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Abstract: A good thermal environment is important in a place where occupants stay for a long
time. Since heating a house consumes a lot of energy, an energy-efficient heating method will be
required. Then, by combining a heat pump and underfloor heating, there is a possibility that both
thermal comfort and energy saving can be achieved. The survey was conducted on a detached
house located in Nagano Prefecture, Japan. The average outside air temperature was 4.2 ◦C. This
study investigated the indoor thermal environment, evaluated the operating performance of the heat
pump, and calculated the heat load by two-dimensional analysis. More than 80% of the subjects were
satisfied with the thermal environment and the neutral temperature was 18.9 ◦C. In the operation
of the heat pump, defrost operation was confirmed, but the average COP was 2.9, and it operated
efficiently. In addition, the heat loss from the foundation slab was examined. Proper insulation
placement has shown the potential to reduce heat loss. In conclusion, the use of heat pumps as a heat
source has been shown to be efficient even in cold climates, and this study supports the construction
of new heating methods.

Keywords: cold region; house; heated crawl space; air source heat pump; foundation insulation;
thermal comfort

1. Introduction

In an indoor environment, it is desirable to maintain the thermal comfort of occupants.
Local thermal environments, such as vertical air temperature differences and floor surface
temperatures, affect the thermal comfort of occupants [1,2]. Japanese housing design aims
to achieve energy savings by insulating a foundation wall [3]. It is expected that the heated
crawl space can be treated in the same way as indoors. Therefore, a heating method has
been proposed in which the heated crawl space is used as an air movement path. The
crawl space heating raises the floor surface temperature and can reduce the local thermal
discomfort at the feet. Furthermore, a uniform indoor temperature distribution is expected.
There is no need to arrange ducts, and room air conditioners equipped with an air heat
source heat pump can be used as air conditioning equipment. Heating using a heat pump
is energetically efficient. The combination of crawl space heating and air source heat pump
has the potential to provide both thermal comfort and energy savings.

A room air conditioner equipped with an air heat source heat pump is highly efficient.
Even in cold regions, heat pumps that use air heat sources are used. A Previous study
investigated a heating method that combines floor heating and an air conditioner with
an air source heat pump [4]. The introduction of a heat pump has shown the potential
to reduce energy consumption while maintaining comfort. However, some studies have
reported that frost on heat pump evaporators reduces their operating efficiency during
the heating period [5–8]. Asama et al. [6] showed that the COP in the practical operation
was lower than the rated COP during heating. In addition, the COP decreased as the
indoor/outdoor temperature difference increased. Wang et al. [7] showed that when 60%
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of the surface of the evaporator frosted, the COP was reduced to 2.3. The COP decreased
by 40.4%, and the output heat capacity decreased by 43.4%. Guo et al. [8] indicated the
outside air temperature is approximately 0 ◦C; the higher the outside air relative humidity
(65%, 75%, and 85%), the larger the frost thickness. In this study, the possibility of frost
formation is investigated based on the refrigerant temperature. In addition, to maintain
thermal comfort, it is necessary to discuss the effect of switching between heating operation
and defrost operation in the indoor environment.

The heating method using the crawl space may be able to operate the entire house
efficiently. Crawl space heating has characteristics similar to underfloor air distribution
(UFAD). UFAD is a system that uses the space created by a raised floor to deliver air
from under the floor to the room [9]. The appropriate design of UFAD can improve
thermal comfort [10–13], ventilation efficiency, and air quality [11,14] and reduce energy
consumption [15–18]. Previous studies investigated parameters such as fan shape [19,20],
installation location [20], and supply air flow rate [21,22]. Although improvements to the
indoor environment were attempted, there is a risk of heat loss from the underfloor space.
Schiavon et al. [23] showed that the cooling load for the raised floor construction was
higher than that for the non-raised floor construction. Bauman et al. [24] indicated that part
of the total indoor cooling load was caused by heat transfer from the room to the underfloor
space. Schiavon et al. [25] pointed out the heat load caused by the heat gained from the
floor panels and structures as cooling air passed under the floor. Lee et al. [26] studied the
effect of thermal decay on energy consumption through an analysis. Due to thermal decay,
the temperature of the supplied air increased by an average of 3.7 K per year compared to
ducted air conditioning. Similar to these results, in the crawl space of a detached house,
heat loss occurs from the foundation slab toward the ground. Liu et al. [27] indicated
that heat was lost from the underfloor space to the ground when the underfloor space
is used as the movement path for heating air. Rantala [28] showed that an increase in
the average slab temperature by 6 ◦C increased the average annual heat loss from the
building to the ground by approximately 45%. On the other hand, it has been shown
that the heat load in the underfloor space can be reduced by proper insulation placement.
Yu et al. [29] introduced an adiabatic structure into the UFAD system and compared and
analyzed the energy consumption with ceiling-type air conditioning. The non-insulated
UFAD system was affected by thermal decay, and the air-conditioning load increased
by 31.7% compared to ceiling air conditioning. The adiabatic UFAD system has a 6.2%
reduction in the air conditioning load compared to ceiling air conditioning. Regarding the
foundation slab, Krarti placed horizontal insulation [30,31] or vertical insulation [32,33] to
the foundation slab and analyzed it under steady and unsteady conditions. He analyzed
the relationship between the insulation dimensions and heat loss from the foundation
slabs. Hagentoft [34] investigated the effect of reducing heat loss caused by the length
of the insulation and the angle of installation of the insulation for the ground surface.
Iwamae et al. [35] performed a numerical analysis to determine the relationship between
parameters such as the dimensions of the heat-insulating material, soil thermal conductivity,
and the amount of heat loss. Previous studies have reported on the relationship between
insulation dimensions and heat loss; however, in heated crawl space, heat loss is promoted
due to high air temperature and air velocity. Therefore, in this study, in addition to the type
of insulation arrangement, the air temperature, and air velocity conditions were divided
into foundation areas for two-dimensional analysis. In addition, based on the analysis
results, the insulation arrangement was examined from the viewpoint of cost effectiveness.

