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Abstract: This work presents a thermohydraulic analysis of a postulated accident involving the
rupture of the breeder primary cooling loop inside a heat exchanger (once through steam generator).
After the detection of the loss of pressure inside the primary loop, a plasma shutdown is actuated
with a consequent plasma disruption, isolation of the secondary loop, and shutoff of the pumps in
the primary; no other safety counteractions are postulated. The objective of the work is to analyze
the pressurization of the primary and secondary sides to show that the accidental overpressure in
the two sides of the steam generators is safely accommodated. Furthermore, the effect of the plasma
disruption on the FW, in terms of temperatures, should be analyzed. Lastly, the time transients of
the pressures and temperatures in the HX and BB for a time span of up to 36 h should be obtained
to assess the effect of the decay heat over a long period. A full nodalization of the OTSG was
realized together with a simplified nodalization of the whole PHTS BB loop. The code utilized was
MELCOR for fusion version 1.8.6. The accident was simulated by activating a flow path which
directly connected one section of the primary with the parallel section of the secondary side. It is
shown here that the pressures and the temperatures inside the whole PHTS system remain below the
safety thresholds for the whole transient.

Keywords: WCLL-BB; MELCOR; PHTS; safety analysis; DEMO

1. Introduction

In the Roadmap to Fusion Electricity Horizon 2020, the European DEMOnstration
Fusion Reactor (DEMO) is expected to be a nuclear fusion power plant with the aim of
showing the feasibility of the production of electrical power through the conversion of
around 2 GWth, generated continuously by the fusion reaction. The operational sequence
is a pulsed operation, which consists of 11 pulses per day; each pulse comprises a burn
time of 2 h (power pulse period; 100% of fusion power) and a dwell time of 10 min (1% of
fusion power generated due to the decay heat) [1,2].

The work presented here aims to investigate the consequences of a loss of coolant
accident in the primary heat transport system (PHTS) of the water-cooled lithium lead
(WCLL) breeding blanket (BB) DEMO concept [2–4]. In particular, the objective of this
work is the simulation of a rupture of pipes of the primary system into the PCS (power
conversion system or secondary system) inside the once through steam generator (OTSG)
which acts as interface between the two systems [5–7]. In normal operations, the energy
transferred from the breeding zone (BZ) and from the first wall (FW) to PCS through
steam generators is used to produce the main steam at condition suitable to feed the steam
turbine.
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The postulated accident foresees the rupture of the primary cooling loop inside the
OTSG with a discharge of primary coolant in the secondary side.

In this work, a detailed nodalization of the primary and secondary system of the OTSG
is presented together with a simplified nodalization of the whole BZ loop. A connection
between the two sides of the OTSG is created in order to simulate the LOCA scenario, which
comprises a mitigated plasma disruption, and the results of the consequent transients are
analyzed and discussed.

The nodalization of the involved systems was created with MELCOR for fusion 1.8.6,
and all the simulations were performed with the same code. The MELCOR code has
been under development for fusion applications for many decades [8,9]. Chiefly because
of its capabilities of assessing thermal–hydraulic transients of fusion reactor systems
and the transport of radionuclides, MELCOR was chosen, together with other system
thermal hydraulics codes, to be used to perform safety analyses for the ITER project and,
consequently, for the DEMO project [10]. Especially in the last 10 years, MELCOR was
widely used for accident analysis related to ITER reactor safety and in the preliminary
design phase of the DEMO reactor ([11–17], among many others).

2. DEMO WCLL-BB PHTS System
2.1. General Parameters and Power Data

The thermodynamic cycle used as reference for the design of the WCLL BB PHTS
DEMO reactor was mainly based on parameters similar to pressurized water reactors:
the coolant was water at 15.5 MPa with inlet and outlet temperatures equal to 295 ◦C
and 328 ◦C, respectively [3,7–9]. The main working parameters of the BB PHTS are given
in Table 1, whilst the power parameters are reported in Table 2. Furthermore, Table 3
collects the mass flow rates of the FW and the BZ cooling systems. All the parameters
and characteristics summarized here can be found in several technical and published
studies [18].

