the cluster to all other points in the cluster to which it belongs and the average distance
to all points in the nearest cluster adjacent to it. Then, the contour coefficient of the vector
is S(i) = [b(i) − a(i)]/max{a(i), b(i)}. The value of the profile coefficient is within (−1,1), and
a value closer to 1 means better cohesion and separation. k is set to 2, 3, 4, 5 and 8, and the
contour coefficients are calculated as shown in Figure 6a,b below. The figure indicates that
the maximum value of the contour coefficient calculated when k = 3 is 0.89. According to
the contour coefficient method, the clustering effect is optimal at this time.
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From the above, taking the preorder dataset for clustering, the clustering effect is
shown in Figure 7. The abnormal values (discrete points) of the scattered points after
clustering are detected and set. When thresholds of 2 and 29 groups of abnormal data were
detected and 1 group was detected by mistake, the accuracy rate was 96.55%. The detection
effect is shown in Figure 8.
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The cluster center of the preorder dataset is used to optimize the cluster center of the
full dataset, and outlier detection is performed on the entire dataset. A three-dimensional
graph of the clustering effect of the full dataset is shown in Figure 9. An outlier identifica-
tion diagram of the full dataset is shown in Figure 10. A comparison between the optimized
cluster center and the random initial cluster center is shown in Table 4.
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Table 4. Comparison of initial cluster centers.

Unoptimized Initial Cluster Centers Optimized Initial Cluster Centers

Cluster Category Initial Cluster Center Final Cluster
Center Cluster Category Initial Cluster Center Final Cluster

Center

1 3.12 4.24 1 6.23 6.84
2 0.59 0.62 2 0.82 0.90
3 0.32 0.36 3 0.71 0.75

During the data collection process, the initial value of the support pressure data is
24 MPa. With the influence of mining, when the stress structure of the coal seam changes,
the support pressure also changes. The above abnormal value detection method is also
used to detect the pressure data of the stent. Through outlier detection, a total of 253 sets of
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abnormal data were detected, including 56 sets of abnormal values of gas concentration
in the working face, 58 sets of abnormal values of gas concentration in the upper corner,
56 sets of abnormal values of gas concentration in this mining coalbed and abnormal
values of support pressure data in 83 groups. There are a total of 55 groups of recorded gas
risk alarms (D). The detected abnormal data values and risk records are converted into a
0–1 Boolean matrix, recording abnormal data as 1, normal data as 0, abnormal risk events
as 1 and normal as 0. There are 125 groups of abnormal data combinations. The partially
converted 0–1 Boolean matrix is shown in Table 5, and the association rules are mined
based on the optimized Apriori algorithm constructed above.

Table 5. Part of the abnormal data group 0-1 Boolean matrix table.

Working Face Mining
Coalbed

Upper
Corner

Working Face
Pressure

Recorded Risks
Situations

0 0 0 1 0
0 0 1 1 1
0 0 1 1 1
0 0 0 1 0
0 0 0 1 0
0 0 1 1 1
0 0 0 1 0
0 0 1 1 1
0 0 1 1 1
0 0 1 1 1

4. Discussion

The Apriori algorithm was used to analyze the coupling relationship between the
working face, upper corner and mining coalbed gas concentrations and the abnormal value
detected by the support pressure. The specific analysis steps are as follows:

(1) Data entry. The binary table of abnormal data includes binary information of the
working face, upper corner, mining coalbed and support pressure data.

(2) Establish the association rules between the data in the training set to obtain the weight.
(3) Based on the weighted Apriori algorithm, the correlation of the entire dataset is

analyzed, and the association rules are obtained.
(4) Set different confidence levels, obtain different levels of strong association rules and

set the warning level.
(5) Analyze the dataset according to the strong association rules of different early warning

levels to achieve hierarchical early warning.

