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Abstract: This paper deals with pore-scale two-phase flow simulations in carbonate rock using
the pore network method (PNM). This method was used to determine the rock and flow proper-
ties of three different rock samples, such as porosity, capillary pressure, absolute permeabilities,
and oil–water relative permeabilities. The pore network method was further used to determine
the properties of rock matrices, such as pore size distribution, topological structure, aspect ratio,
pore throat shape factor, connected porosity, total porosity, and absolute permeability. The predicted
simulation for the network-connected porosity, total porosity, and absolute permeability agree well
with those measured experimentally when the image resolution is appropriate to resolve the relevant
pore and throat sizes. This paper also explores the effect of the wettability and fraction of oil-wet
pores on relative permeabilities, both in uniform and mixed wet systems.

Keywords: digital rock physics; pore network modeling; rock properties; two-phase flow
properties; wettability

1. Introduction

In the context of reservoir characterization, identifying the pore structure and un-
derstanding flow and transport processes in sub-surface geological rocks are nontrivial
tasks. For instance, relative permeability, which plays a key role in reservoir characteriza-
tion and production, is measured in the laboratory using either steady- or unsteady-state
methods, which are lengthy and costly. These experimental methods involve injecting
different phases into core samples and measuring flow rates [1–5]. Measuring relative
permeability in the laboratory also requires a large number of high-quality core samples
from a targeted reservoir [5,6].

Nowadays Digital Rock Physics (DRP), applied to reservoir rock characterization,
is becoming a prominent method to determine physical and flow properties [7–10]. DRP relies
on high-resolution three-dimensional digital images of pores and grains structures,
obtained using X-ray micro-computed tomography (micro-CT). These structures are used
to conduct multiphase flow numerical simulation at the pore scale and to estimate rock
properties such as relative and absolute permeabilities. The success of the DRP approach is
related to the development of advanced imaging techniques and computational capability.
Micro-CT, which is a non-destructive imaging technique, can resolve pore structures of a
few microns [5,11].

The numerical simulations of the multiphase flow through pore structures are of two
types, namely, direct simulations and pore network methods. Direct simulation meth-
ods include the lattice Boltzmann method (LBM) and the finite volume method (FVM).
These methods solve the multiphase flow within pore structures but require considerable
computational resources and are time-consuming. These drawbacks grow with the resolu-
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tion of a pore structure. Pore-scale direct simulations of multiphase flows are costly and
time-consuming [11–13].

The pore network method (PNM) is a computationally cost-effective method to pre-
dict multiphase flow and transport properties. The pore network method was introduced
first by Fatt [14], based on regular tubes and capillary pressure. With time, the pore net-
work method became more sophisticated to accommodate irregular and complex pore
networks in real rock. Different network extraction algorithms such as the medial axis
algorithm [15,16], the maximal ball algorithm [17,18], and the SNOW algorithm [19] have
been developed to generate the equivalent structure of porous media. The differences
between these algorithms are based on different pore space characterization and pore
size assignment methods. The output pore network is then used to conduct flow simula-
tions and to investigate different processes such as wettability, multiphase flow, reactive
transport, and no-Darcy flow [20–25].

One can find in the literature many investigations that have used PNM to conduct
various multiphase flow simulations in porous media, to predict the permeability, and to
investigate the effect of various factors such as wettability and pore connectivities on the
permeability. For instance, Valvatne and Blunt used a network representation of process-
based simulation Berea sandstone to predict the relative permeability for different samples
with different wettabilities [26]. PNM was used to predict two-phase water-wet and three-
phase gas injection relative permeabilities in Berea sandstone samples [27]. Al-Kharusi
and Blunt used a PNM on a statistically representative 3D image from a 2D thin-section
carbonate image to predict the relative permeabilities of heterogeneous carbonate rocks [28].
Zahaf et al. predicted the relative permeability with networks extracted from 3D images
of real carbonate samples [29]. A pore network obtained from real 3D carbonate images
was used by Gharbi and Blunt to investigate the effects of wettability and connectivity on
relative permeability in mixed wet systems [30]. Roth et al. used pore networks extracted
from 54 samples and studied the effects of rock types and the porosity on water–oil relative
permeability in the primary drainage process [31].