By conducting a field survey of the thermal environment, we will examine the prac-
ticality of a method that combines an air source heat pump and crawl space heating. In
Japan, the mainstream method is to heat only the living room with a wall-mounted air
conditioner. Therefore, there is a risk that a horizontal temperature distribution will occur
in the living room or the entire house. Previous studies have shown that the combination
of underfloor heating and mechanical ventilation can efficiently heat a living area 1.7 m
above the floor and provide a uniform horizontal temperature distribution [36]. Based
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on this knowledge, it is expected that the same effect can be obtained in the crawl space
heating houses, and there is room for the examination of thermal comfort. In Japan, some
research has been conducted on air conditioning systems that use the crawl space, but there
are few research results [37–39]. This study conducts a thermal environment survey and
a subjective survey.

If the air source heat pump operates efficiently, the indoor thermal environment is
satisfactory for the occupants, and the insulation placement for a foundation slab that
suppresses heat loss is shown, the crawl space heating with an air source heat pump may
be proposed as a new heating method for a detached house.

2. Methods

This research examined the indoor thermal environment by field survey, the COP
measurement of the air source heat pump, and relationship between insulation placement
and heat loss.

2.1. Target Detached House

The target of the study was a detached house located in Saku City, Nagano Prefecture
(36.25◦ N, 138.48◦ E). The Köppen climate classification belongs to the Cfa. Figure 1 shows
the outdoor climate in Saku City from January 6 to February 23. The outside air temperature
during the measurement period ranged from −5.1 ◦C to 15.0 ◦C, and the average value was
4.2 ◦C. It was a cold environment where the outside air temperature is 0 ◦C or less. The relative
humidity of the outside air varied in the range of 19–87%, with an average value of 50.1%.
Table 1 shows the characteristics of the target detached house. Figure 2 shows the first-floor,
second-floor, and foundation plans, in addition to an example of insulation placement.

Figure 1. Outdoor air temperature and relative humidity in Saku City during the measurement period.

Table 1. The characteristics of the target detached house.

Construction Two-Story Wooden Structure
Total floor area 132.25 m2

First-floor area 75.56 m2

Second-floor area 56.69 m2

Insulation

Wall Glass wool (t = 100 mm)
Phenol foam (t = 30 mm)

Roof Glass wool (t = 300 mm)
Foundation Polystyrene foam (t = 100 mm)

Window Low-E triple glass (Filled with Argon gas)
Sash Resin sash

UA value 0.29 W·m2/K
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Figure 2. (a) First-floor plan, (b) Second-floor plan, (c) Foundation plan, (d) Insulation layout example: The measurement
points of the indoor thermal environment are shown in (a,b). In (c), the analysis range is shown by the red dashed line.

The air conditioning equipment comprises two room air conditioners and a ventilation
system. These were installed on the floor. Room air conditioners obtain heat by using air
heat source heat pumps. Table 2 lists the rated performance of the room air conditioner
and ventilation system. Figure 3 shows the air circulation path during the crawl space
heating. The floor consists of a 24-mm-thick structural plywood base and a 12-mm-thick
wood finish. The floor on the first floor is not insulated.

Table 2. Performance of air conditioner and ventilation system.

Air Conditioner

Heating capacity (I) 2800 W (600~6600)
Power consumption (II) 540 W (105~1980)

Heating capacity (low temperature) (III) 4800 W
Power consumption (low temperature) (IV) 1750 W

Heating capacity (extremely low temperature) 2800 W
Annual performance factor (APF) 5.9

Ventilation System
Supply air 145 m3/h
Exhaust air 154 m3/h

Power consumption 32.5 W
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Figure 3. Airflow when using the crawl space heating.

2.2. Room Air Conditioner
2.2.1. Coefficient of Performance

The operating performance of a room air conditioner is expressed using the COP. The
COP during heating was calculated as:

COP = q/P (1)

where q and P denote the rated heat capacity (W) and rated power consumption (W),
respectively. The rated COP is 5.2, under standard conditions from (I) and (II) in Table 2.
The heat quantity during practical operation was calculated as follows:

q = Q·ρ·(E1 − E2) (2)

where q, Q, ρ, E1, and E2 denote the heat capacity (W), air flow rate (m3/s), density of
air (kg/m3), enthalpy of blown air (J/kg), and enthalpy of suction air (J/kg), respectively.
In order to calculate the enthalpy, the air temperature, relative humidity, and air velocity
of the air outlet and suction port were measured. Table 3 lists the characteristics of the
measurement equipment. The relationship between the measured air flow rate and air
velocity is given as:

Q = 0.1524v + 0.00251 (v > 0) (3)

where Q and v denotes the air flow rate (m3/s) and measured air velocity (m/s), respec-
tively. For the power consumption of the air conditioner, the data recorded in the Home
Energy Management System (HEMS) were used.

2.2.2. Overview of Air Source Heat Pump

Frosting occurs on the evaporator when operating the air source heat pump in winter,
which can cause the indoor temperature to decrease. The refrigerant temperature was
measured to estimate the start time of the defrost operation. The measurement day was
15 December 2019.

Figure 4 shows the heat pump system diagram and refrigerant temperature measure-
ment points, and the arrows in Figure 4 indicate the direction in which the refrigerant flows
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during the heating operation. During the heating operation, the refrigerant temperature
of T2 was high, and the refrigerant temperature of T5 was low. The refrigerant flow in
the defrost operation is opposite to that during the heating operation. It is estimated that
the defrost operation occurred when the refrigerant temperature of T2 changed from high
temperature to low temperature, and the refrigerant temperature of T5 changed from low
temperature to high temperature.

Table 3. The characteristics of measurement equipment.