The minimum support is set to 10%, the minimum confidence is set to 10%, and
19 association rules are obtained. A scatter plot is presented in Figure 11, where the x-axis
is confidence, the y-axis is support, and blue indicates the degree of lift. The figure shows
that most of the points have a support degree of 20–40% and a confidence degree of
60–100%. There are only a few points outside this range. The support threshold is set
to 20%, the confidence threshold is set to 60%, and the lift threshold is set to 1 to filter
strong association rules. A total of 16 association rules are obtained. This indicates that
some association rules do not meet the threshold constraints. The results of the association
rule are shown in Table 6, where 16 association rules are obtained. In the table, Con
represents the preconditions of the association rules. There are 1, 2 and 3 preconditions in
the association rules generated by mining. Re represents the results of the preconditions in
the association rules, Sup represents the support of the association rules, and Cof represents
the confidence of the association rules.



Energies 2021, 14, 6889 15 of 19Energies 2021, 14, x FOR PEER REVIEW 16 of 20 
 

 

 
Figure 11. Scatter plot of association rules. 

Table 6. Coupling relationship rules for pressure data of the working face, upper corner, mining coalbed and working 
face. 

ID Con  Re Sup% Cof% Lift ID Con  Re Sup% Cof% Lift 
1 （C,W） --> D 0.32 1 1.46 7 （C,P,U,W） --> D 0.25 1 1.34 
2 （P,W） --> D 0.30 1 1.43 8 （P,U） --> D 0.34 0.98 1.38 
3 （C,P,W） --> D 0.29 1 1.39 9 （C,P） --> D 0.29 0.98 1.35 
4 （C,U,W） --> D 0.26 1 1.36 10 （C,U） --> D 0.28 0.97 1.24 
5 （P,U,W） --> D 0.25 1 1.34 11 （U,W） --> D 0.26 0.97 1.21 
6 （C,P,U） --> D 0.25 1 1.34 12 （W,P） --> D 0.34 0.75 1.13 

The above table shows a strong correlation between the working face, upper corner 
and mining coalbed gas concentrations and the working face pressure. Anomalies in any 
two dimensions of data lead to anomalies in data in other dimensions except mining coal-
beds. The gas concentration in the mining coalbed is primarily affected by the mine pres-
sure during the mining process and the natural factors of gas occurrence. Therefore, in the 
association rules, there are two association rules that cause abnormalities in this coal seam, 
both of which are prerequisites for abnormal pressure dimension data. 

The above method is used to explore the relationship between the four dimensions 
of the working face, upper corner, mining coalbed, support pressure and underground 
gas danger. The minimum support threshold was set to 20%, and the minimum confi-
dence threshold was set to 60% to obtain 14 sets of association rules, as shown in Table 7. 

Table 7. Partial association rules of underground gas risks and coal mine abnormal data training set. 

ID Con  Re Sup% Cof% Lift ID Con  Re Sup% Cof% Lift 
1 (C,P,U) --> W 0.25 1.00 1.35 9 (C,U) --> P 0.25 0.86 1.15 
2 (P,U,W) --> C 0.24 1.00 1.32 10 (C,P,W) --> U 0.25 0.86 1.15 
3 (C,P) --> W 0.29 0.97 1.26 11 (C,P) --> U 0.25 0.84 1.11 
4 (P,W) --> C 0.29 0.95 1.24 12 (C,W) --> U 0.26 0.83 1.12 
5 (C,U,W) --> P 0.25 0.94 1.27 13 (P,W) --> U 0.25 0.82 1.08 
6 （C,U) --> W 0.26 0.92 1.25 14 (U) --> P 0.34 0.74 1.12 
7 (U,W) --> P 0.25 0.91 1.20 15 (P,U) --> W 0.25 0.72 1.06 
8 （C,W) --> P 0.29 0.90 1.23 16 (C) --> W 0.32 0.71 1.09 

The above results show that there are more than three dimensions of gas concentra-
tion data and pressure data in the upper corner, mining coalbed and working face. When 
an abnormality is detected, there is 100% confidence that gas risk events occur. In the as-

Figure 11. Scatter plot of association rules.

