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Abstract: Hydrocarbon reservoirs can be subjected to temperature changes due to different processes
during production. Heat injection has become an advantageous method to produce heavy oils
in Canada and Venezuela because it increases oil recovery. The heat reduces oil viscosity and
oil flows easily. Colombia has significant heavy oil reserves in unconsolidated silty sandstones.
It is important to understand the mechanical behavior of these reservoirs in thermal recovery
conditions (temperature and effective stress). The reconstituted samples from a Colombian heavy oil
outcrop were evaluated using a high-temperature and high-pressure triaxial cell. Twelve isotropically
consolidated drained triaxial tests were conducted at three different effective stresses (0.4, 4.0, and
8.2 MPa) and a temperature range from 50 to 230 ◦C to represent the initial and thermal recovery
conditions, and obtain parameters, such as Young’s and Bulk moduli, internal friction angle, and
cohesion. The samples at higher confining stress (4.0 and 8.2 MPa) were under contraction, while
samples at lower confining stress (0.4 MPa) were under dilation. The stiffness increased as the
confining stress increased and decreased as temperature increased, and the strength properties
significantly decreased as temperature increased. Finally, the Colombian samples exhibited low
friction angles when compared to clean sandstones as Canadian sands.

Keywords: elastic properties; thermal recovery; high temperature

1. Introduction

Heavy oil reservoirs represent a relevant amount of the total hydrocarbon resources
around the world. Heavy oil reserves are estimated to be around 9.70 TB (TB = trillion
barrels of oil), and from this amount, approximately 7 TB are contained in unconsolidated
sandstones [1]. Currently, more than 50% of the oil production in Colombia corresponds
to heavy oil [2]. Part of this production comes from reservoirs that are produced using
different thermal processes, such as Cyclic Steam Stimulation (CSS) and steam flooding
(SF) in the Middle Magdalena basin [3]. The reservoirs in this area are known for being
highly stratified as well as having a high fines content (30%) [4], which complicates the
geomechanical characterization. Understanding the thermal hydro-mechanical behavior of
these formations under different conditions of stress and temperature is crucial to model
many phenomena during oilfield development, such as reservoir dilation, permeability
enhancement, and surface heave.

Heavy oil is used to define very dense hydrocarbons with densities lower than 20◦API,
which commonly present very high viscosity values. The high oil viscosity makes its
flow through the porous medium towards the wellbore very difficult, especially at low
temperatures, such as the ones registered in reservoirs in Canada. This behavior has been
conducive to developing recovery techniques that aim to reduce the fluid viscosity using
chemicals or high temperatures, such as steam-assisted gravity drainage (SAGD) and CSS.
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Thermal techniques have been demonstrated to be very efficient in reducing the fluid
viscosity due to the exponential behavior of the oil’s viscosity with temperature [5], which
results in high recovery factors. The understanding of what happens to the reservoir
during thermal processes has become a topic of interest to the scientific community and
industry to get more accurate and reliable models to forecast the reservoir behavior during
thermal recovery, including the geomechanics issues. Accurate models allow the prediction
of important information, such as required steam, oil and water production, and the
recovery factor.

Even before thermal recovery became popular to extract heavy oil from the subsurface,
some researchers tried to understand the behavior of reservoir rocks under different
temperature conditions. In 1961, Serdengecti and Boozer [6] carried out some experiments
on Berea sandstone and Solenhofe limestone to identify the effect of the temperature
and strain rate on the mechanical behavior, finding that these kinds of rocks lose their
stiffness at high temperatures. Mobarack and Somerton in 1971 [7] studied the effect of
temperature in samples of Berea, Boise, and Bandera sandstones from 300 to 1000 ◦C. They
found that when temperature increases, the compressive strength and Young’s and Bulk
moduli decrease.