Table 1. WCLL DCD BOP BB cooling system parameters [3].

Description Units Parameters

Typology of coolant Water
Pressure MPa 15.5

Temperature range ◦C 295–328
Coolant density (average) kg/m3 701.3

Design pressure MPa 17.8
Design temperature ◦C 345

Total flow rate kg/s 9936.0
FW flow rate

Inboard (IB) blanket
Outboard (OB) blanket

kg/s 17.8
35.5

BZ flow rate
IB blanket
OB blanket

kg/s 48.2
127.5

Table 2. DEMO and WCLL DCD BOP BB power balance [3].

Description Unit WCLL 2018 Design

Total nuclear heating MW 1650.3
Total FW Heat Flux MW 272.7
Neutron Wall Load MW 167.0

Total FW power MW 439.8
Total BZ power MW 1483.2

Total power MW 1923.2
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Table 3. WCLL DCD BOP BB power and coolant flow rates (TD 295–328 ◦C) [3].

Description Power (MW) Mass Flow Rate (kg/s)

---- Total FW BZ Total FW BZ

IB
segment 12.780 3.449 9.331 66.0 17.8 48.2

IB sector 25.560 6.898 18.662 132.0 35.6 96.4
Total

IB sectors
(16)

409.960 110.368 298.592 2112.0 569.6 1542.4

OB
segment 31.545 6.867 24.678 163.0 35.5 127.5

OB sector 94.635 20.601 74.034 489.0 106.5 382.5
Total

OB sectors
(16)

1514.160 329.616 1184.54 7824. 1704. 6120.

Total
reactor 1923.120 439.984 1483.136 9936.0 2273.6 7662.4

The WCLL DCD BOP BB PHTS constitutes two independent primary systems:

• The BZ primary system (BZ PHTS);
• The FW primary system (FW PHTS).

The main components of the WCLL BB PHTS are indicated in the 3D CAD model
(see Figure 1). Table 4 reviews the system-relevant data [2,7,19,20]. Details of the system
architecture can be found in [18].

During normal operations, in pulse time, BZ and FW PHTSs transfer power to the
PCS, through two once through steam generators (OTSGs) per system (i.e., four SGs in
total). The BZ PHTS power is 1483 MW, and the FW PHTS power is 439.8 MW. A total
of six main coolant pumps (MCPs) are installed to allow the circulation of the primary
coolant (four pumps for BZ PHTS and two for FW PHTS). Each PHTS is equipped with a
pressurizer (PRZ).
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Table 4. System-relevant parameters.

WCLL DCD BOP BB PHTS Design and
Operating Parameters BZ FW

General

Thermal power (MW) 1483 439.8

Operating pressure (MPa) 15.5 15.5

Reactor vessel inlet temperature (◦C) 295 295

Reactor vessel outlet temperature (◦C) 328 328

Overall volume (m3) ~563 ~159

Overall PHTS piping length (km) ~3.2 ~3.7

Number of loops 2 2

Loop data

Piping length (km) ~1.25 ~1.52

Hot/cold manifolds per loop and size 8/8
DN-150, DN-200, DN-350

8/8
DN-100, DN-125, DN-200

Hot/cold legs per loop and size 1/2
DN-850, DN-650

1/1
DN-500, DN-500

Hot/cold ring header per loop and size 1/2
DN-650

1/1
DN-350

Pump

Number of pumps per loop 2 1

Type Centrifugal, vertical single-stage (RSR) Centrifugal, vertical single-stage (RSR)

Effective pump power to coolant (MW) 3.03 1.79

Pressurizer

Number of units 1 1

Total volume (m3) 101.4 32.5

Liquid volume (m3) 44.8 16.3

Heat Exchanger (Steam Generator)

