Pore-Scale Characterization and PNM Simulations of Multiphase Flow in Carbonate Rocks
Abstract
:1. Introduction
2. Materials and Laboratory Measurements
2.1. Rock Samples and Image Acquisition
2.2. Laboratory Measurements
3. Image Processing
4. Pore Network Model
4.1. Pore Throat Size Analysis
4.2. Topological Structure Analysis
4.3. Aspect Ratio
4.4. Pore Throat Shape Factor
5. Two-Phase Flow Simulation
5.1. Primary Drainage
5.2. Waterflooding
6. The Effect of Wettability on Relative Permeability
6.1. Uniform Wet System
6.2. Mixed Wet System
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Avraam, D.G.; Payatakes, A.C. Generalized relative permeability coefficients during steady-state two-phase flow in porous media, and correlation with the flow mechanisms. Transp. Porous Media 1995, 20, 135–168. [Google Scholar] [CrossRef]
- Akbarabadi, M.; Piri, M. Relative permeability hysteresis and capillary trapping characteristics of supercritical CO2/brine systems: An experimental study at reservoir conditions. Adv. Water Resour. 2013, 52, 190–206. [Google Scholar] [CrossRef]
- Kianinejad, A.; Chen, X.; DiCarlo, D.A. Direct measurement of relative permeability in rocks from unsteady-state saturation profiles. Adv. Water Resour. 2016, 94, 1–10. [Google Scholar] [CrossRef]
- Civan, F.; Donaldson, E.C. Relative Permeability From Unsteady-State Displacements With Capillary Pressure Included. SPE Form. Eval. 1989, 4, 189–193. [Google Scholar] [CrossRef]
- Wang, Y.D.; Chung, T.; Armstrong, R.T.; McClure, J.; Ramstad, T.; Mostaghimi, P. Accelerated Computation of Relative Permeability by Coupled Morphological and Direct Multiphase Flow Simulation. J. Comput. Phys. 2020, 401, 108966. [Google Scholar] [CrossRef]
- Ubani, C.E.; Adeboye, Y.B. Advances in coring and core analysis for reservoir formation evaluation. Sustain. Pet. Eng. 2013, 54, 31–43. [Google Scholar]
- Devarapalli, R.S.; Islam, A.; Faisal, T.F.; Sassi, M.; Jouiad, M. Micro-CT and FIB–SEM imaging and pore structure characterization of dolomite rock at multiple scales. Arab. J. Geosci. 2017, 10, 361. [Google Scholar] [CrossRef]
- Faisal, T.F.; Islam, A.; Jouini, M.S.; Devarapalli, R.S.; Jouiad, M.; Sassi, M. Numerical prediction of carbonate elastic properties based on multi-scale imaging. Geomech. Energy Environ. 2019, 20, 100125. [Google Scholar] [CrossRef]
- Islam, A.; Chevalier, S.; Sassi, M. Structural characterization and numerical simulations of flow properties of standard and reservoir carbonate rocks using micro-tomography. Comput. Geosci. 2018, 113, 14–22. [Google Scholar] [CrossRef]
- Islam, A.; Faisal, T.F.; Chevalier, S.; Jouini, M.S.; Sassi, M. Multi-scale experimental and numerical simulation workflow of absolute permeability in heterogeneous carbonates. J. Pet. Sci. Eng. 2018, 173, 326–338. [Google Scholar] [CrossRef]
- Blunt, M.J.; Bijeljic, B.; Dong, H.; Gharbi, O.; Iglauer, S.; Mostaghimi, P.; Paluszny, A.; Pentland, C. Pore-scale imaging and modelling. Adv. Water Resour. 2013, 51, 197–216. [Google Scholar] [CrossRef] [Green Version]
- Mehmani, A.; Verma, R.; Prodanović, M. Pore-scale modeling of carbonates. Mar. Pet. Geol. 2020, 114, 104141. [Google Scholar] [CrossRef]
- Sun, H.; Vega, S.; Tao, G. Analysis of heterogeneity and permeability anisotropy in carbonate rock samples using digital rock physics. J. Pet. Sci. Eng. 2017, 156, 419–429. [Google Scholar] [CrossRef]
- Fatt, I. The Network Model of Porous Media. Trans. AIME 1956, 207, 144–181. [Google Scholar] [CrossRef]
- Lindquist, W.B.; Lee, S.M.; Coker, D.A.; Jones, K.W.; Spanne, P. Medial axis analysis of void structure in three-dimensional tomographic images of porous media. J. Geophys. Res. Solid Earth 1996, 101, 8297–8310. [Google Scholar] [CrossRef] [Green Version]
- Sheppard, A.P.; Sok, R.M.; Averdunk, H. Improved Pore Network Extraction Methods. Int. Symp. Soc. Core Anal. 2005, 2125, 1–11. [Google Scholar]