Among the initial studies about thermal recovery in the oil sands of Canada, Agar in
1984 [8] studied the effect of temperature (20–200 ◦C) on the geomechanical behavior of re-
constituted samples from McMurray formation. It was found that the compressive strength
and the stiffness of the samples increase at high temperatures but do not follow a clear
trend, behavior that can be explained based on grain reorganization and porosity reduction.
Then, Kosar, in 1989 [9], performed triaxial tests on samples from the Athabasca deposit
(middle McMurray formation) at different temperatures (20–300 ◦C). In this case, both
the stiffness and peak strength of the material increased (up to 100%) with temperature, a
process that is referred as thermal densification, and was accompanied by a reduction of
porosity. On the other hand, Chalaturnyk, in 1995 [10], completed drained bulk compress-
ibility and permeability tests for the McMurray formation as well, followed by coupled
numerical simulation for SAGD processes, suggesting a volume increment during heating
leading to porosity and permeability enhancement.

Lintao et al., in 2017 [11], studied the effect of high temperatures (20–1000 ◦C) on
sandstone samples using a computed tomography scan. They used multistage triaxial
tests to determine the mechanical properties, X-ray diffraction and thermal analyses to
investigate the changes in physical and chemical properties of increasing temperature, and
micro-computed tomography analyses to determine the microstructural changes during
the heating process, finding that the mechanical properties of sandstone are closely related
to alterations of the microstructure that result from increased temperatures.

Moreover, Wei et al., in 2019 [12], studied the effect of high temperatures (100–1000 ◦C)
on the mechanical properties in coarse sandstones by uniaxial compression and triaxial
compression tests, finding that the longitudinal wave velocity decreases and the damage
factor increases with the temperature increase. The compressive strength increases, with the
temperature increase below 500 ◦C showing a strengthening effect, and the compressive
strength decreases with the temperature increase above 500 ◦C, showing a weakening
effect. From triaxial compression tests at a temperature lower than 800 ◦C and confining
pressure lower than 15 MPa, the rock strength is positively correlated with temperature and
confining pressure, and when the temperature is over 800 ◦C and the confining pressure is
above 15 MPa, the rock strength is negatively correlated with temperature and confining
pressure, and the actual fracture angle is negatively correlated with the confining pressure.

In general, the effect of temperature on the mechanical behavior of sandstones is
not well understood yet. Variables, such as the grain size distribution, confining stress,
consolidation, and lithification state, play a key role in the hydro-thermo-mechanical
behavior of sandstone reservoir rocks. While some studies found a reduction in stiffness
and strength, others have reported thermal densification that leads to an increase in
strength and stiffness [13]. Nevertheless, there is a lack of data on high-pressure and
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high-temperature triaxial experiments for unconsolidated silty sandstones to attain certain
conclusions on the thermal-mechanical properties of this class of material.

Still, performing geomechanical laboratory tests as triaxial tests, which can reproduce
in situ conditions, represents a significant challenge due to the handling of unconsolidated
material in high-pressure and high-temperature conditions. Under these extreme condi-
tions, materials that are commonly used to isolate the sample from the confining fluids
could lose the ability to seal, increasing the risk of premature failure of internal instrumentation.

This study aimed to attain the mechanical behavior of unconsolidated silty sand-
stones with poor grain selection, typically found in fluvial sedimentary environments.
This objective was achieved by conducting 12 isotropically consolidated drained triaxial
tests for reconstituted samples from a Colombian heavy oil formation at three different
effective stress (0.4, 4.0, and 8.2 MPa) and temperature conditions (50–230 ◦C) using a
high-temperature and high-pressure triaxial cell, replicating the initial and the thermal
recovery conditions and obtaining parameters, such as Young’s and Bulk moduli, internal
friction angle, and cohesion.

2. Materials and Methods
2.1. Samples Description

The material was collected from an outcrop of Picacho formation, friable sand satu-
rated with bitumen [4], located at the Eastern Cordillera of Colombia. The average values
obtained from X-ray diffraction tests show that it is mainly composed of quartz (95%) with
some kaolinite (4%) and pyrite (1%). The formation has been dated as an Eocene formation,
and it was deposited in a fluvial environment [4,14]. Fluvial deposits are characterized by
having poor selection for particle size. Figure 1 illustrates a piece taken from one of the
samples under a scanning electronic microscope (SEM), which exhibits its poor selection.
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Figure 1. SEM picture of the sample ×50 of Picacho formation.