Number of units 2 2

Steam generator power (MWth/unit) 742 219.9

Type OTSG OTSG

Heat transfer area (m2/unit) 4903 1423

Feedwater temperature (◦C) 238 238

Exit steam pressure (MPa) 6.4 6.4

Steam flow per SG (kg/s) 404 119.9

Flow rate per SG (kg/s) 3831.2 1136

2.2. BZ Once through Steam Generator

In the BZ Primary System, each OTSG removes 742 MWth of thermal power, with a
mass flow rate of coolant equal to 3831.2 kg/s. On the secondary side, the water is assumed
to be at a pressure of 6.4 MPa, and the feedwater coolant inlet temperature is expected to
be at 238 ◦C. The feedwater flow rate is imposed at 404 kg/s, in order to produce the same
amount of superheated steam at 299 ◦C. It is important to underline that the OTSG is still
in a design phase [21,22]. A simplified scheme of a generic OTSG is shown in Figure 2 and
the main characteristics are summarized in Table 5.

The selected OTSG is characterized by 7569 tubes, with a length of 12.987 m.
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Table 5. Main features of an OTSG.

SG Power MWth 742

Primary side pressure MPa 15.5

Primary side water Tin
◦C 328

Primary side water Tout
◦C 295

Secondary side pressure MPa 6.41

Secondary side water Tin
◦C 238

Secondary side water Tout
◦C 299

No. of tubes -- 7569

Tube OD mm 15.88

Tube thickness mm 0.864

Tube length m 12.987

Tubesheet lattice -- Square

Tubesheet p/D -- 1.28

Heat transfer area m2 4903

V water tubes m3 20

Dext vessel m 2.9
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2.3. BB and PHTS Integration

The WCLL DEMO 2018 blanket is composed of 16 sectors (22.5◦) in the toroidal
direction [4,23]. Each sector consists of three poloidal segments in the OB (outboard)
blanket and two poloidal segments in the IB (inboard) blanket. The geometrical features
and the inventory of the WCLL-BB are provided in Table 6.

The inner structure of each segment comprises a stack of about 100 toroidal–radial
so-called breeding units (BUs). The BU is a sort of elementary cell repeated along the
poloidal direction of each segment. It features the integrated FW–SW complex, the BZ, and
the corresponding part of manifolds and BSS.

The coolant feeding pipes deliver cold water to FW and BZ systems, whilst the outlet
pipes collect hot water and distribute it to the PHTS.

Considering the FW and BZ systems, the volume of water is estimated taking into
account the BUs (assuming a rough value of 100 for each sector), the manifolds, and the
feeding pipes. Furthermore, the velocities in the inlet feeding pipes and distributors were
calculated assuming a density of 737.1 kg/m3 (15.5 MPa and 295 ◦C), while a density of
657.5 kg/m3 (15.5 MPa and 328 ◦C) was taken for the outlet pipes and collectors. The main
geometrical data are provided in Table 6.

Table 6. WCLL BB In-Vessel inventory.

Description Pipe
Size

OD
(mm)

Thick.
(mm)

MF Total
(kg/s)

v
(m/s)

L
(m)

L Tot
(m)

V
(m3)

H2O Mass
Inventory

(kg)