There are few papers where PNM has been used to predict permeability in both
uniform and mixed wet systems. Moreover, to the best of the authors’ knowledge,
most of these investigations used PNM obtained from low-resolution images. For instance,
Zhao et al. and Valvatne and Blunt used PNM to estimate the relative permeability in both
uniform and mixed wet systems [26,32]. In Zhao et al.’s study [32], the resolution of the
images ranged from 5.345 to 9.996 µm; with such low resolution, nano- and micropores and
throats, which are prominent in carbonates, cannot be completely resolved. This means the
networks extracted in [32] cannot be representative of their carbonate rock. The resolution
of the throat is crucial to accurately predict capillary pressure. Failing to resolve nano-
and micropores and throats should result in an underestimation of the capillary pressure
curve. For instance, Valvatne and Blunt had to adjust the pore size distribution to match
the capillary pressure [26]. Piri and Blunt adjusted the contact angle to match the experi-
mental relative permeability to obtain good agreement between the results of the numerical
simulation and the experiment [27]. Zahaf et al. matched the measured capillary pressure
by adjusting the contact angle [29]. In the present study, we used a much higher image
resolution (0.94 µm and 0.81 µm); this resolved micropore and microthroat in the carbonate
rocks. Hence, we expect our extracted pore networks to be more representative of the
rock samples in hand. Moreover, the capillary pressure measured in the laboratory should
be predicted without adjusting any parameter such as pore size or contact angle. Table 1
highlights the novelty in our present study.

In this study, we conducted pore-scale two-phase flow simulations using PNM models
of carbonate rocks. The carbonate core samples from oil and gas reservoirs presented
different heterogeneities. First, we used pore network models extracted from 3D micro-CT
images to analyze rock structure properties such as pore size distribution and topological
structure. Then, we conducted simulations of multiphase flows through the pore net-
work models. We were able to predict the porosity, absolute permeability, and capillary
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pressure curve. These results were validated using experimental data. We also predicted
the oil–water relative permeability and analyzed the effect of wettability on the relative
permeability in both the uniform and mixed wet systems.

Table 1. Literature on the simulation of multiphase flow.

Author(s), Year
Rock Image

Resolution
(µm)

3D Micro-CT Image PNM Match Capillary
Pressure

Relative Permeability
Prediction

Sandstone Carbonate Uniform
Wet System

Mixed Wet
System

Valvatne and
Blunt (2004)

√
- Process-based

simulation
√ √ √ √

Piri and Blunt
(2005)

√
- Process-based

simulation
√ √

Al-Kharusi and
Blunt (2008)

√
- Multiple-point

statistics
√ √ √

Zhao et al. (2010)
√ √

9.1, 9.996, 5.345
√ √ √ √

Gharbi and Blunt
(2012)

√
4.5, 3.85

√ √ √

Raeini et al.
(2014)

√
8.2, 4.58

√ √

Roth et al. (2017)
√

1–8
√ √ √

Zahaf et al.
(2017)

√
-

√ √ √ √

Martínez-
Mendoza et al.

(2019)

√ √
-

√ √ √

Wang et al.
(2020)

√
5.3, 10

√ √

This Work
√

5.32, 0.94, 0.81
√ √ √ √ √

2. Materials and Laboratory Measurements
2.1. Rock Samples and Image Acquisition

In this study, we selected three different carbonate rock samples, including Silurian
Dolomite (SD), Albion-4 carbonate rock (A-4), and the TOTAL carbonate rock (TC), all from
TOTAL reservoirs (see Figure 1). The selected rock samples were trimmed to fit a diameter
of 1.5 inches. Smaller plugs were then extracted from the individual samples and scanned
using Zeiss Xradia Versa 500 Micro-CT, Oberkochen, Germany, at 5.32 µm for SD, 0.81 µm
for A-4, and 0.94 µm for TC, respectively (see Figure 2).
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Figure 2. (a) SD sample scanned at 5.32 µm, (b) A-4 sample scanned at 0.81 µm, and (c) TC sample
scanned at 0.94 µm.