Table 6. Coupling relationship rules for pressure data of the working face, upper corner, mining coalbed and working face.

ID Con Re Sup% Cof% Lift ID Con Re Sup% Cof% Lift

1 (C,W) → D 0.32 1 1.46 7 (C,P,U,W) → D 0.25 1 1.34
2 (P,W) → D 0.30 1 1.43 8 (P,U) → D 0.34 0.98 1.38
3 (C,P,W) → D 0.29 1 1.39 9 (C,P) → D 0.29 0.98 1.35
4 (C,U,W) → D 0.26 1 1.36 10 (C,U) → D 0.28 0.97 1.24
5 (P,U,W) → D 0.25 1 1.34 11 (U,W) → D 0.26 0.97 1.21
6 (C,P,U) → D 0.25 1 1.34 12 (W,P) → D 0.34 0.75 1.13

The above table shows a strong correlation between the working face, upper corner
and mining coalbed gas concentrations and the working face pressure. Anomalies in
any two dimensions of data lead to anomalies in data in other dimensions except mining
coalbeds. The gas concentration in the mining coalbed is primarily affected by the mine
pressure during the mining process and the natural factors of gas occurrence. Therefore, in
the association rules, there are two association rules that cause abnormalities in this coal
seam, both of which are prerequisites for abnormal pressure dimension data.

The above method is used to explore the relationship between the four dimensions of
the working face, upper corner, mining coalbed, support pressure and underground gas
danger. The minimum support threshold was set to 20%, and the minimum confidence
threshold was set to 60% to obtain 14 sets of association rules, as shown in Table 7.

Table 7. Partial association rules of underground gas risks and coal mine abnormal data training set.

ID Con Re Sup% Cof% Lift ID Con Re Sup% Cof% Lift

1 (C,P,U) → W 0.25 1.00 1.35 9 (C,U) → P 0.25 0.86 1.15
2 (P,U,W) → C 0.24 1.00 1.32 10 (C,P,W) → U 0.25 0.86 1.15
3 (C,P) → W 0.29 0.97 1.26 11 (C,P) → U 0.25 0.84 1.11
4 (P,W) → C 0.29 0.95 1.24 12 (C,W) → U 0.26 0.83 1.12
5 (C,U,W) → P 0.25 0.94 1.27 13 (P,W) → U 0.25 0.82 1.08
6 (C,U) → W 0.26 0.92 1.25 14 (U) → P 0.34 0.74 1.12
7 (U,W) → P 0.25 0.91 1.20 15 (P,U) → W 0.25 0.72 1.06
8 (C,W) → P 0.29 0.90 1.23 16 (C) → W 0.32 0.71 1.09

The above results show that there are more than three dimensions of gas concentration
data and pressure data in the upper corner, mining coalbed and working face. When
an abnormality is detected, there is 100% confidence that gas risk events occur. In the
association rules with two factors leading to the result, only when the two sets of data
mining coalbed and working face data and working face pressure and working face data
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are abnormal is the confidence level of the occurrence of a gas risk event situation 100%.
The two factors lead to confidence in the association rules of the results above 95%. In
comparison, a single factor leads to a lower confidence in the association rules of the
occurrence of gas risk events situation of approximately 75%. Therefore, multiple abnormal
factors downhole are more likely to cause gas danger than a single abnormal factor.

By setting different confidence grades, four grades ofassociation rules are obtained.
According to the confidence grade from high to low, the risk warning grade is divided into
grade I, grade II, grade III and grade IV from strong to weak. There are four grades, as
shown in Table 8.

Table 8. Underground gas risk warning grade table.