- Silin, D.B.; Jin, G.; Patzek, T.W. Robust Determination of the Pore Space Morphology in Sedimentary Rocks. In Proceedings of the SPE Annual Technical Conference and Exhibition, Denver, CO, USA, 5–8 October 2003; pp. 2135–2149. [Google Scholar] [CrossRef]
- Dong, H.; Blunt, M.J. Pore-network extraction from micro-computerized-tomography images. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2009, 80, 036307. [Google Scholar] [CrossRef] [Green Version]
- Gostick, J.T. Versatile and efficient pore network extraction method using marker-based watershed segmentation. Phys. Rev. E 2017, 96, 023307. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Mendoza, E.G.; Díaz-Viera, M.A.; Coronado, M.; Mendoza-Rosas, A.T. Capillary pressure and relative permeability estimation for low salinity waterflooding processes using pore network models. J. Pet. Sci. Eng. 2019, 182, 106253. [Google Scholar] [CrossRef]
- Zahasky, C.; Jackson, S.J.; Lin, Q.; Krevor, S. Pore Network Model Predictions of Darcy-Scale Multiphase Flow Heterogeneity Validated by Experiments. Water Resour. Res. 2020, 56, 1–39. [Google Scholar] [CrossRef] [Green Version]
- El-Zehairy, A.A.; Nezhad, M.M.; Joekar-Niasar, V.; Guymer, I.; Kourra, N.; Williams, M.A. Pore-network modelling of non-Darcy flow through heterogeneous porous media. Adv. Water Resour. 2019, 131, 103378. [Google Scholar] [CrossRef]
- Varloteaux, C.; Békri, S.; Adler, P.M. Pore network modelling to determine the transport properties in presence of a reactive fluid: From pore to reservoir scale. Adv. Water Resour. 2013, 53, 87–100. [Google Scholar] [CrossRef]
- Raoof, A.; Nick, H.M.; Hassanizadeh, S.M.; Spiers, C.J. PoreFlow: A complex pore-network model for simulation of reactive transport in variably saturated porous media. Comput. Geosci. 2013, 61, 160–174. [Google Scholar] [CrossRef]
- Wang, X.; Sheng, J.J. Pore network modeling of the Non-Darcy flows in shale and tight formations. J. Pet. Sci. Eng. 2018, 163, 511–518. [Google Scholar] [CrossRef]
- Valvatne, P.H.; Blunt, M.J. Predictive pore-scale modeling of two-phase flow in mixed wet media. Water Resour. Res. 2004, 40, W07406. [Google Scholar] [CrossRef] [Green Version]
- Piri, M.; Blunt, M.J. Three-dimensional mixed-wet random pore-scale network modeling of two- and three-phase flow in porous media. I. Model description. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2005, 71, 026301. [Google Scholar] [CrossRef] [PubMed]
- Al-Kharusi, A.S.; Blunt, M.J. Multiphase flow predictions from carbonate pore space images using extracted network models. Water Resour. Res. 2008, 44, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Zahaf, K.; Lecoq, T.F.; Badi, B.S.A.L.; Roth, S.; Dong, H.; Blunt, M.J. Prediction of Relative Permeability and Capillary Pressure using Digital Rock Physics: Case Study on two Giant Middle Eastern Carbonate Reservoirs. In Proceedings of the International Symposium of the Society of Core Analysts, Vienna, Austria, 27 August–1 September 2017; pp. 1–9. [Google Scholar]
- Gharbi, O.; Blunt, M.J. The impact of wettability and connectivity on relative permeability in carbonates: A pore network modeling analysis. Water Resour. Res. 2012, 48, 1–14. [Google Scholar] [CrossRef]
- Roth, S.; Dong, H.; Blunt, M.; Kalam, M.; Alratrout, A.; Hammadi, D. Primary Drainage Relative Permeability in Hydrocarbon Reservoirs Interpreted Using Digital Rock Physics. In Proceedings of the International Symposium of the Society of Core Analysts, Vienna, Austria, 27 August–1 September 2017. [Google Scholar]
- Zhao, X.; Blunt, M.J.; Yao, J. Pore-scale modeling: Effects of wettability on water fl ood oil recovery. J. Pet. Sci. Eng. 2010, 71, 169–178. [Google Scholar] [CrossRef]
- Kaestner, A.; Lehmann, E.; Stampanoni, M. Imaging and image processing in porous media research. Adv. Water Resour. 2008, 31, 1174–1187. [Google Scholar] [CrossRef]
- Jouini, M.S.; Vega, S.; Al-Ratrout, A. Numerical estimation of carbonate rock properties using multiscale images. Geophys. Prospect. 2015, 63, 405–421. [Google Scholar] [CrossRef]