2.2. Laboratory Measurements

Laboratory measurements of porosity and absolute permeability were obtained for
each of the samples as follows. Rock porosity was determined using a helium porosimeter
based on Boyle’s law, while the permeability was measured by injecting air. The trimmed
rock samples were then subjected to mercury injection capillary pressure (MICP) tests to
evaluate the connected porosity, pore size distribution, normalized permeability, and capillary
pressure as a function of the mercury saturation, as shown in Figure 3. Table 2 summarizes
the experimental results obtained for each carbonate sample.

The pore throat size distribution plays a key role in determining the rock’s normalized
permeability curves, as shown in Figure 3a,c,e, which were determined from the pore
throat radius similar to the capillary pressure curves. The normalized permeability curves
indicate that only pore throats of 1 µm in size and above contribute to the porous medium
permeability. However, Figure 3a shows that the pore throat size distribution for the SD
sample ranged from 1 µm to approximately 35 µm, with a prevalence of pores throats
of a 10 µm radius, while Figure 3c indicates that the A-4 sample has relatively small
pores throats distributed from 0.01 to 5 µm, with several peaks centered around 0.8 µm.
Figure 3e features the TC sample pore throat size distribution ranging from 0.001 to 40 µm,
which includes more nanopores, more peaks, and a wider distribution. These features
are very important in determining the flow and elastic properties of the rock samples.
The pore throat size distribution and the normalized permeability curves indicate what
image resolution is required in this study. A resolution of 5.32 µm for the SD sample can
resolve most of the pore spaces. However, a sub-micron resolution is required for the A-4
and TC samples. Furthermore, in our previous digital rock physics studies, we showed
that the nanopores do not contribute to the flow properties of the rock samples [7–9].
Therefore, resolving nanopores or including them in the simulation will not affect the
estimations of the flow properties such as absolute and relative permeability. However,
resolving nanopores and including them in the simulation is important for the prediction
of the rock’s elastic properties [10,33]. It was shown that the inclusion of nanopores and
whether they are empty, filled with air, water, or oil afford different rock elastic properties.
This is very important for the interpretation of seismic data in reservoir exploration and
characterization. Therefore, the used micro-CT imaging resolutions of 5.32 µm for SD, 0.81 µm
for A-4, and 0.94 µm for TC samples are sufficient to extract accurate pore networks of
the three samples for our study of multiphase flow properties. As highlighted in Table 1,
such high resolutions have not been used in previous works found in the literature.
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Table 2. Laboratory porosity and permeability results.

Sample MICP Porosity (%) Plug He Porosity (%) Plug Permeability (mD)

SD 13.52 15.81 278.85
A-4 18.49 20.78 10.23
TC 22.06 25.64 336.94

3. Image Processing

The image processing protocol includes image denoising, removal of artifacts,
and classifying pixels into representative clusters [33]. Several image segmentation tech-
niques can be found in the literature. These techniques can be classified into either manual
or automatic segmentation methods. The manual segmentation algorithms depend on
the operator’s observation and experience. The results of the manual segmentation may
be optimal for one sample and may not be for another [34]. On the contrary, automatic
segmentation algorithms are more efficient and less subjective. In this study, we used the
Interactive Overly Threshold module in the PerGeos software package to segment the
images into pores and solid grains. Figure 4a–c represent 2D raw images of 500× 500 pixels
of the SD, A-4, and TC samples. Figure 4d–f represent the associated segmented images.
The 2D segmented images cannot reveal connected and unconnected pores. Therefore,
we applied the same segmentation algorithm (Interactive Overly Threshold module in
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PerGeos) to 3D images of 5003 voxel cubes extracted from full-size images of the three
samples. Figure 5 represents the 3D volume rendering of the samples. The gray color in
the first column represents the rock matrix, while the blue color represents the total pore
volume. In the second column, the gray and the blue colors represent the unconnected
and connected pores, respectively. The connected pores, which represent the flow channels
relevant to the present multiphase flow study, are shown in the third column. This last
column shows that the flow channel volume increases from SD to A-4 to TC, respectively.
This is further shown by the connected porosity values in Table 3, which are approximately
14%, 19%, and 25%, respectively.
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Figure 5. 3D volume rendering of the segmented sample of (a) SD (d) A-4, and (g) TC, where gray
represents solids and blue represents pores. Representation of all pore spaces of (connected and
unconnected pores) (b) SD, (e) A-4, and (h) TC, where gray represents isolated pores and blue
represents connected pores. Representation of connected pore spaces of (c) SD, (f) A-4, and (i) TC.