Measurement Item Equipment Resolution Accuracy Manufacture

Air temperature Thermo recorder RTR-503
0.1 ◦C ±0.3 ◦C T&D corporationGlobe temperature Thermo recorder TR-71wf

Relative humidity Thermo recorder RTR-503 1% 5%

Air velocity Climomaster 6501
Climomaster 6541-21 0.01 m/s ±0.02 m/s Nihon Kanomax

corporation

Heat flux Heat flux sensor
(50 mm × 50 mm) - - Etodenki

corporation

Figure 4. System diagram of air source heat pump.

2.3. Indoor Environment Survey
2.3.1. Indoor Thermal Environment Measurement

The indoor thermal environment was measured between 6 January and 26 Febru-
ary 2020. The measurement parameters were air temperature, relative humidity, globe
temperature, and air velocity. Figure 2 shows the measurement points in the room. The
measurement points were the living room, kitchen, bathroom, and bedroom. Table 3
lists the characteristics of the measurement equipment used. The globe temperature was
measured using a hollow copper ball with a diameter of 150 mm. The sphere was painted
black, and the emissivity was 0.95. The measurement heights of the air temperature were
0.1 m and 1.1 m above the floor. The measurement height of relative humidity and globe
temperature were both 1.1 m above the floor. An omnidirectional hot-wire anemometer
was used to measure air velocity. The measurement height of the air velocity was 1.1 m
above the floor.

2.3.2. Questionnaire

Subjective surveys were conducted on 25 and 26 January 2020. The survey time was
between 10:00 and 16:00, and the targets were visitors to a detached house. A questionnaire
was used for the subjective survey. The survey was conducted on visitors who understood
the contents of the questionnaire and obtained their consent. Table 4 shows the age group
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of subjects. The study included 45 men and 62 women. The scales used for the subjective
surveys were prepared based on ISO10551 [40] and ASHRAE Standard 55 [1]. Table 5
summarizes the items related to thermal comfort. The questionnaire was created with
reference to the Japanese translation defined by the Architectural Institute of Japan [41]
based on ASHRAE Standard 55 [1] and ISO 10551 [40]. Table 6 shows the clothing option.
The options were prepared based on the ASHRAE Fundamental 2013 [42], and a free
response column was added.

Table 4. The age group of subjects.

10s 20s 30s 40s 50s 60s Total

Male 3 6 20 6 5 5 45
Female 0 13 27 8 8 6 62

Table 5. Subjective survey content.

Thermal Sensation Thermal Sensation
(Ankle Level) Affective Evaluation Thermal Preference Personal

Acceptability

+3: hot +3: hot 0: comfortable +1: warmer 0: acceptable
+2: warm +2: warm −1: slightly uncomfortable 0: no change −1: not acceptable

+1: slightly warm +1: slightly warm −2: uncomfortable −1: cooler
0: neutral 0: neutral −3: very uncomfortable

−1: slightly cool −1: slightly cool −4: extremely uncomfortable
−2: cool −2: cool
−3: cold −3: cold

Table 6. Clothing option and clothing insulation, Icl.

Option Icl(clo) Option Icl(clo) Option Icl(clo)

T-shirt 0.08 Knee sock (thick) 0.06 Walking shorts 0.08
Long underwear top 0.20 Panty hose 0.02 Straight trousers (thin) 0.15

Long underwear bottoms 0.15 Sleeveless, scoop-neck blouse 0.12 Straight trousers (thick) 0.24
Skirt (thin) 0.14 Short-sleeved, dress shirt 0.19 Sweatpants 0.28
Skirt (thick) 0.23 Short-sleeved, knit sport shirt 0.17 Overalls 0.30

Sleeveless, scoop neck (thin) 0.23 Long-sleeved, dress shirt 0.25 Sleeveless vest (thin) 0.10
Sleeveless, scoop neck (thick) 0.27 Long-sleeved, flannel shirt 0.34 Sleeveless vest (thick) 0.17
Short-sleeved shirtdress (thin) 0.29 Long-sleeved, sweatshirt 0.34 Single-breasted (thin) 0.36
Long-sleeved shirtdress (thin) 0.33 Sleeveless vest (thin) 0.13 Single breasted (thick) 0.44
Long-sleeved shirtdress (thick) 0.47 Sleeveless vest (thick) 0.22 Double-breasted (thin) 0.42

Ankle-length athletic socks 0.02 Long-sleeved (thin) 0.25 Double-breasted (thick) 0.48
Calf-length socks 0.03 Long-sleeved (thick) 0.36 (Free description)

In this study, the relationship between thermal sensation and operative temperature
was analyzed. The operative temperature can be calculated as follows [43]:

to =
hrtr + hcta

hr + hc
(4)

where to, tr, ta, hr, where hc denotes the operative temperature (◦C), mean radiant tempera-
ture (◦C), ambient air temperature (◦C), radiative heat transfer coefficient (W/(m2·K)), and
convection heat transfer coefficient (W/(m2·K)).

The equation for calculating the convective heat transfer coefficient (hc) is based on
the air velocity. In this study, the equation derived by Mitchell [42] was used:

hc = 3.1 0.2 < V < 1.5

hc = 8.3V0.6 0 < V < 0.2
(5)
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The radiative heat transfer coefficient (h) was calculated by multiplying the average
emissivity of clothing or body surface (ε = 0.95) by 4.7 [42]:

hr = 4.7ε (6)

The mean radiant temperature was calculated from the air temperature, globe temper-
ature, and air velocity using the following [43]:

tr =

[
6.32D−0.4V0.5

σε

(
tg − ta

)
+ t4

g

]0.25

(7)

where ε denotes the emissivity of the globe sphere surface (0.95) and D represents the
diameter of the globe sphere (0.15 m).

Neutral temperature is the temperature at which the subject feels thermally neutral. In
this study, the regression equation was calculated using the linear regression method; how-
ever, the difference was not significant (p > 0.05). Therefore, the neutral temperature was
calculated using the Griffith method. The neutral temperature was calculated as follows:

tn = to −
(TSV − TSVneutral)

a
(8)

where tn, to, TSV, TSVneutral , and a denote the neutral temperature (◦C), operative tem-
perature (◦C), thermal sensation vote, neutral thermal sensation (TSV = 0), and coefficient
(0.33, 0.5), respectively. In Section 3, tn with a coefficient of 0.33 is represented by tn(0.33)
and that with a coefficient of 0.5 is represented by tn(0.5).