Inlet IB FW distributor DN-100 114.3 8.8 35.6 6.6 17.6 281.2 2.07 1522.21

Inlet IB FW LIBS/RIBS DN-100 114.3 8.8 17.8 3.3 5.8 186.5 1.37 1009.43

Outlet IB FW LIBS/RIBS DN-100 114.3 8.8 17.8 3.7 6.4 203.9 1.50 984.62

Outlet IB FW collector DN-100 114.3 8.8 35.6 7.4 17.6 281.2 2.07 1357.82

Inlet IB BZ distributor DN-200 219.1 17.5 96.4 4.9 17.5 280.3 7.46 5500.35

Inlet IB BZ LIBS/RIBS DN-150 168.3 12.7 48.2 4.1 4.0 128.1 2.05 1513.83

Outlet IB BZ LIBS/RIBS DN-150 168.3 12.7 48.2 4.6 4.7 149.1 2.39 1572.12

Outlet IB BZ collector DN-200 219.1 17.5 96.4 5.5 17.5 279.9 7.45 4898.97

Inlet OB FW distributor DN-200 219.1 17.5 106.5 5.4 11.3 180.8 4.81 3548.13

Inlet OB FW COBS DN-125 139.7 11.0 35.5 4.4 7.9 126.4 1.38 1013.89

Inlet OB FW LOBS/ROBS DN-125 139.7 11.0 35.5 4.4 9.2 293.9 3.20 2357.06

Outlet OB FW COBS DN-125 139.7 11.0 35.5 5.0 8.3 133.1 1.45 952.47

Outlet OB FW
LOBS/ROBS DN-125 139.7 11.0 35.5 5.0 9.4 301.6 3.28 2157.42

Outlet OB FW collector DN-200 219.1 17.5 106.5 6.1 11.5 183.3 4.88 3208.51

Inlet OB BZ distributor DN-350 355.6 28.0 382.4 7.4 10.6 170.3 12.00 8847.80

Inlet OB BZ COBS DN-200 219.1 17.5 127.5 6.5 7.0 111.5 2.97 2187.86

Inlet OB BZ LOBS/ROBS DN-200 219.1 17.5 127.5 6.5 7.4 236.1 6.29 4633.48

Outlet OB BZ COBS DN-200 219.1 17.5 127.5 7.3 7.7 122.7 3.27 2147.62

Outlet OB BZ
LOBS/ROBS DN-200 219.1 17.5 127.5 7.3 8.4 267.9 7.13 4688.31

Outlet OB BZ collector DN-350 355.6 28.0 382.4 8.2 11.0 176.3 12.43 8172.15

Total 4094.1 89.44 62,274.06

3. Postulated Accidental Scenario

In this section, the specifications of the accident—such as the event sequence and the
main objectives—are reported and described in Tables 7–10.
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Table 7. Accidental scenario general specifications.

Parameter Specification

Name of event LBO3 out-vessel loss of coolant from the breeder primary loop due to large rupture of tubes in a
primary HX in WCLL concept

Category Accident

Objectives

Show that accidental overpressure in the secondary loop of PHTS will be safely accommodated.
Show that post-accident cooling of the decay heat removal system of the VV is sufficient to remove
decay heat during the 32 h of the offsite loss of power.
Show that radioactive releases, if any, are adequately confined.

Scope of analysis

Integrated breeder blanket PHTS thermohydraulic analysis.
VV, VVPSS(W) pressure transient analysis if melting occurs due to mitigated plasma disruption.
Analysis of ACPs and tritium transport in the containment volumes as a consequence of the plasma
disruption, if melting occurs.

Acceptance criteria
Maximum Eurofer temperature < 550 ◦C
Confinement integrity: BB module safety assessment pressure < 18 MPa
Confinement integrity: VV safety assessment pressure < 200 kPa

Table 8. Accidental scenario main events sequence.

Parameter Specification

Definition of initiating event
Break in the primary cooling loop side (break size 0.0028 m2, corresponding to
the rupture of 9 tubes of the primary side) inside the HX toward the secondary
side.

Possible transient sequence

Fusion power is terminated by loss of pressure (−20% of operating pressure)
in the BB cooling loop inside the HX. The initiating event is followed by a fast
plasma shutdown (FPS) actuated 3 s from the low signal, which leads to a
mitigated plasma disruption for 5 ms.
The disruption could cause failure of the FW cooling pipes in a BB module if
temperature melting is reached in FW Eurofer. In such a case, the break flow area
to be considered is reported in [SDL19], chapter 2.1.
The VV decay heat removal cooling loops will cool down the in-vessel components
post accident.
Ingress of coolant and radioactive inventories (tritium, dust, and suspended
products) will be mobilized.
The rupture discs toward the VVPSS(W) open upon reaching the set VV pressure
point.
Mobilized radioactivity is transported into the VVPSS(W).
After the coolant inventory is lost, the FW/breeder blanket modules will be cooled
by steam convection and thermal conduction/radiation to the VV.
The DV components are accounted for in this analysis as heat structures at the
initial temperature and without cooling during the transient.

Aggravating failures None.

Loss of power A loss of offsite power occurs at the same time of the plasma disruption.