Table 3. Summary of the pore network model’s properties.

Properties SD A-4 TC

Total porosity (%) 15.22 21.38 26.20
Connected porosity (%) 13.97 19.22 24.71

Number of pores 5245 35,171 25,801
Number of throats 9267 75,084 47,255

Mean coordination number 1 3.49 4.24 3.64

Pore radius (µm)
Min 0.32 0.02 0.05
Max 165.34 20.78 36.00

Mean 19.23 2.08 2.43

Throat radius
(µm)

Min 0.01 0.02 0.04
Max 109.20 18.66 23.16

Mean 11.23 1.19 1.45

Aspect ratio 2
Min 1 1 1
Max 4037 585 818

Mean 8 3 4
1 The average number of throats connected to a pore. 2 The ratio of pore size to the size of
a linked throat.

4. Pore Network Model

We used the pore-based algorithm in the PerGeos software to extract pore networks
from the segmented 3D images. The pores and throats are represented by balls and
cylinders, respectively. Figure 6 illustrates the pore network structures of the three sam-
ples; in particular, the large red balls represent some of the large pores of each sample.
For instance, the large red balls of the SD sample feature size between 10 and 20 µm are
also shown and supported by the pore size distribution of Figure 7a and are indicated in
the mean pore size of Table 3. Meanwhile, those of the A-4 and TC samples present small
pore sizes between 2 and 3 µm, as shown in Figure 7b,c and Table 3.

The results of the PNM analysis are summarized in Table 3. The accuracy of the
PNM analysis is depicted in Table 4, where the estimated porosities and permeabilities
are compared with those obtained through laboratory experiments. The relative errors
between the estimated and measured values are satisfactory and range from 3% to 10%.
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Figure 6. Pore network models extracted from 3D images of (a) SD, (b) A-4, and (c) TC, where the
gray represents the throat and the other colors represent pores of different sizes. Note that the color
is independent for each sample.
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rock samples.

Table 4. Comparing porosity and permeability obtained by MICP and simulation.

Rock Total Porosity (%) Connected Porosity (%) Permeability
(mD)

SD
Experiment 15.81 13.52 278.85
Simulation 15.22 13.97 311.01

Relative error −3.74% 3.31% 11.54%

A-4
Experiment 20.78 18.49 10.23
Simulation 21.38 19.22 10.98

Relative error 2.87% 3.94% 7.39%

TC
Experiment 25.64 22.06 336.94
Simulation 26.20 24.71 325.55

Relative error 2.18% 12.02% −3.38%
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4.1. Pore Throat Size Analysis

The pore network model provides the pore and throat size distributions, as shown in
Figure 7. This figure indicates that the throat distribution is wider than that of the pores
for the three samples; this is consistent with the values of the number of throats extracted
from PNM (see Table 3). Figure 7a shows that the dominant pore and throat sizes in the
SD sample are approximately 12 µm and 5 µm, respectively, while Figure 7b,c indicates
that the A-4 and TC samples feature similar pore and throat sizes, and their prevailing
sizes are approximately 2 µm and 0.5 µm for the A-4 and TC samples, respectively. It is
worth highlighting that the range of throat sizes extracted using PNM coincides with
those obtained experimentally (Figure 3) for the SD and A-4 samples; these span between
0.2 and 30 µm and 0.02 and 5 µm, respectively. For the TC sample, the range detected by
PNM spans between 0.05 and 5 µm, while that obtained experimentally spans between
0.001 and 40 µm. The reason is that the 500 × 500 voxel, extracted from the central region
of the raw image, was not enough to include big pores (see Figure 2c).

4.2. Topological Structure Analysis

The topological structure of the rock sample can be defined by the coordination number.
This corresponds to the number of throats connected to each pore [11]. Figure 8 indicates that
for the three samples, more than 98% of the total pores have coordination numbers lying
between 1 and 12. Figure 8 also indicates that the pores with a coordination number of
3 are the ones that occur the most. Their frequency ranges from approximately 33% to 40%.
The pores with a coordination number ranging from 1 to 7 constitute more than 90% of the
total pores. The frequency of the pores with a coordination number of 1 in the networks is
above 11% for the three samples.
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Figure 8. Coordination number distribution frequency.