2.4. Crawl Space Environment Survey

The air temperature in crawl space was measured to determine if the heating air was
sufficiently distributed in the crawl space; the measurement period was between 6 January
and 26 February 2020. A portable data logger was used to measure air temperature. Table 3
lists the characteristics of the portable data logger. Figure 5a shows the measurement points
of the air temperature. The measurement height of the air temperature was set to 300 mm
above the foundation slab surface.

Figure 5. The measure points, (a) crawl space air temperature, (b) heat flux generated on the surface of foundation slabs,
foundation walls, and first floors.

The heat transferred from the crawl space was measured; the measurement period
was from 27 January to 2 February 2020. The heat transfer directions include the foundation
slab, foundation wall, first floor, and fan. Figure 5b shows the heat flux measurement
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points. Table 3 lists the characteristics of heat flux sensors. The heat transfer through the
fan was calculated using the follow equation:

q = cp × ρ × V ×
(

θcrawl space − θindoor

)
(9)

where q, cp, ρ, V, θcrawl space, and θindoor denote the heat transfer from the fan (W), specific
heat of air 1005 (J/kg·K), density of air 1.2 (kg/m3) air flow rate (m3/s), crawl space air
temperature (◦C), and Indoor air temperature (◦C), respectively.

2.5. Insulation Placement Analysis

The analysis program WUFI2D 4.2, by EI, Ltd. (Minato-ku, Tokyo), was used to
examine the effect of suppressing heat loss caused by a change in insulation placement.

The analysis model was created based on the target detached house. Figure 6 shows
the analysis model. The red dashed line in Figure 2c indicates the analysis range. Table 7
summarizes the components and their physical characteristics.

Figure 6. Analytical model created based on the detached house to be studied.

Table 7. Components and physical properties.

Density (kg/m3)
Specific Heat

(J/kg·K)
Thermal Conductivity

(W/m·K)

Insulation 28.6 1470 0.025
Concrete 2220.0 850 1.600

Sandy soil 1507.0 850 0.488
Cohesive soil 1361.0 850 0.350

Meteorological conditions attributed to the outdoor surface were obtained using the
Automated Meteorological Data Acquisition System (AMeDAS) managed by the Japan
Meteorological Agency. Table 8 summarizes the conditions of the indoor surfaces. The
total heat transfer coefficient is defined as the sum of the radiant heat transfer coefficient
and convective heat transfer coefficient, and the surface temperature had the minimum
and maximum values of 1 August and 1 February, respectively.

In this study, the convective heat transfer coefficient was calculated based on the
Jurges formula [44]:

αcv = 5.6 + 3.9v v ≤ 4.9 m/s

αcv = 7.2v0.78 v > 4.9 m/s
(10)

where αcv and v denote the convective heat transfer coefficient (W/m2·K) and air velocity
(m/s), respectively.
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Table 8. Surface conditions of components.

Distance from the
Foundation Wall (mm) 0–455 455–910 910–1365 1365–1820 1820–2275 2275–2730 2730–3185 3185–3640

Convection heat transfer
coefficient (W/m2·K) 6.38 5.99 5.99 7.94 7.16 5.6 6.77 5.99

Radiant heat transfer
coefficient (W/m2·K) 5.04 5.04 5.04 5.04 5.11 5.11 5.11 5.11

Heat transfer coefficient
(W/m2·K) 11.4 11.0 11.0 13.0 12.3 10.7 11.9 11.1

Surface temperature (◦C)
Sine wave

Minimum 22 ◦C (1 August),
Maximum 32 ◦C (1 February)

Sine wave
Minimum 22 ◦C (1 August),

Maximum 34 ◦C (1 February)

The analysis was performed using CFD simulation software (Flow Designer academic 2020;
Advanced Knowledge Laboratory Inc.) because the air velocity in the crawl space was not mea-
sured. An area was created for the analysis (10,920 mm (width) × 7280 mm (depth) × 600 mm
(height), and the foundation plan was modeled as illustrated in Figure 2c. The blowout
area for the room air conditioner was 600 mm × 50 mm; it was 260 mm × 60 mm for the
fans and 150 mm in diameter for the ventilation system. Based on the field study, the air
flow rates were 540 m3/h, 58 m3/h, 76 m3/h, 86 m3/h, 72 m3/h, and 68 m3/h for room
air conditioners, fans 1, 2, 3, 4, and 5, respectively. The air flow rate of the ventilation
system was set to 145 m3/h, as listed in Table 2. An opening was created as appropriate
because there was a gap in the installation position of the room air conditioners. The
convective heat transfer coefficient was obtained by substituting the air velocity obtained
by steady-state analysis into the Equation (10).

In this study, the radiant heat transfer coefficient was calculated based on the radiant
heat exchange between two parallel planes [45]. The radiant heat flux from the surface of
the object is expressed as:

qr = εσT4 (11)

where qr, ε, σ, and T denote the radiant heat transfer (W/m2), emissivity 0.9 (-), Stefan–
Boltzmann constant 5.67 × 10−8 (W/m2·K4), and surface temperature (K), respectively.
Furthermore, Equation (11) is approximated as:

qr = εσT4 = aT + b (12)

Differentiating both sides of T yields a = 4εσT3. The calculation process when the
surface temperature of the member is assumed to be 30 ◦C is shown; by substituting
T = 303.15 K, a = 5.68 and b = −1290.38. Furthermore, the emissivity of general building
materials was 0.90. Therefore:

εbasement slab = εplywood = 0.90
abasement slab = aplywood = 5.68

bbasement slab = bplywood = −1290.38
(13)

The radiant heat exchange between two parallel planes is expressed by:

qr =
σ(T4

1 − T4
2 )

1
ε1
+ 1

ε2
− 1

(14)

where qr, T1, T2, ε1, and ε2 denote the radiant heat exchange (W/m2), surface temperature of
the foundation slab (K), surface temperature of the first-floor (K), emissivity of the foundation
slab surface (0.90) (-), and emissivity of the first floor (structural plywood) (0.90) (-).