The particle size distribution was obtained using Sieve Analysis and Hydrometer
according to ASTM standards [15,16]. The particle size analysis results show that Picacho
formation has a poor selection with d30 = 0.084 mm, d50 = 0.250 mm, and d90 = 1.425 mm.
Figure 2 illustrates the particle size distribution for the Picacho formation, and it is com-
pared to the particle size distribution of the middle McMurray formation from Canada [9].
It can be observed that the Picacho formation sand has poorer selection compared to the
Middle McMurray formation, which is considered clean sand. The fines content for the
Picacho formation is high (>30%) due to the fluvial depositional environment, which was
alternations of flooded plains and meanders, and it can therefore be classified as silty sand
according to Folk [17]. On the other hand, the Middle McMurray formation was deposited
in an estuarine environment, giving it a well-sorted grain size distribution [18].
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Figure 2. Particle size distribution for the Picacho formation (high fines content) and McMurray
formation (clean sand).

2.2. Equipment for Triaxial Testing

The experimental setup consisted of an electro-hydraulic servo-controlled loading
frame of 600 kN of capacity and a high-pressure high-temperature triaxial cell with internal
deformation sensors. The setup also included one high-capacity syringe pump (70 MPa),
which controlled the confining pressure, and a second syringe pump of 30 MPa capacity to
control the pore pressure.

Internal measurements of displacement were used to attain more accurate sample
deformations. The axial and radial local-strain system included three identical LVDTs
(Linear Variable Differential Transformer) with a measurement range of ±12 mm and
accuracy ±25 µm. Two LVDTs were used to measure the axial deformation, and the
remaining one was used to measure radial deformation (Figure 3). The axial LVDTs were
attached to the endcaps at opposite sides of the sample, while the radial LVDT was placed
at the middle height of the sample, as presented in Figure 3. Pressure transducers with a
maximum capacity of 70 MPa and accuracy ±0.7 MPa were placed at the entrance of the
triaxial cell to monitor the pore pressure and confining conditions.
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Figure 3. Photo of the experimental setup. Left: cell inside the environmental chamber placed in
the load frame. Right: sample setup, including the Viton membrane and the local LVDT’s; all the
instruments and wires must keep their integrity at high temperatures.

The triaxial cell was placed in an environmental chamber that allowed heating/cooling
of the system to acquire the desired conditions. The environmental chamber has a maxi-
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mum operating temperature of 350 ◦C and allows setting of the heating rate. An additional
thermocouple to measure the sample temperature was fixed a few millimeters from the
sample inside the cell. Figures 3 and 4 illustrate the equipment used in the tests.
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2.3. Experimental Procedure

Due to the unconsolidated and uncemented nature of the samples used in this study,
an unconfined test could not be completed. Hence, confining was applied in all samples to
keep all the grains together and replicate the in situ conditions [19,20]. Therefore, to evalu-
ate the temperature effect on the geomechanical behavior of unconsolidated sandstones, the
samples were first isotropically consolidated, and then they were sheared under drained
triaxial compression (CIDTXC). The test program allowed evaluation of four temperatures
within the range that was expected during CSS operations (50, 120, 180, and 230 ◦C).

All the fluids (bitumen and water) contained in the material were extracted using
the Dean–Stark technique. Then, the samples were reconstituted using a methodology
developed at the University of Alberta, which aimed to obtain samples as dense as possible
without applying any mechanical effort to avoid grain crushing. The reconstitution process
was performed by vibrating and tapping the saturated sample in a steel container, and then
the sample was frozen to maintain its final structure and stored in a freezer at −18 ◦C to
preserve the porosity reached during the reconstitution process. More detail can be found
in Wang et al. [21]. The samples reached a minimum average porosity of 27%. Cylindrical
samples of 2.5 inches in diameter by 5 inches in height were used for the triaxial apparatus.
Figure 5 shows pictures of the final reconstituted samples obtained.

The samples were placed in the cell for the triaxial test, and all the sensors were
connected. Once the cell was inside the chamber, the pore and confining pressures were
slowly increased, maintaining low effective stress. Once the pore pressure reached the
desired value, the sample was allowed to saturate for 24 h at 0.1 MPa effective stress. The
pore pressure was kept constant during the complete experiment at 5.5 MPa to represent
in situ conditions for a reservoir 550 m deep (hydrostatic pressure). After the saturation
stage, the B test was carried out to confirm that the sample was fully saturated. This test
evaluated the saturation in terms of the Skempton’s pore pressure coefficient B. The pore
pressure control was turned off, and the confining of the sample was increased, then the
response/increase of pore pressure to that confining increase was measured. If the sample
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was fully saturated, the ratio of confining change and pore pressure change should be 1 or
at least close [22].
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Figure 5. Reconstituted samples of Picacho formation after the reconstitution process.