4.3. Aspect Ratio

The aspect ratio is defined as the ratio of pore size to the size of a linked throat.
The aspect ratios of the three rock samples are shown in Figure 9. This figure indicates that
in the three samples, only 20% of the pores and throats have the same sizes, and most of
the pores are larger than the throats. In addition, Table 3 indicates that the SD sample has a
larger mean average aspect ratio compared to the A-4 and TC samples. A small aspect ratio
indicates that the fluid can flow through the rock structure with relatively lower resistance.
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4.4. Pore Throat Shape Factor

Accurate characterizations of pore and throat geometries are necessary for the sim-
ulation of two-phase flow in porous media. Since the shapes of real pore and throat
cross-sections are generally highly complex and irregular, it is essential to simplify the
pores and throats into geometric bodies with idealized cross-sectional shapes. As shown
in Figure 10, real pores are replaced by circles, triangles, and square pores in most pore
network algorithms [35,36]. The shape factor is introduced to match the real pore space
structure, which is defined as G = A/P2, where A and P indicate the cross-section area and
the perimeter of the pore space, respectively. The shape factor identification principles are
as follows:

G =


G− Triangle i f G ≤

√
3/36

1
16 − Square i f

√
3/36 < G � 1/16

1
4π − Circle i f G > 1/16

A larger shape factor value means a smoother structure. Figure 11 shows the pore and
throat shape factor distribution. The figure indicates that there are a few pores and throats
with G > 1/16. Hence, these can be replaced by cylinders (circles in 2D). The figure also
indicates that a shape factor of approximately 12–31% of pores and 14–20% of throats is
within the interval

[√
3/36, 1/16

]
. Therefore, they can be replaced by squares. Around

69–85% of pores and 76–84% of throats can be replaced by triangles.
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Figure 10. Idealization of pores and throats.
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5. Two-Phase Flow Simulation
5.1. Primary Drainage

The capillary pressure, needed to validate the flow simulations of the water–oil system,
is given as MICP curves in Figure 3. Therefore, these curves, obtained from mercury–air
primary drainage experiments, need to be converted to the capillary pressure in the oil–
water system as follows:

The capillary pressure is defined as:

Pc =
2σcosθ

r

where σ is the interfacial tension, θ is the contact angle, defined as the angle between the
liquid–vapor and solid–liquid interfaces of a solid–liquid–vapor system, and r is the throat
radius. Pressure conversion is conducted using the following equation:

Pcow =
σowcosθow

σhacosθha
Pcha

where the subscript ow represents the oil and water system, while ha refers to the mercury
and air system. The data used in the experiments and simulations are summarized in Table 5.

Table 5. Summary of the data used in the experiments and simulations.

System IFT (Dynes/cm) Contact Angle (◦) Fluid Fluid Density (Kg/m3)

Hg/Air 485 130 Water 1000
Oil/Water 32 30 Oil 800

An oil–water system was considered flowing through the pore network models.
We assumed an oil–water interfacial tension of 32 Dynes/cm and a receding contact
angle of 30◦. The primary drainage capillary pressures were calculated and compared
with the converted MICP results of Figure 3, as shown in Figure 12. For the SD sample,
the calculated capillary pressure curve matches the MICP curve. This is because the used
micro-CT image resolution is sufficient to resolve all of the pores and throats of the SD
sample, resulting in the correct prediction of the simulated capillary pressure. However,
for A-4 and TC, the simulated capillary pressure curves are below the MICP curves at
low water saturation. This is because the image resolution was not enough to capture
the nanopores sized below the 0.8 micro-meter image resolution, while some of these
pores and throats contribute to the experimentally determined capillary pressure values.
Indeed, Figure 12, which depicts comparisons between laboratory and simulated capillary
pressures obtained from high- and low-resolution images, indicates that resolving smaller
pores results in a better estimation of the MICP curves.
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Figure 12. Comparison of simulated vs. measured primary drainage capillary pressure with different
imaging resolutions of (a) SD, (b) A-4, and (c) TC.

In the following, we explore the rock and two-phase flow properties using the pore net-
work model used above to estimate the porosity, absolute permeability, capillary pressure,
and relative permeabilities. Unfortunately, we do not have experimental measurements
of the relative permeabilities to validate our simulated results. However, as shown below,
the predicted results for relative permeability trends and values are consistent with the
expected multiphase flow behavior in porous media.