Table 9. Accidental scenario system assumptions.

Parameter Specification

Process system assumptions VV decay heat removal (DHR) will remove the decay heat. The temperature of the
VV is maintained at 40 ◦C by DHR.

Safety systems assumptions VV pressure limit is 0.2 MPa.
VVPSS(W) rupture discs open upon reaching the VV pressure set point.

Source term Tritium, dust in the VV, ACP products in the PHTS, tritium and activated products
in the breeder materials and/or purge gas.
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Table 10. Expected results from the analysis of the accidental scenario.

Parameter Specification

General
The output locations, parameters, and time trace should show the results of safety
analyses to support objectives and purposes.
The time span should cover until the transients are stabilized.

FW temperature Transient curve for FW and BB module temperature of the failed loop.

Confinement response
Pressures and atmosphere temperature in BB cooling loop, HX.
Pressures and atmosphere temperature in VV and VVPSS(W) only in case of FW
Eurofer structure melting.

Cooling system conditions
Water break flow versus time in HX and in VV and VVPSS(W) only in case of FW
Eurofer structure melting.
Water inventory inside the affected FW/breeder blanket cooling system.

Radioactive transport

Transient curves for tritium, dust, and sputtering concentration (airborne,
deposited) in VVPSS(W) if FW structure melts.
Bookkeeping of mobilized tritium, dust, and sputtering products if FW structure
melts.

4. Nodalization of the WCLL-PHTS

Figure 3 shows the whole nodalization of the BZ loop. Since the loop is symmetrical
with respect to the two OTSGs, only half of the loop is represented, without losing con-
sistency. All the geometrical characteristics of the components of the nodalization were
retrieved from the references presented above and summarized in the previous sections of
this document. A list of all the main characteristics can be found in Tables 7 and 8.

The whole nodalization can be roughly divided into two sections: the main one, more
complex, which is the nodalization of the BZ OTSG, and the simpler one, which is the
nodalization of the BB volumes; the two regions are highlighted in Figure 3, whilst a focus
on the BZ OTSG is shown in Figure 4. The cold and hot rings provide a connection between
the two regions. The pressurizer is directly connected to the hot ring.

The OTSG is partitioned in the primary and secondary side. Each side is divided
into several control volumes (CVH in MELCOR), which correspond to the hemispherical
top and bottom, as well as to the sections created by the support plates. The division
into different sections is required to achieve a temperature gradient as close as possible
to the actual one. All the control volumes are connected by flow paths (FL). CVH 10 and
11 (see Figure 4) are dummy volumes used only to impose the BCs to the secondary side
at normal operations. The CHV and FL geometrical characteristics are summarized in
Tables 11 and 12, respectively.

In normal conditions, the primary and secondary side are connected only by heat
structures (HSs), which allows heat transfer between the volumes but do not permit any
passage of fluids. Between the primary and secondary side, there are a total of 17 equal
heat structures. Each HS has a cylindrical geometry divided into four nodes with a total
thickness of 0.8 mm and a height of 0.7825 m, which corresponds to the height of the
connected volumes. The multiplicity of the HS is equal to 7569, which means that the HS
is equivalent to 7569 heat structures of the same type, for a total surface area of 4795 m2.
All HSs are made of stainless steel, and a convective condition is imposed on both sides
of the HS.

The thermal power of the OTSG is simulated by means of two heat structures con-
nected with the inboard and outboard sections of the BB regions. These two HSs provide
592 MW of thermal power to the outboard section (CVH 15) and 149 MW to the inboard
section (CVH 14).

The accident is simulated by activating dummy flow paths which connect one volume
of the primary side with the corresponding volume of the secondary side. The section area
of this FL is equal to the rupture area (0.00312 m2 for nine tubes on the OTSG primary side).
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These FLs are located at different heights to allow sensitivity analysis on the location of the
rupture.

Table 11. CVH number and characteristics.