From Equations (13) and (14):

qr =
σ

1
εbasement slab

+ 1
εplywood

− 1
× (

abasement slab·T1 + bbasement slab
εbasement slab·σ

−
aplywood × T2 + bplywood

εplywood × σ
) (15)



Energies 2021, 14, 7034 11 of 29

Substituting each value in Equation (15):

qr =
σ

1
0.9+

1
0.9−1

× ( 5.68×T1−1290.38
0.9·σ − 5.68×T2−1290.38

0.9·σ )

qr =
1

1
0.9+

1
0.9−1

× 5.68
0.9 × (T1 − T2)

qr = 5.16 × (T1 − T2)

(16)

According to Equation (16), the radiant heat transfer coefficient αr is 5.16.
The analysis model was based on the insulation placement assumed in Japanese

detached housing. Table 9 summarizes the types of analysis models used. The original
shows the insulation placement of the detached house under study. Case 1 represents
a condition wherein a 100-mm-thick horizontal insulation was placed on the foundation
slab and extended. Case 2 indicates a condition wherein the horizontal insulation with
a thickness of 100 mm was placed under the foundation slab and extended. Case 3 indicates
a condition wherein the skirt insulation was extended by placing a 100-mm-thick vertical
insulation on the outside of the foundation wall. The heat transfer coefficient of each
insulation was 0.025 W/m·K.

Table 9. Insulation placement and dimensions.

Original Case1 Case2 Case3

Model

Thermal conductivity 0.025 W/m·K 0.025 W/m·K 0.025 W/m·K 0.025 W/m·K

Thickness Vertical: 100 mm
Horizontal: 100 mm

Vertical: 100 mm
Horizontal: 100 mm

Vertical: 100 mm
Horizontal: 100 mm

Vertical: 100 mm
Skirt: 100 mm

Length L = 300 mm L = 455~3640 mm L1 = 455~3640 mm L2 = 100~1000 mm

3. Results and Discussion
3.1. Evaluation of Room Air Conditioner
3.1.1. Operation Performance

When heating using an air source heat pump, frost may form on the evaporator, which
can reduce its heat exchange capacity. Moreover, the heating stop efficiency is lowered
because of the defrosting operation. Based on interviews with the manufacturer, it was
found that 50 min of heating operation and 10 min of defrost operation were performed
when the outside air temperature dropped below 5 ◦C. In response to the above, the power
consumption, output heat, and COP were calculated to evaluate the operating performance
during continuous operation. Figure 7 shows the operation characteristics; the maximum
COP value was 5.5, the minimum value was 0.6, and the average value was 2.9. Therefore,
the room air conditioner operates efficiently.

The average values of power consumption, heat quantity, and COP were calculated
for each outside air temperature of 0.5 ◦C to understand the relationship between the
outside air temperature and the operating characteristics. Figure 8 shows the relationship
between the outside air temperature and operation characteristics. The COP decreased as
the outside air temperature decreased.

Guo et al. [8] indicated that the heating capacity and COP decreased as the thickness
of the frosting on the surface of the evaporator increased. Furthermore, it was shown
that the air temperature range where the frost growth rate reached its maximum was
approximately 0 ◦C. In this study, the COP decreased in a temperature range earlier than
the air temperature, as indicated by Guo et al. [8].
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Figure 7. Operating characteristics of the room air conditioner during heating operation.

Figure 8. Relationship between outside air temperature and operating characteristics.

The operating characteristics of the room air conditioner were evaluated using a p–h
diagram. Figure 9 shows the refrigeration cycle on the p–h diagram; the results in Figure 9
are the average values for 15 December 2019. The refrigerant pressure and enthalpy were
estimated from the refrigerant temperature and calculated using the program software of
the Japan Society of Refrigerator and Air Conditioning. The degree of subcooling was 5.7 ◦C,
and the degree of superheating was 0.5 ◦C. According to the p–h diagram, in the condenser,
heat exchange took place between the refrigerant and the room air. The expansion valve
regulated the refrigerant pressure. It can be determined that the refrigerant evaporates
in the evaporator, and there is no possibility that the liquid refrigerant flows into the
compressor. However, this study estimated the pressure and enthalpy from the refrigerant
temperature, and it was pointed out that the estimated values differ from the measured
values. Yamaguchi et al. [46] compared the measured refrigerant pressure and refrigerant
pressure estimated from the refrigerant temperature. The measured refrigerant pressure in
the condenser was higher than the estimated value, and the measured refrigerant pressure
in the evaporator was lower than the estimated value. In the cycle shown in Figure 9, it is
assumed that the range of high- and low-pressure widens. Yamaguchi et al. [46] reported
that the COP can be improved by reducing the pressure to a value corresponding to the
saturation temperature.
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Figure 9. Refrigeration cycle estimated based on refrigerant temperature.

However, it is unclear if this can be applied to the heat pump of a room air conditioner.
Therefore, there is room for examining the operation of the heat pump of a room air condi-
tioner. Kocyigit et al. [47] used a p–h diagram to diagnose cycle failures. The refrigerant
may not evaporate completely if the heat transfer in the evaporator is interrupted. This
causes the liquid-phase refrigerant to flow into the compressor. The liquefied refrigerant is
recovered by the accumulator; however, there is a shortage of refrigerants that circulate
in the cycle. The operating capacity decreases as the mass flow rate of the refrigerant
decreases [47]. The decrease in the heat transfer capacity of the evaporator is caused by
frost formation on the evaporator. The refrigerant pressure is reduced by passing through
the expansion valve. The refrigerant temperature decreased as the pressure decreased.
Figure 10 shows the relationship between the outside air temperature and refrigerant
temperature in front of the evaporator in this study. When the outside air temperature is
6.2 ◦C, the refrigerant temperature is already 0 ◦C or less, and there is a possibility that frost
has occurred on the evaporator. In the evaporator, the refrigerant temperature is lower than
the outside air temperature. The conditions under which frost occurs change depending
on the refrigerant temperature. Therefore, it is necessary to investigate the relationship
between the outside air temperature and the refrigerant temperature and the control of the
expansion valve.