For instance, the water- and oil-predicted relative permeabilities for the primary
drainage with two different image resolutions (one that resolves all of the pores and throats,
while the other does not) are presented in Figure 13a–c for SD, A-4, TC, respectively.
The low image resolution indicates that the oil starts to flow at a water saturation of around
0.85, while the higher-resolution one shows that oil starts to flow at a water saturation of
around 0.65. Since the lower resolution captures only relatively larger-diameter throats,
the injected oil encounters less resistance to flow in pore throats and thus starts to invade
the water at higher saturations. However, high image resolution allows capturing smaller
pore throats, the water—being the wetting phase—preferentially occupies these throats.
This induces a higher resistance to the oil flow in the rock sample, resulting in a delay of
oil movement in the rock until a 0.65 water saturation. Overall, Figure 13 shows the oil
relative permeability increases with a higher image resolution. This is because a higher
image resolution can detect more throat branches connected to the resolved and smaller
pores, resulting in higher relative permeability values.

Furthermore, the results in Figure 13 from higher resolution images indicate that the
water relative permeability drops significantly with the oil injection, while the oil relative
permeability remains close to its initial zero value. This can be explained by the fact that the
water phase occupies most of the pores and throats in the network model. With the increase
in oil saturation (decrease in water saturation), the oil relative permeability increases
gradually. The water relative permeability values reached almost 0 when the oil saturation
exceeded 0.5. The very low but non-zero water relative permeability values indicate that
the injected oil did not completely block the water pathways. The water continues to flow
through the connected wetting water layers along the surfaces of the pore space. At the
cross-over saturation, both the oil and water relative permeability values are around 0.1 or
lower. Such low relative permeabilities are explained by the presence of arc menisci, which
act as flow barriers to the flow of the two phases [37].
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Figure 13. Prediction of the primary water and oil relative permeabilities of (a) SD, (b) A-4, and (c) TC.

5.2. Waterflooding

After the primary drainage, we conducted simulations of water injection into the pore
networks (water flooding). Since it is widely accepted that carbonate rocks are oil–water
systems, we assumed that the samples are slightly oil-wet. This assumption is reasonable
because oil migrates into the pore space and displaces water in the rocks, which are fully
saturated with water at their formation. In other words, long-time exposure to oil alters
the rock’s wettability; the reservoir becomes an oil–water system. For the water flooding
simulation, we set the advancing contact angles, which are the maximum contact angles
produced during a wetting process, from 140◦ to 150◦. We also assumed that the wettability
distribution is independent of the pore size. The predicted water flooding oil–water relative
permeabilities of all three samples are shown in Figure 14.

In the oil–water system, one can notice a rapid increase in water relative permeability
above a certain water saturation. In the case of the SD sample, the relative permeability
increased rapidly when the water saturation reached 0.4. This indicates a rapid water
connection and higher water flow conductance. At the end of the water flooding process,
the water relative permeabilities reached almost 1 for the three samples. This means that
the water phase (non-wetting phase) occupies the center of pore space, while the wetting oil
is stranded in small pore spaces. Another result is that the oil relative permeability dropped
to values lower than 0.01 after a water saturation of 0.5 for the three samples. The exact
values are 51.32%, 67.83%, and 53.24% for the SD, A-4, and TC samples, respectively. The
oil relative permeability remaining at very low values until the end of waterflooding is the
signature of layer drainage [30,37]. This means that the connected layers of the oil phase
with very low conductivity prevent the trapping of the oil in the pore space.
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Figure 14. Prediction of waterflooding relative permeability of (a) SD, (b) A-4, and (c) TC.

6. The Effect of Wettability on Relative Permeability

In this section, we present the results of our investigations of the effect of rock wetta-
bility on the relative permeability in two different wettability systems, namely, uniform
and mixed wet cases. In the uniform wet system, the same wettability is assigned to all
of the pores and throats of the rock sample pore network [32]. Meanwhile, in the mixed
wet system, some pores and throats are considered water-wet, while others are oil-wet.
We considered water flooding of an initially oil-saturated rock sample, and wettability
is selected by using the appropriate maximum and minimum advancing contact angle
values with a difference of 10◦ within the PerGeos pore network model, knowing that
other studies have considered a difference of 20◦ [32]. We used a difference of 20◦ and the
obtained variation of relative permeability between different wettability conditions was
not easily captured. While with the selected 10◦ difference, this variation is observed as
will be shown in the relative permeability curves below.