- Helland, J.; Ryazanov, A.V.; van Dijke, M. Characterization of Pore Shapes for Pore Network Models. In Proceedings of the 11th European Conference on the Mathematics of Oil Recovery (ECMOR XI), Bergen, Norway, 8–11 September 2008. [Google Scholar] [CrossRef]
- Blunt, M.J. Multiphase Flow in Permeable Media: A Pore-Scale Perspective; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Guancheng, J. Chapter 2—Evaluation Methods and Influencing Factors of Gas Wettability. In Gas Wettability of Reservoir Rock Surfaces with Porous Media; Gulf Professional Publishing Edition: Houston, TX, USA, 2018; pp. 29–84. [Google Scholar]
- Amott, E. Observations Relating to the Wettability of Porous Rock. Trans. AIME 1959, 216, 156–162. [Google Scholar] [CrossRef]
Author(s), Year | Rock | Image Resolution (μm) | 3D Micro-CT Image | PNM | Match Capillary Pressure | Relative Permeability Prediction | ||
---|---|---|---|---|---|---|---|---|
Sandstone | Carbonate | Uniform Wet System | Mixed Wet System | |||||
Valvatne and Blunt (2004) | √ | - | Process-based simulation | √ | √ | √ | √ | |
Piri and Blunt (2005) | √ | - | Process-based simulation | √ | √ | |||
Al-Kharusi and Blunt (2008) | √ | - | Multiple-point statistics | √ | √ | √ | ||
Zhao et al. (2010) | √ | √ | 9.1, 9.996, 5.345 | √ | √ | √ | √ | |
Gharbi and Blunt (2012) | √ | 4.5, 3.85 | √ | √ | √ | |||
Raeini et al. (2014) | √ | 8.2, 4.58 | √ | √ | ||||
Roth et al. (2017) | √ | 1–8 | √ | √ | √ | |||
Zahaf et al. (2017) | √ | - | √ | √ | √ | √ | ||
Martínez-Mendoza et al. (2019) | √ | √ | - | √ | √ | √ | ||
Wang et al. (2020) | √ | 5.3, 10 | √ | √ | ||||
This Work | √ | 5.32, 0.94, 0.81 | √ | √ | √ | √ | √ |
Sample | MICP Porosity (%) | Plug He Porosity (%) | Plug Permeability (mD) |
---|---|---|---|
SD | 13.52 | 15.81 | 278.85 |
A-4 | 18.49 | 20.78 | 10.23 |
TC | 22.06 | 25.64 | 336.94 |
Properties | SD | A-4 | TC | |
---|---|---|---|---|
Total porosity (%) | 15.22 | 21.38 | 26.20 | |
Connected porosity (%) | 13.97 | 19.22 | 24.71 | |
Number of pores | 5245 | 35,171 | 25,801 | |
Number of throats | 9267 | 75,084 | 47,255 | |
Mean coordination number 1 | 3.49 | 4.24 | 3.64 | |
Pore radius (µm) | Min | 0.32 | 0.02 | 0.05 |
Max | 165.34 | 20.78 | 36.00 | |
Mean | 19.23 | 2.08 | 2.43 | |
Throat radius (µm) | Min | 0.01 | 0.02 | 0.04 |
Max | 109.20 | 18.66 | 23.16 | |
Mean | 11.23 | 1.19 | 1.45 | |
Aspect ratio 2 | Min | 1 | 1 | 1 |
Max | 4037 | 585 | 818 | |
Mean | 8 | 3 | 4 |
Rock | Total Porosity (%) | Connected Porosity (%) | Permeability (mD) | |
---|---|---|---|---|
SD | Experiment | 15.81 | 13.52 | 278.85 |
Simulation | 15.22 | 13.97 | 311.01 | |
Relative error | −3.74% | 3.31% | 11.54% | |
A-4 | Experiment | 20.78 | 18.49 | 10.23 |
Simulation | 21.38 | 19.22 | 10.98 | |
Relative error | 2.87% | 3.94% | 7.39% | |
TC | Experiment | 25.64 | 22.06 | 336.94 |
Simulation | 26.20 | 24.71 | 325.55 | |
Relative error | 2.18% | 12.02% | −3.38% |
System | IFT (Dynes/cm) | Contact Angle (°) | Fluid | Fluid Density (Kg/m3) |
---|---|---|---|---|
Hg/Air | 485 | 130 | Water | 1000 |
Oil/Water | 32 | 30 | Oil | 800 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Abderrahmane, H.; Al Kobaisi, M.; Sassi, M. Pore-Scale Characterization and PNM Simulations of Multiphase Flow in Carbonate Rocks. Energies 2021, 14, 6897. https://doi.org/10.3390/en14216897
Zhang H, Abderrahmane H, Al Kobaisi M, Sassi M. Pore-Scale Characterization and PNM Simulations of Multiphase Flow in Carbonate Rocks. Energies. 2021; 14(21):6897. https://doi.org/10.3390/en14216897
Chicago/Turabian StyleZhang, Haiyang, Hamid Abderrahmane, Mohammed Al Kobaisi, and Mohamed Sassi. 2021. "Pore-Scale Characterization and PNM Simulations of Multiphase Flow in Carbonate Rocks" Energies 14, no. 21: 6897. https://doi.org/10.3390/en14216897
APA StyleZhang, H., Abderrahmane, H., Al Kobaisi, M., & Sassi, M. (2021). Pore-Scale Characterization and PNM Simulations of Multiphase Flow in Carbonate Rocks. Energies, 14(21), 6897. https://doi.org/10.3390/en14216897