Figure 10. Relationship between outside air temperature and refrigerant temperature after passing
through the expansion valve.
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3.1.2. The Influence of Defrost Operation

The heating air temperature, heat flux generated on the foundation slab surface, and
indoor air temperature were measured to investigate the effect of indoor air temperature
caused by the defrosting operation. Figure 11 shows the outside air temperature; it dropped
below 0 ◦C in the morning, and then the outside air temperature increased. Figure 12 shows
the measurement results, and Figure 12a shows the changes in the refrigerant temperature
at T2 and T5. During the defrost operation, the refrigerant temperature of T2 was low, and
the refrigerant temperature of T5 was high. Thus, the defrost operation was performed
seven times. The cumulative time for defrosting was 64 min per day. Figure 12b shows the
heating air temperature. The heating air temperature decreased because of the decrease in
the refrigerant temperature at T2. Figure 12c shows the heat flux generated on the surface
of the foundation slab. The positive values of heat flux indicate that heat was transferred
from the foundation slab to the crawl space. The heat flux recorded a positive value when
the heating air temperature became low; therefore, it was assumed that the air was warmed
by the heat storage of the structure. Figure 12d shows the indoor air temperature, and
the indoor air temperature did not simultaneously change with the defrost operation; this
shows a periodic change only in the indoor temperature caused by solar radiation.

Figure 11. Outside air temperature and total solar radiation during the measurement period.

3.2. Crawl Space Air Temperature Distribution

The heating air must be distributed in the crawl space to ensure a uniform indoor
temperature distribution. Therefore, the horizontal temperature distribution in the crawl
space is measured. Figure 13 shows the air temperature in the crawl space. The air
temperatures were calculated using the average values for two days, that is, 25 and
26 January 2020. The lowest air temperature was 22.5 ◦C. The air temperature was low
because this measurement point was close to the air supply port of the ventilation system.
Other factors included the distance of the measurement point from the air conditioner
and the high density of the piping of the air-conditioning equipment. On the east side,
there were fewer equipment pipes than on the west side; thus, the heating air was well
distributed. It is necessary to intersperse the air supply ports of the ventilation system
to ensure a uniform air temperature distribution. However, complicated piping makes it
difficult to diffuse air, which hinders uniform air temperature distribution.
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Figure 12. Measurement results (a) Refrigerant temperature, (b) Heating air temperature, (c) Heat
flow generated on the foundation slab surface, (d) Indoor air temperature.

Figure 13. Crawl space air temperature distribution.
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3.3. Indoor Thermal Environment Survey

An indoor thermal environment survey and a subjective survey were conducted to
evaluate the indoor thermal comfort. The survey results of the indoor thermal environment
were provided, followed by those of the subjective survey.

3.3.1. The Indoor Thermal Environment

The indoor air temperature during the crawl space heating was measured. Figure 14
shows the outside and indoor air temperatures. The air temperature in the bedroom on the
second floor was lower than the air temperature in the living room, kitchen, and bathroom
on the first floor. The staircase was the only route for the heating air to move from the first
floor to the second floor. The crawl space heating is created by vertical air temperature
stratification; therefore, it is necessary to design the space while focusing on the movement
path of the heating air to exploit the effect of air temperature stratification.

Figure 14. Outside air temperature and indoor air temperature.

The floor surface temperature causes local thermal discomfort. ASHRAE Standard
55 recommends that the percentage dissatisfied resulting from floor surface temperature
should be 10% or less, and the corresponding temperature range is 19–29 ◦C. Figure 15
shows the floor surface temperatures of the living room, kitchen, and bathroom. The floor
surface temperatures in the living room, kitchen, and bathroom varied from 23.1 to 25.5 ◦C
to 18.4 to 22.3 ◦C and 22.1 ◦C to 25.0 ◦C, respectively. Thermal comfort was evaluated
based on the dissatisfaction rate caused by the floor surface temperature. The minimum
floor surface temperature in the kitchen was lower than the lower limit of the temperature
range defined by ISO7730. However, since it is 19 ◦C or more at most times, local thermal
discomfort is unlikely to occur. However, this result is intended for occupants wearing
lightweight indoor shoes. If occupants live indoors wearing only socks, the minimum
value of 18.4 ◦C in the kitchen may feel cool.

Air temperatures (0.1 m) above the floor and 1.1 m above the floor were compared
to confirm the vertical air temperature difference. Figure 16 shows the air temperature
(0.1 m) above the floor and 1.1 m above the floor. ISO 7730 [2] recommends that the
vertical air temperature difference between 0.1 m above the floor and 1.1 m above the
floor should be within 3.0 ◦C. The maximum and average temperature differences in the
living room, kitchen, bathroom, and bedroom were 2.2 ◦C and 0.45 ◦C, 7.5 ◦C and 5.3 ◦C,
3.0 ◦C and 1.4 ◦C, and 0.6 ◦C and 0.0 ◦C, respectively. Furthermore, there is a temperature
difference of 3.6 ◦C at the minimum value in the bathroom. Local thermal discomfort was
less likely to occur in the living room, bathroom, and bedroom; however, in the kitchen, it
is expected that local thermal discomfort will occur because of the temperature difference.
The temperature difference was caused by a decrease in temperature at the feet. The
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temperature drop at the feet was caused by the inflow of cold air from the north entrance.
This may be attributed to the decrease in the floor surface temperature of the kitchen, and
it can be dealt with by the plan of the house, such as installing a door between the entrance
and the kitchen.