The literature indicates that in the water-wet system the advancing contact angle is
less than 90 degrees while in the oil–water system the advancing contact angle is more than
140 degrees [38]. We used the Amott–Harvey index to determine the system’s wettability.
The Amott–Harvey index is the difference between the Amott water index and the Amott
oil index [38]. The Amott water (oil) index is defined as the ratio of the amount of oil
(water) displaced by spontaneous imbibition of water (oil) to the total amount of oil (water)
displaced during imbibition (or secondary drainage) and is calculated by:

Iw−o = Iw − Io

Ip =
Sssp−Swi

1−Swi−Sor

where Sspp is the phase p saturation displaced by spontaneous imbibition, Swi is the initial
water saturation, and Sor is the residual oil saturation.

6.1. Uniform Wet System

To investigate the effect of wettability on the Amott–Harvey index, we varied the
advancing contact angle from 40◦ to 165◦. Within the PerGeo package and specifically the
pore network model, to select an advancing contact angle, a minimum value and maximum
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value have to be specified rather than a constant value of the angle. In their work on
wettability effects on water flooding at the pore scale, Zhao et al. [32] used a difference of
20◦ between these minimum and maximum values. We carried out some simulations with
both 20◦ and 10◦ differences and found no pronounced variation in the obtained results.

Therefore, we selected a difference of 10◦ to stay closer to the specific advancing
contact angle value in all of our simulations. The computed Amott–Harvey index is
presented in Figure 15 below. This figure shows that the index decreases from 1 (water-wet
system) to −1 (oil–water system) within the used advancing contact angle range from 40◦

to 165◦. Furthermore, the Amott–Harvey index went through an intermediate plateau of
zero between the advancing contact angle of the water-wet system (90◦) and the oil–water
system (140◦), indicating natural wettability behavior in this range [38].
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Figure 15. Relationship between average advancing contact angle and the Amott–Harvey index.

Next, we investigated the effect of the advancing contact angle (wettability) on the
relative permeability curves in the uniform water-wet and oil–water systems, respectively,
during water flooding (initially fully oil-saturated rock sample). The predicted values of the
oil–water relative permeabilities of the three samples for different advancing contact angles
in the water-wet and oil–water systems are shown in the right and left columns of Figure 16,
respectively. In each of these uniform wet systems, the wetting phase is known to occupy
the smaller pores and throats and to form thin films attached to the walls of the larger
pores and throats. On the contrary, the non-wetting phase fills the central volume of the
pores. This last behavior influences the interpretation of the relative permeability curves.

The left column in Figure 16 shows the influence of the wettability on the relative
permeabilities in a water-wet system (advancing contact angle less than 90). Figure 16a for
the SD sample shows that increasing the advancing contact angle in a water-wet system
has almost no influence on both the water and oil relative permeability curves. In addition,
the oil relative permeability sharply decreased as soon as the injected water saturation
started increasing in the system, reaching a value of almost zero at a water saturation of
approximately 0.3. Meanwhile, the water relative permeability remained almost zero until
a water saturation of 0.2, then increased to a value of only 0.025 at a water saturation of 0.3,
and both relative permeabilities remain unchanged with increasing water injection (water
saturation). Beyond a water saturation of 0.3, the oil was trapped in the central volume of
pores and the further injected water slipped over it by adhering to the water-wet pore and
throat surfaces. This was also a consequence of the fact that most of the pores in the SD
sample were poorly connected. For instance, 27% of the total pores in this sample and 60%
of the pores with a radius smaller than 10 µm were only connected to one pore, as shown
in Figures 8 and 17, respectively.

Figure 16c,e correspond to the A-4 and TC samples, respectively, both showing that
the oil relative permeability decreased with increasing advancing contact angle. They also
show that the oil relative permeability decreased with water saturation, but not as sharply
as that of the SD sample and reached a value of approximately zero at water saturation of
approximately 0.5 compared to the 0.3 value of the SD sample.
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Figure 16. Oil–water relative permeability prediction in waterflooding with different wettabilities of
(a,b) SD, (c,d) A-4, and (e,f) TC.
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Figure 17. Statistics of the coordination number of micropores with a radius less than 10 micrometers.