Subsequently, the samples were isotropically consolidated in four stages: 1 MPa,
2 MPa, 4 MPa until reaching a final effective confining stage of 8.2 MPa (in situ conditions).
The consolidation was then performed in four stages: 1, 2, 4, and 8.2 MPa. Finally, the
sample was unloaded to the desired effective confining stress for each test if applicable.
The isotropic unloading process in the lab simulated the fluid injection in the reservoir
since the effective stress was reduced by increasing the pore pressure. Table 1 summarizes
the conditions designed for each test.

Table 1. Tests conditions.

Test Temperature [◦C] Effective Confining Stress [MPa]

1 50 8.2
2 50 4.0
3 50 0.4
4 120 8.2
5 120 4.0
6 120 0.4
7 180 8.2
8 180 4.0
9 180 0.4
10 230 8.2
11 230 4.0
12 230 0.4

Sample heating was performed at drained conditions, where the confining and the
pore pressure were constant during the heating process. Each sample was heated slowly
to the targeted temperature (6 ◦C/h) to avoid thermal shock, which could cause grain
crushing as well as pressure overshooting due to thermal expansion of the fluids modifying
the stress condition. The pressure was controlled using servo-controlled pumps, which
allowed the desired conditions (confining and pore pressure) to be maintained even with
the fluid expansion due to heating.

Once the sample was under the desired confining and temperature conditions, the
sample was sheared by exerting deviator stress in the axial direction using the loading
frame at a constant strain rate of 5%/day (approximately 0.0044 mm/min). The strain
rate was calculated based on the consolidation curves, ensuring enough time to have pore
pressure dissipation as it is suggested in the ASTM standard [23]. Figure 6 illustrates
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the stresses applied and acting on the sample during the shearing process. The elastic
moduli of the samples were obtained during the shearing stage of the test. The Young’s
modulus reported in this article corresponds to tangential and was calculated by dividing
the deviator stress into the axial obtained from the axial LVDT. Similarly, the Bulk modulus
was calculated by dividing the mean confining stress into the volumetric strain obtained
from axial and radial LVDTs.
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3. Results and Discussion
3.1. Tests at Effective Confining Stress of 0.4 MPa

Tests at low confining stress were carried out to analyze different in situ conditions.
These conditions are representative of a reservoir with high pore pressures during steam in-
jection. According to the proposed procedure, the samples were isotropically consolidated
to 8.2 MPa and then unloaded, in this case, to 0.4 MPa.

As seen in Figure 7, for all the temperatures tested, at low confining stress (0.4 MPa),
the unconsolidated samples describe a dilatant behavior, with a strain-hardening behavior
after yielding until reaching the peak strength and then presenting strain-softening behavior.
In terms of the volumetric strain, the curves for low confining stress (0.4 MPa) present a
small initial contraction but, after yielding, present dilatation.

For this confining condition (0.4 MPa), the temperature has a more severe influence
on the geomechanical behavior. A proportional influence of the heat on the strength of the
material can be seen for the curves of 50, 120, and 180 ◦C, where the strength reduces as
temperature increases. Above 180 ◦C, the sample seems to gain some strength again but is
still lower than the one shown at 50 ◦C.

The curve at 180 ◦C (red curve) describes a stiffer behavior compared to the other
curves but exhibits lower peak strength than them. Again, this behavior could be caused
by the thermal consolidation of the fines where the material gains some stiffness. Similar
results were reported by Kosar [9] for oil sand samples with a high fine content and that
behavior was attributed to the densification of thin discontinuous shale seam.