Figure 15. Floor temperature in the living room, kitchen, and bathroom.

Figure 16. Air temperature of 0.1 m above the floor and 1.1 m above the floor in the (a) living room,
(b) kitchen, (c) bathroom, and (d) bedroom.

The PMV was calculated to evaluate the indoor thermal environment. Figure 17
shows the time change of the PMV; the standard for the thermal environment defined
by ISO7730 [2] is added in this figure. Throughout the measurement period, the thermal
environment of the living room was in Category B. The thermal environment of the kitchen
met Category C for 71.8% of the measurement period; it may feel warmer in a kitchen
with high activity intensity. Furthermore, the thermal environments in the bathroom and
bedroom met Category C for 79.0% and 53.6% of the measurement period, respectively.
The residents may be more likely to feel cold when waking up because the PMV dropped
from midnight to 10 AM.
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Figure 17. Thermal environment evaluation of (a) living room, (b) kitchen, (c) bathroom, and
(d) bedroom based on PMV.

The psychrometric chart in Figure 18 shows the changes in air temperature and
absolute humidity caused by air circulation. The plot data include the average value as of
28 January 2020. Because the humidity of the crawl space has not been measured, it was
assumed that the absolute humidity of the heating air was uniformly diffused in the crawl
space. The heating air was dry, and dry air was supplied to the room. The relative humidity
on the first floor was 30.7%, and the relative humidity on the second floor was 43.8%. In
Japan, the Ministry of Health, Labor, and Welfare recommends maintaining indoor relative
humidity in the range of 40 to 70%. It is necessary to maintain high humidity on the first
floor. Humidification is expected because of housework; however, if the dry condition
continues, it is necessary to use a humidifier or the like.

Figure 18. Changes in temperature and humidity properties of indoor air.
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3.3.2. Subjective Survey

The survey results were tabulated to evaluate the indoor thermal environment using
a subjective vote. A total of 107 valid data were obtained from the survey. Table 10 lists the
results of the indoor thermal environment at the time of the subjective survey. The ranges
of air temperature 0.1 and 1.1 m above the floor was 20.8~23.9 ◦C (average value, 20.3 ◦C)
and 21.8~24.9 ◦C (average value, 23.6 ◦C), respectively. The range of the indoor operative
temperature was 21.9–25.0 ◦C, and the average value was 23.9 ◦C.

Table 10. Indoor thermal environment at the time of the subjective survey.

Measurement Item Unit Sample size Max. Min. Mean S.D. Median

Air temperature
(0.1 m above the floor)

◦C 107 23.9 20.8 23.0 0.7 23.3

Air temperature
(1.1 m above the floor)

◦C 107 24.9 21.8 23.6 0.8 23.9

Air temperature
(1.7 m above the floor)

◦C 107 25.1 21.8 23.8 0.9 24.1

Globe temperature ◦C 107 25.0 21.9 23.7 0.8 24.0

Operative temperature ◦C 107 25.0 21.9 23.7 0.8 24.0

Relative humidity % 107 45.0 20.0 38.3 7.9 42.0

Air velocity m/s 107 0.14 0.02 0.07 0.0 0.07

Clothing insulation clo 107 2.04 0.34 1.16 0.3 1.15

The results of the subjective survey were tabulated to understand how the subjects
felt the indoor thermal environment. Table 11 lists the results of the survey. Thermal
sensations were rated the highest for “warm”, followed by “slightly warm”. When “warm”
is translated into Japanese, it reflects feelings of comfort. Therefore, it had the highest
ratings. The affective evaluation observed the highest vote for “comfortable”. A majority
vote for thermal preference was assigned to “no change”. The majority vote for personal
acceptance was for “acceptable”. Although some subjects voted for “cooler”, 88.8% of the
subjects voted for “comfort” and 94.9% voted for “acceptable”. Thus, it can be concluded
that many subjects were satisfied with the indoor thermal environment.

Table 11. Result of subjective survey.

Evaluation
Item The Numbers of Sample

Thermal
Sensation

cold cool slightly cool neutral slightly warm warm hot
1 0 0 8 32 59 7

0.9% 0% 0% 7.5% 29.9% 55.2% 6.5%

Thermal
Sensation

(Ankle Level)

cold cool slightly cool neutral slightly warm warm hot
1 2 7 24 28 45 0

0.9% 1.9% 6.5% 22.4% 26.2% 42.1% 0%

Affective
Evaluation

comfortable slightly uncomfortable uncomfortable very uncomfortable extremely uncomfortable
95 11 1 0 0

88.8% 10.3% 0.9% 0% 0%

Thermal
Preference

cooler no change warmer
14 88 5

13.1% 82.2% 4.7%

Personal
Acceptability

acceptable not acceptable
101 6

94.9% 5.6%
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Comparing the thermal sensation vote of the whole body and feet level, the number of
votes on the cool side vote of the feet level increased. However, the TSV values of −2 and
−3 were 2.8% of the total. For this reason, a few subjects experienced thermal discomfort.

A scatter plot was drafted to understand the relationship between the indoor operative
temperature and TSV. Figure 19 shows the relationship between the indoor operative
temperature and the TSV. Because the number of thermal sensation votes was small and
the change in the indoor operative temperature during the survey period was also small,
it was difficult to analyze this using linear regression. The regression equation was not
significant (p > 0.05); therefore, the neutral temperature was calculated using the Griffiths
method. tn(0.33) was 18.9 ◦C and tn(0.5) was 20.5 ◦C. Based on the comparison of tn(0.5) with
the air temperature in the bedroom on the second floor, the air temperature was found
to be lower than the neutral temperature at a certain time. Therefore, increasing the air
temperature in the bedroom may improve the comfort.

Figure 19. Scatter plot of indoor operative temperature and Thermal sensation vote.