In addition, Figure 16c shows that increasing the advancing contact angle leads to
a decrease in the water relative permeability. This can be explained by the presence of
poorly connected water paths; 50% of the pores smaller than 10 µm had one, two, and three
throat connections, which also resulted in a sharp decrease in the oil relative permeability.
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Meanwhile, for the TC sample and opposite to the A-4 sample, Figure 16e shows that the
water relative permeability increased with the increase in the advancing contact angle.
This is probably due to the fact that the pore and throat sizes in the former were almost
double those of the latter, and the absolute permeability was much higher for TC than for
A-4 (see Table 2). Thus, the water preferentially invaded larger pores/throats with better
conductance with decreasing water wettability.

In the oil–water system (right column of Figure 16), with advancing contact angles
ranging from 140 to 175, the relative permeabilities of both the oil and water did not change
with the increase in advancing contact angle. The explanation is that in the oil–water
system, the connection of oil layers has already been established. The path of the oil flow
through the medium cannot be blocked by the injected water. It was noticed that the oil
relative permeability reached almost zero at a water saturation 0.5 and remained at this
value with the increasing water injection. This means that the connected oil layers had very
low conductance at high water saturation, hence contributing to residual oil saturation.

6.2. Mixed Wet System

The effect of wettability on the relative permeabilities in a mixed wet system was
studied by varying the fraction of oil-wet pores from 0.2 to 0.8, while the advancing contact
angle was fixed between a minimum and maximum value of 30◦ and 40◦ for water and of
160◦ and 170◦ for oil, during waterflooding of the initially fully oil-saturated sample. The
relative permeability curves are presented in Figure 18 for the three samples. Note that the
fraction with a value 0 (1) corresponds to a completely water-wet system (oil-wet). The
fraction of oil-wet pores and throats within PerGeos was assigned by randomly selecting
the corresponding number of pores and throats and setting their respective advancing
contact angle to their water- or oil-wet value.

Figure 18 shows that the oil relative permeability consistently decreased with an
increasing fraction of oil-wet pores and throats (left side of Figure 18a–c, corresponding to
lower water saturation). Meanwhile, we noticed the opposite trend in the water relative
permeability (right side od Figure 18a–c, corresponding to higher water saturation). On
the lower water saturation side of the three figures, we noticed a sharper decrease of the
oil relative permeability for the SD sample than that for A-4 and TC. This resulted in the
oil relative permeability becoming almost zero at a water saturation of approximately 0.2
for the SD sample, while reaching this value at a water saturation of approximately 0.4 for
the A-4 and TC samples. The last observations are in agreement with the earlier discussed
water-wet and oil–water systems shown in Figure 16 above.
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7. Conclusions

In this study, we applied the pore network model to investigate carbonate rock prop-
erties in terms of structure, morphology, and multiphase flow properties. In the beginning,
we presented the experimental micro-CT images and laboratory measurement results from
three different carbonate rock samples that featured quite different pore and throat distri-
butions, capillary pressure, and normalized permeability. With the appropriate image reso-
lution, we were able to predict values for the network-connected porosity, total porosity,
and absolute permeability that agree well with those measured experimentally. In addition,
when the image resolution was good enough to resolve the relevant pore and throat sizes,
the simulated capillary pressure curves matched well with the measured MICP curves.
It is worth highlighting that the simulated capillary pressure curves were obtained without
matching any parameters such as contact angle or pore size because of the use of the appro-
priate resolution of the rock images. The relative permeability curves were substantially
affected by the micro-CT image resolution. Higher image resolution allowed to capture
smaller pores and throats, which control the multiphase flow phenomena in porous media.
We also studied the effect of wettability on the relative permeabilities both in water-wet and
oil–water systems through the variation in the advancing contact angle, and we observed a
pronounced effect of wettability on relative permeability curves for all three investigated
carbonate rock samples. In addition, in the mixed wet system, we investigated the effect of
the fraction of the oil-wet pores and throats, and we also noted a strong influence of this
parameter on the relative permeability curves.
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