For the highest temperature (230 ◦C), the yellow curve, the material shows a strain-
softening behavior, which is different from all the results obtained in this study, and it
could be related to the high dilation of the sample that is caused by the porosity increments.
A more detailed analysis of porosity changes with temperature can be found in a previous
work [24].
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3.2. Test at Effective Confining Stress of 4.0 and 8.2 MPa

The results from all tests performed at 4.0 and 8.2 MPa are shown in Figure 8. In all
cases, there is a significant influence of temperature on the geomechanical behavior of the
material. It seems that for these confining stresses, the material exhibits higher strength at
the low temperature (50 ◦C). The influence of temperature is more noticeable when it rises
from the reservoir conditions to 120 ◦C than at higher temperatures, which suggests that
there are significant changes in the sample structure in the range between 50 and 120 ◦C.
These changes are governed mainly by the grains’ thermal expansion of fines in the sample
at this temperature range [25]. The thermal expansion of quartz, for instance, leads to an
increase in grain compressibility [26].

The curves describe a strain hardening behavior in all cases, and the samples are al-
ways contracting during shearing. The stress and volumetric strain curves of the specimens
tested at 50 ◦C are slightly different from those tested at higher temperatures (120, 180, and
230 ◦C). The plots suggest a decrease in the strength and stiffness of the material when the
temperature rises. For high-temperature tests, the curves are very similar and overlap in
some cases, which means there is no representative effect of the temperature above 120 ◦C.
Similar results were found for clean sand in the McMurray formation by Kosar [9].

The contractive behavior of the samples is caused by the high confining stress, which
does not allow the sample to dilate; instead, there is grain rearrangement, which leads to
increments of the internal friction angle, describing a strain hardening behavior [27].

Figure 9 presents an SEM image that shows the structure of the material after a
triaxial test at 4 MPa and 120 ◦C. Grain crushing is observed for the sample tested at high
temperature (see white arrows), which is believed to be generated by the compressive load
and thermal stress applied to the samples during the test. It is also found that grain crushing
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increased significantly at higher confining stress. This has been observed previously by
Kosar [9] and occurs when the grains expand due to the temperature increment, and the
confining restriction causes the stress to increase dramatically, overcoming the compressive
strength of the grains. In addition, the thermal expansion of grains with random geometry
leads to unpredictable shear forces between grains, as previously found by Yang et al. [28].
These findings are in agreement with the previous results (Figure 8).
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Figure 10 shows a photograph of a sample after the test at 4 MPa and 120 ◦C. After
testing, all samples show a similar shape and do not develop a clear shear plane but bulge
during experiments. This behavior is typical for granular material, such as sand, under
high confining stresses, as reported previously [29].
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3.3. Effect of Temperature on the Samples’ Stiffness

Young’s modulus was obtained using the definition of the tangent modulus. Figure 11
illustrates how this parameter changes with temperature for all the effective confining
stresses studied. For temperatures between 50 and 120 ◦C, Young’s modulus decreases
as temperature increases, leading to a loss in the stiffness of the material, and hence the
material behaves in a more ductile manner. Then, for the tests conducted at temperatures
between 120 and 180 ◦C, Young’s modulus increases as temperature increases, which might
be attributed to thermal consolidation of the fine grains. However, when the confining
stress is 4.0 MPa, this changes slightly. Finally, for temperatures between 180 and 230 ◦C,
Young’s modulus increases as the temperature increases due to the ductile behavior of
the minerals that compose the samples at these high temperatures, and the intermediate
confining stress (4.0 MPa) seems not to vary.
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Figure 11. Tangent Young’s modulus as a function of temperature for the different effective confining
conditions evaluated.

As shown in Figure 11, the values of Young’s modulus for the lower confining con-
dition (0.4 MPa) do not follow a clear tendency. The data are dispersed and fluctuate
significantly in the range of the temperature of this study. Moreover, for higher confin-
ing conditions (4.0 and 8.2 MPa), Young’s modulus follows a second-grade polynomial
behavior with the temperature, obtaining a good correlation coefficient for the regression.
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The effect of temperature on the Bulk modulus of Picacho samples was also analyzed.
Figure 12 shows the behavior of this property with temperature.
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Figure 12. Bulk’s modulus changes with temperature for all the effective confining conditions evaluated.