Nodalization
CVH

Volume Water
(m3)

Height/Length
(m)

Section
(m2) Description

Primary side

1 3.22 1.15 4.18 Top hemisphere

2 0.72 0.61 1.18 Top tubesheet

31–46 15.36 0.7825 1.18 Shroud tubes primary

4 0.72 0.61 1.18 Bottom tubesheet

5 3.22 1.15 4.18 Bottom hemisphere

Secondary side

6 12.65 7.63 1.66 Shell boiler

71–86 34.09 12.70 2.68 Shroud secondary

8 1.81 0.30 6.03 Steam chamber

9 8.42 5.08 1.66 Shell SH

Rings and BB

12 36.04 146.5 0.246 Hot ring

13 36.04 146.5 0.246 Cold ring

16 7.73 17.9 0.027 Cold ring distributors
IB

18 14.67 13.1 0.07 Cold ring distributors
OB

17 7.99 18.5 0.027 Hot ring collectors IB

19 15.9 14.2 0.07 Hot ring collectors OB

14 73.7 14.7 - BB inboard

15 121.616 12.3 - BB outboard

Table 12. FL number and characteristics.

Nodalization
FL

From
CVH

To
CVH

From Height
(m)

To Height
(m)

Section
(m2)

Hydraulic
Diameter

(m)

Length
(m)

Primary side

FL00100 12 1 4.25 16.5272 0.4117 0.724 45

FL00200 1 2 15.3732 15.3732 1.1818 1.2267 0

FL00300 2 31 14.7636 14.7636 1.1818 1.2267 0

FL03100 TO FL04600 (31) (46) 13.9811 13.9491 1.1818 0.0141 0.032

FL00400 46 4 1.7636 1.7636 1.1818 1.2267 0

FL00500 4 5 1.154 1.154 1.1818 1.2267 0

Secondary side

FL00600 10 6 9 9 0.198639 0.0889 0

FL07100 TO FL08600 (71) (86) 13.9491 13.9811 0.89466 0.012636 0.032

FL00700 6 71 2.2 2.2 4.330349 0.84579 0

FL00800 86 8 14.4636 14.4636 2.6846 0.0279 0
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Table 12. Cont.

Nodalization
FL

From
CVH

To
CVH

From Height
(m)

To Height
(m)

Section
(m2)

Hydraulic
Diameter

(m)

Length
(m)

Rings and BB

FL01200 5 13 0 2 0.246 0.56 23

FL01300 13 18 1.724 1.724 0.62 0.3 10.6

FL01400 18 15 −7.746 −7.746 0.564 0.1841 10.6

FL01500 15 19 −7.746 −7.746 0.564 0.1841 10.6

FL01600 19 12 3.784 3.784 0.62 0.3 10.6

FL01700 13 16 1.724 1.724 0.156 0.184 17.5

FL01800 16 14 −4.446 −4.446 0.255 0.1429 4

FL01900 14 17 −4.446 −4.446 0.255 0.1429 4

FL02000 17 12 3.784 3.784 0.156 0.184 17.5

Accident

FL10101 33 84 12.7 12.7 0.0028 0.0141 0

FL10102 39 78 7.9 7.9 0.0028 0.0141 0

FL10103 45 72 2.2 2.2 0.0028 0.0141 0
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4.1. Boundary Conditions

In order to impose the required primary coolant mass flow rate of 3831.2 kg/s, a fluid
velocity was imposed at FL12, since MELCOR does not allow to impose directly the mass
flowrate. Furthermore, only for the initial steady condition, before the onset of the accident,
the temperature on the bottom of the OTSG (CVH 5) was imposed to be 295 ◦C and the
pressure was set at 15.5 MPa.

As mentioned in the previous section, two dummy CVHs (10 and 11) were used to
impose the BCs at the secondary side. A pressure of 6.4 MPa and a feedwater coolant inlet
temperature of 238 ◦C were imposed. The feedwater flow rate is kept at 404 kg/s by means
of imposing an equivalent constant velocity FL, in order to produce the same amount of
superheated steam at 299 ◦C.