Grade Parameter
Setting Con Re Sup% Cof% Lift

I
Sup ≥ 0.2
Cof ≥ 0.99

(C,W) → D 0.32 1 1.46
(P,W) → D 0.30 1 1.43

(C,P,W) → D 0.29 1 1.39
(C,U,W) → D 0.26 1 1.36
(P,U,W) → D 0.25 1 1.34
(C,P,U) → D 0.25 1 1.34

(C,P,U,W) → D 0.25 1 1.34

II
Sup ≥ 0.2

0.99 > Cof ≥ 0.7

(P,U) → D 0.34 0.98 1.38
(C,P) → D 0.29 0.98 1.35
(C,U) → D 0.28 0.97 1.24
(U,W) → D 0.26 0.97 1.21
(W,P) → D 0.34 0.75 1.13

III
Sup ≥ 0.2

0.7 > Cof ≥ 0.5
(W) → D 0.33 0.68 1.08
(C) → D 0.32 0.69 1.09

IV Sup ≥ 0.2
0.5 > Cof ≥ 0.4 (P) → D 0.39 0.51 1.05

The above table indicates that the grade-I (Sup ≥ 0.2, Cof ≥ 0.99) risk warning confi-
dence is 100%, and most of these warnings are caused by a simultaneous abnormality of
data in 3 dimensions. When abnormal values are detected in the pressure data of the mining
coalbed, upper corner, working face and support, it may be that the coal seam structure has
been destroyed during the mining process, and the hydrology and other conditions have
changed, leading to gas gushing in many places. Grade-II (Sup ≥ 0.2, 0.99 > Cof ≥ 0.7)
danger warnings are mainly caused by abnormal data in two dimensions. From the pre-
conditions of such association rules, the occurrence of abnormal gas concentrations in the
mining coalbed and upper corner is relatively high. Grade III (Sup ≥ 0.2, 0.7 > Cof ≥ 0.5)
and grade IV (Sup ≥ 0.2, 0.5 > Cof ≥ 0.4) have a single cause of gas risk events, and only
one dimension of abnormal data leads to gas risk events. The mining coalbed, upper corner,
working face and rock pressure disturbance during the mining process all have a certain
impact on the gas concentration. In particular, when the gas concentration of multiple
spatial dimensions is abnormal at the same time, this will likely cause underground gas
risks to appear. At present, the early warning result of coal mine gas concentration is
mainly judged by the size attribute of the data uploaded by the sensor. The big problem
with this method is that it is difficult to quickly identify the authenticity of outliers and the
reliability of early warning events is poor. However, the early warning results obtained in
this article are based on analyzing multiple data dimensions with coupling relationships
and making judgments on early warning events. The obtained gas warning result combines
the screening and verification of multiple parameters and has high reliability.

5. Conclusions

This paper studied the dynamic changes in the gas in a mine and provided an in-
depth analysis of the abnormal values of the gas monitoring data. An early warning
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model was established for a multifactor coupling relationship analysis of coal face gas
based on the improved k-means and Apriori algorithms. The model improves the k-means
algorithm based on the selection method of initial cluster centers so that the unique
clustering results obtained when set different initial values to perform cluster analysis on
the four dimensions of data that directly or indirectly affect the gas concentration, thereby
improving the accuracy of distinguishing abnormal values in gas data. Then, after adding
weights to the support as an optimization method for the Apriori algorithm so that the
larger risk events and major risk events with lower frequency can be distinguished. It is
also possible to establish a gas grading early warning mechanism based on the support
and confidence parameters. Finally, interesting association rule events can be filtered
by lift. The model was verified by an example. The verification results show that the
model can accurately predict the gas concentration when multiple factors affect the gas
concentration conditions, and the gas grading pre-mechanism derived from the in-depth
analysis of gas outliers can effectively improve the early warning performance of gas
disasters. By analyzing the influence of multifactor coupling gas concentration fluctuations,
the corresponding association rules and risk warning models are established and effectively
prevent gas overruns and production stops, release coal mining capacity and protect the
lives of operators to a greater extent. This promotes the safe, efficient and stable production
of coal. This research has laid a certain foundation for intelligent gas accurate warning.
The next step of the research will be to conduct data fusion analysis with the upstream and
downstream topological structure of the ventilation as the link, in order to improve the
accuracy of underground gas concentration prediction and early warning.
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