For all the effective confining stresses (0.4, 4.0, and 8.2 MPa), there is a significant
reduction in the Bulk modulus when the temperature goes from 50 to 120 ◦C, and it has a
slow increment afterward. This stiffness loss corresponds to a softening process caused by
the temperature. As the temperature increases, the solid particles of the samples become
more compressible. On the other hand, an exponential behavior at 8.2 MPa suggests the
effect of temperature on the material properties is highly dependent on the confining stress.
This behavior is similar to the one found for petrophysical properties of the samples, which
are directly proportional to the volumetric deformations. This exponential behavior with
temperature is analogous to rock compressibility when the effective stress increases, as has
been stated by Zimmerman et al. [30].

3.4. Effect of Temperature on the Yielding Parameters

From the data above, the yield envelope of the material was estimated to identify the
impact of temperature on the material’s strength. The results shown in Figure 13 describe a
significant influence of temperature on the yield envelope, which indicates the material’s
strength reduces with temperature. The results describe a reduction of both the cohesion
and internal frictional angle of the material as temperature increases. Additionally, it can
be seen that there is a significant impact on the frictional angles (slope), while the cohesion
variation is not noticeable (intercept). Similar to the stiffness changes, the most significant
change occurs when the temperature goes from 50 to 120 ◦C. The yielding envelopes in
Figure 13 show that the material yields more easily at high temperatures, which is in
agreement with most previous studies.

The impact of temperature on the friction angle is caused by the expansion of the
grains, which affects the geometry of the grains, changing the intergranular contact and
forces. Further, Morales-Monsalve et al. [31] performed an analysis of the results using
analytical tools to evaluate the effect of temperature on post-yield strength parameters of
this material, identifying a significant influence of temperature in the plastic region.

Figure 14 shows the changes of the internal frictional angle and cohesion with tempera-
ture. Both parameters show a clear reduction when the temperature of the sample increases.
In this case, the relationship between the strength parameters and the temperature is linear.
The internal friction angle can be reduced up to 30% when the sample is heated from 50 to
230 ◦C, approaching more typical values of clays than sands. The cohesion reduces to 65%
within the evaluated range of temperatures. The internal friction angle is usually related to
the shape and size of the material [32]. Therefore, the impact of temperature on the friction
angle may be caused by a change of the shape and size of grains due to thermal expansion
as observed on the SEM images (Figure 9). This behavior was previously explained by
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Campanella and Mitchell [33]. This significant influence of temperature on strength has
not been reported in clean sands, where the influence of temperature is neglectable, as
reported by Kosar [9] and Agar [8].
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From the results already shown, it is possible to conclude that when the temperature
increases, the material’s strength will decrease, which may imply a more likely scenario
for material failure during thermal recovery processes, which can lead to operational and
environmental problems. The results reached in this investigation indicate some principal
ideas as follows:

• Temperature increases have a remarkable effect on the mechanical behavior of the un-
consolidated silty sandstones. As the temperature increases, the strength parameter of
the material reduces, showing a higher tendency to fail under high-temperature conditions.

• The effect of temperature on the mechanical properties of silty sandstones is mediated
by the effect of confining stress. At lower effective confinement stress (0.4 MPa), the
effect of temperature is more noticeable on the material’s strength, which is associated
with the possibility of the sample deforming. On the other hand, at high and medium
effective confining stress (4.0 and 8.2 MPa), the effect of temperature on the material’s
strength is less noticeable since confining prevents sample deformation.

• Generally, silty sandstones subjected to higher temperatures become more ductile,
although this behavior may change due to the fines content associated with high temperatures.

• These results show the remarkable effect of the temperature on the mechanical be-
havior for the unconsolidated silty sandstones and then, it is necessary to take into
account the change of these parameters through thermal operations. Failure to take



Energies 2021, 14, 7007 13 of 16

this effect into account may lead to several operational and environmental issues
associated with the lower strength of these types of soft rocks.

4. Comparison with Canadian Sands

Canadian sands have been widely studied to identify their geomechanical behavior
at elevated temperatures for different deposits, such as Athabasca, Cold Lake, and Peace
River. The following plots show the difference that deposits from the Eastern Cordillera in
Colombia (Picacho Formation) presents when compared with McMurray formation in the
Athabasca deposit.