The velocity (mass flow rate) imposed at FL12 was set to 0.0 at the FPS since the
pumps were shut down due to the loss of offsite power. Furthermore, at the FPS, the FLs
connecting the secondary side of the OTSG to the secondary loop are closed (thus acting as
isolation valves), also interrupting the feed water flow in the secondary side. At the current
stage, the design of the secondary loop is not completed.

4.2. Decay Heat

The decay heat was imposed using volumetric heat generation from heat structures
connected with the outboard and inboard CVH. The total values and time trends, calculated
using the most up-to-date volumetric nuclear heating data given in [24], are reported in
Table 13.
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Table 13. Decay heat densities (MW/m3) integrated into the WCLL full reactor [24].

Entire Reactor

Name of Zone Nuclear
Heating Cooling Time

MW/m3 MW/m3

First wall (FW) 0 s 1 s 1 h 1 day 1 week

W 2.18E+01 4.95E−01 4.93E-01 4.63E-01 2.27E-01 5.66E-03

Eurofer 7.14E+00 1.76E-01 1.76E-01 1.01E-01 1.34E-02 6.91E-03

Breeder
module (BM)

BM caps and
lateral walls 1.81E+00 1.08E-02 1.08E-02 7.32E-03 8.82E-04 2.57E-04

BM material
mixture 1.17E+00 1.23E-02 9.35E-03 3.60E-03 1.07E-03 9.01E-04

BM backwall 1.06E-01 1.50E-03 1.50E-03 1.02E-03 1.20E-04 4.24E-05

BM back sup-
port/manifold 5.64E-02 4.31E-04 4.28E-04 2.90E-04 3.45E-05 1.32E-05

Sum (MW/m3) 1.65E+03 2.21E+01 1.91E+01 9.68E+00 2.26E+00 1.25E+00

However, it is important to note that the values reported in [24] did refer to a different
configuration of the WCLL, namely, the one which was composed of modules and, there-
fore, had a different material ratio; in this work, the total nuclear heating was recalculated
scaling the values with an estimation of the total volume obtained from the most recent
configuration of the inboard and outboard segments, and this may represent a source of
error. Furthermore, it is difficult to estimate the role of the FW in cooling the decay heat of
the breeding unit under this particular scenario, since—as shown in the results—the FW
loop is not damaged by the plasma disruption, and it can be assumed still functional. As a
first approach in this work, only the decay nuclear heating relative to the BM back wall
and the manifolds is assumed to have an effect on the damaged BZ cooling loops.

5. Numerical Analyses

In the simulation, the system was initially left to run for 1000 s, to reach a stable steady
state in operational conditions, and then the FL connecting the volumes involved in the
rupture was opened. Three seconds after the low-pressure signal, i.e., when the pressure
in the loop fell below 12.4 MPa, the FPS was activated; plasma disruption occurred, the
pumps were stopped, and the secondary loop was isolated.

In total, three different cases were run, at three different rupture locations (top, middle,
and bottom). Table 14 summarizes the different cases.

Table 14. Summary of simulation parameters.

Rupture Location Number of Pipes Rupture Size (m2) FL Involved

Case 1 Top OTSG 9 0.0028 FL10101

Case 2 Middle OTSG 9 0.0028 FL10102

Case 3 Bottom OTSG 9 0.0028 FL10103

The event sequence of the accident is reported in Table 15.
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Table 15. Event sequence.

Event Time (s)

Steady state 0–1000

Low-pressure signal

Case 1 1016.5

Case 2 1008.5

Case 3 1007.5

FPS Case 1 1019.5

Case 2 1011.5

Case 3 1010.5

End of the simulation 150,000

5.1. Pressure Evolution

Figures 5 and 6 show the pressure trend after the rupture, at different time scales. The
pressure started decreasing and then showed a sharp peak when the low-pressure signal
was reached. This was due to the rapid shutdown of the pump and the isolation of the
loop. The same behavior was seen in all the cases, but it is worth noting that, for Case 1,
the pressure drop was slower and the peak remained significantly lower than the other
two cases. This was due to the different rupture conditions; in Case 1, the primary side
discharged in a region of the secondary, which was filled with superheated vapor, whereas,
in Cases 2 and 3, it was discharged in regions containing liquid water. Figure 7 shows the
time trend of the vapor quality calculated in CVH 85 for Case 1.

Figures 8 and 9 show the pressure trend at the rupture locations of both the primary
and the secondary side. In the secondary side of the OTSG, no pressure peaks were
predicted, and the pressure increased to an equilibrium value by around 100 s in all the
cases. Then, 200 s after the rupture, a steady state was reached, with the pressure lying
between 12 and 13 MPa.

All pressures remained well below the threshold of 18 MPa, with the pressure peak
for Cases 2 and 3 having a value of about 15 MPa, and that for Case 1 having a value of
about 12.5 MPa.
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5.2. Temperature Evolution in the BB

Figures 10–12 show the time evolution of the temperature at the inlets and outlets
of the BB, for the whole transient up to 36 h. Because of the effect of the decay heat, the
temperatures did not reach a steady state, but tended to increase. The faster temperature
increase after 104 s was due to the onset of weak natural circulation in the loop, with the
water flow even changing direction several times in Cases 2 and 3, as shown in Figure 13.
However, the increase could be considered slow throughout the whole transient, and all
temperatures remained well below acceptable values.

As mentioned above, the difference between Case 1 and Cases 2 and 3 was due to
a different height of the rupture in the primary side of OTSG for the three cases, with
a jump of around 5 m between each case. The transient for Case 1 showed a different
behavior from the very beginning, because, in this case, the primary discharged, through
the rupture, into a region of the secondary which was filled with superheated vapor and
not liquid water, as in Cases 2 and 3. This early difference consequently led to a radically
different transient of the pressure and general behavior of the loop, compared with the
other two cases.
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6. Conclusions

This work presented a thermohydraulic analysis of a postulated accident involving
the rupture of a breeder primary loop inside an HX (once through steam generator). After
the detection of the loss of pressure inside the primary cooling loop, an FPS is actuated
with a consequent plasma disruption, isolation of the secondary loop, and shutoff of the
pumps in the primary; no other safety counteractions are postulated.

The objective of the work was to analyze the pressurization of the primary and
secondary sides to show that the accidental overpressure in the two sides of the steam
generators is safely accommodated. Furthermore, the effect of the plasma disruption on
the FW, in terms of temperatures, should be analyzed. Lastly, the time transients of the
pressures and temperatures in the HX and BB for a time span of up to 36 h should be
obtained to assess the effect of the decay heat over a long period.

A full nodalization of the OTSG was realized together with a simplified nodalization
of the whole PHTS BB loop. The code utilized was MELCOR for fusion version 1.8.6. The
accident was simulated by activating a flow path which directly connected one section of
the primary with the parallel section of the secondary side.

It was shown here that the pressures and the temperatures inside the whole PHTS
system remained below the safety thresholds for the whole transient.

The only caveat of this analysis is due to the calculation of the effect of the decay heat,
since the tables used for the estimation of this parameter referred to an old version of the
WCLL-BB, as no other references are available on this issue.

It is believed that, for a fully comprehensive evaluation of the impact of the decay
heat, a coupled calculation should be realized, connecting a nodalization of the FW PHTS
loop and the PbLi loop with the nodalization of the BZ PHTS loop presented here.
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Abbreviations

ACP Activate corrosion product
BB Breeder blanket
BC Boundary condition
BOP Balance of plant
BSS Back supporting structure
BZ Breeder zone
CAD Computer=aided design
CVH Control volume hydrodynamics
DHR Decay heat removal
DCD Direct coupling design
DEMO DEMOnstration power plant
FL Flow path
FPS Fast plasma shutdown
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FW First wall
HT package Heat structure package
IB Inboard
LOCA Loss of coolant accident
OB Outboard
OTSG Once through steam generator
PCS Power conversion system
PHTS Primary heat transport system
PbLi Lead–lithium
PRZ Pressurizer
VV Vacuum vessel
VVPSS Vacuum vessel pressure suppression system
WCLL Water-cooled lithium lead
WPSAE Work Package Safety and Environment
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