In Figure 15, the results obtained from the present work for Young’s modulus are
compared with results obtained by Agar [8] for McMurray formation at effective confining
of 4.0 MPa. It can be observed that McMurray samples initially increased, followed by
a reduction in the temperature range studied. In contrast, Picacho’s sample exhibited a
negative exponential behavior with temperature in the studied range. It is noticeable that
the values obtained by Agar [8] are considerably higher than the ones obtained for Picacho’s
sand, which can be explained by the interlocked grains feature of McMurray formation
generated by the loading cycles during glaciations, as was explained by Dusseault [34].
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Figure 15. Young’s modulus vs. temperature comparison with Canadian sandstones at 4 MPa.

The comparison of the Bulk’s modulus with the values obtained for McMurray forma-
tion is illustrated in Figure 16. All values were obtained in similar conditions of confining
effective stress (4.0 MPa). In this case, the values obtained for Picacho formation are
very similar to the ones attained for McMurray formation. It is noticeable that the results
obtained do not follow a common trend for both formations.
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5. Conclusions

An experimental program, which aims to find the influence of temperature in the ge-
omechanical behavior of heavy oil reservoirs with high content of fines (30%), was outlined.
The tests included high-temperature consolidated triaxial tests under drained conditions.

For the temperature range (50–230 ◦C), at low confining stress (0.4 MPa), the uncon-
solidated sandstones presented a dilatant behavior, with a strain-hardening behavior after
yielding, until reaching the peak strength and then showing strain-softening behavior.
The curves of volumetric strain at low confining stress (0.4 MPa) showed a slight initial
contraction but, after yielding, show dilatation.

For the range of temperature (50–230 ◦C), at high confining stress (4.0 and 8.2 MPa),
the unconsolidated sandstones presented strain hardening behavior and contract during
shearing. The stress and volumetric strain curves of the samples tested at 50 ◦C were
slightly different from those at higher temperatures (120, 180, and 230 ◦C), presenting a
decrease in the strength and stiffness of the formation as the temperature increases. For
high-temperature tests, the impact effect of the temperature was not relevant above 120 ◦C.

It is possible to conclude that when the temperature increases, the unconsolidated
sandstone will experience a decrease in strength that may imply a more likely scenario
for formation failure during thermal recovery processes, which can lead to operational
and environmental problems. The effect of temperature on the stiffness and strength of
the reservoir is more relevant for shallow reservoirs, which are subjected to low confining
conditions. However, the stiffness properties, such as Young’s and Bulk’s moduli, initially
describe a reduction followed by a slight increment when the temperature rises above
180 ◦C.

Despite having no clear trend, the overall data show that elastic moduli reduce when
temperature increases. Furthermore, the reduction of elastic moduli can be very significant
in some cases. For instance, Bulk’s modulus decreases up to 70% when the temperature
goes from 50 ◦C (reservoir conditions) to the maximum temperature evaluated in this study
(230 ◦C).

On the other hand, the parameters that describe the yielding envelope show a strong
temperature dependence. For both the cohesion and internal friction angle, the relationship
is linear. In contrast, the maximum reduction of the internal friction angles was 30%, and
the cohesion reduced by 70% when the temperature rose from 50 to 230 ◦C. This condition
should be taken into account when designing thermal recovery to avoid undesired events
related to the yield of the formation.

It seems that the high content of fines modifies the mechanical behavior of sandstones
significantly. Mostly, the samples exhibit low friction angles when compared to clean
sandstones, such as Canadian ones. Additionally, the results showed that Colombian
sandstones are less stiff when comparing to Canadian ones. This behavior is attributed to
the interlocked grains and high compaction of Canadian sandstones caused by geological
events, such as glaciations.

The results of this study show the importance of taking into account the effect of tem-
peratures in the mechanical behavior of heavy oil reservoirs subjected to thermal recovery.
Reproduction of in situ conditions at the laboratory must have special care, even for cases
that do not involve the use of thermal techniques. Using conditions at the laboratory that
differ from the in situ conditions could lead to an overestimation or underestimation of the
material properties and a wrong simulation of the actual phenomena.

The thermomechanical properties of unconsolidated sandstones with high fines con-
tent (30%) are temperature and stress dependent. Coupled numerical simulations without
consideration of this behavior will result in incorrect prediction and poor forecasting of oil
production and risk assessment.
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