Table 12 summarizes previous studies conducted in housing in winter to compare
the results of this study with their results [48–62]. The types of housing include detached
houses, apartments, and elderly housing with care. This study was compared with a study
that employed a coefficient of 0.33 (Rijal et al. [52], Jiao et al. [56], Gautam et al. [58]).
Compared with these previous studies, the neutral temperature of this study tended to be
higher. Compared with the study by Tobita et al., There was a large difference in the neutral
temperature in the same country. Since the target house of this study was an exhibition
house, the subjects did not stay for a long time. After entering the warm house from the
cold outside, a subjective report survey was conducted about 30 minutes later. Thermal
overshoots can occur. Therefore, it is probable that the number of declarations of “slightly
warm” and “warm” increased, and the neutral temperature became higher.
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Table 12. Previous studies conducted in housing and facilities for the elderly in winter.

Reference Country/Location Climate Sample Age Operation Equation tn

Oseland_1994
[48] (Database of UK) - - 20–77 AC TSV = 0.24to − 0.15 17.0

Wang_2003
[49] Harbin, China very cold and dry 120 14–80 - TSV = 0.302to − 6.506 21.

Wang_2006 Harbin, China very cold and dry 59 14–80 - TSV = 0.199to − 4.158 20.9 1

[50] 61 - TSV = 0.243to − 5.330 21.9 2

Tobita et al._2007 Kansai, Japan Cfa 396 - Mixed TSV = 0.12ET * + 2.81 9.9
[51] TSV = 0.13tg + 2.70 9.9 3

TSV = 0.14to + 2.47 10.9 3

TSV = 0.14ET * + 2.45 10.9 3

Rijal et al._2010 Banke, Nepal sub-tropical 264 - NV - 16.2
[52] (Griffiths 0.33) 18.3

Bhaktapur, Nepal temperate 616 - NV - 15.2
(Griffiths 0.33) 20.9

Dhading, Nepal temperate 352 - NV - 24.2
(Griffiths 0.33) 26.8

Kaski, Nepal temperate 176 - NV - 18.0
(Griffiths 0.33) 18.2

Solukhumbu, Nepal cold climate 528 - NV - 13.4
(Griffiths 0.33) 14.7

all - 1936 17–60 NV TSV = 0.0509tg − 1.2373 24.3
(Griffiths 0.33) 17.3

Wang et al._2010
[53] Harbin, China very cold and dry 432 20–60 NV - 21.5

Wang et al._2011
[54] Harbin, China very cold and dry 174 20–60 no heating TSV = 0.0915ta − 2.2977 25.1

heating TSV = 0.1074ta − 2.189 20.4
Liu et al._2017

[55] China HSCW 2652 20–60 NV TSV = 0.066to − 1.39 21.0

Jiao et al._2017 Shaghai, China subtropical humid monsoon 342 over 70 NV TSV = 0.079to − 1.310 16.6
[56] (Griffiths 0.5) 14.2

(Griffiths 0.33) 14.0
(Griffiths 0.25) 13.7

Wang et al._2018
[57] Shaghai, China subtropical humid monsoon 342 70-98 NV TSV = 0.078to − 1.306 16.7

Gautam et al._2019 Mustang, Nepal cold 60 14–86 - (Griffiths 0.5) 13.8 4

[58] (Griffiths 0.33) 14.7 5
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Table 12. Cont.

Reference Country/Location Climate Sample Age Operation Equation tn

Kavrepalanchok, Nepal temperate 85 14–86 - (Griffiths 0.5) 17.9 4

(Griffiths 0.33) 18.5 5

Sarlahi, Nepal sub-tropical 130 14–86 - (Griffiths 0.5) 23.1 4

(Griffiths 0.33) 22.8 5

Xiong et al._2019 Wuhan, China HSCW 212 14–74 Mixed TSV = 0.10tin − 1.94 19.4 6

[59] Luotuoao, China HSCW 631 14–74 Mixed TSV = 0.09tin − 1.45 16.1 6

Jiao et al._2020
[60] Shanghai, China subtropical humid monsoon 342 over 70 NV TSV = 0.076to − 1.273 16.8

Jin et al._2020
[61] Edinburgh, Scotland, UK - - 83–94 AC - 22.7

Shao and Jin_2020
[62] Harbin, China severely cold 100 - AC TSV = 0.2203to − 3.7013 16.8

Changchun, China severely cold 100 - AC TSV = 0.2467to − 4.0579 16.4
Shenyang, China severely cold 100 - AC TSV = 0.2322to − 3.715 16.0

- below 44 AC TSV = 0.197to − 3.299 16.8
- 44–59 AC TSV = 0.206to − 3.424 16.6
- over 60 AC TSV = 0.213to − 3.511 16.5
- AC TSV = 0.205to − 3.350 16.3 1

- AC TSV = 0.217to − 3.639 16.8 2

This study_2020 Saku, Japan Cfa 107 10–60 AC (Griffiths 0.5) 20.5
(Griffiths 0.33) 18.9

Remarks: 1 male, 2 female, 3 0.81–1.11 clo, 4 comfort temperature, 5 preferred temperature, 6 Calculated by the author by substituting TSV = 0 into the regression Equation AC: Air conditioning mode, Mixed:
Mixed mode, NV: Naturally ventilated mode. ET * = New effective temperature.
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3.4. Heat Loss from the Crawl Space
3.4.1. Measurement of Heat Loss

The heat transfer in the crawl space was investigated on 2 February 2020. Figure 20
shows the heat transfer from the crawl space; the ratio of heat transfer to the heat supply
is also shown. A part of the heat supply was probably consumed by the introduction of
outside air via the ventilation system. Furthermore, it is difficult to accurately measure
all heat flux. Therefore, the heat transfer generated on the foundation slab surface may
be larger than the measured value. The heat transfer generated on the foundation slab
corresponds to the total of 20% of the heat supply. It is necessary to consider insulation
placement on the foundation to reduce the heat transfer generated on the foundation slab.

Figure 20. Heat transfer of crawl space.

The heat flux was compared at each measurement point, as shown in Figure 21. It
was necessary to place the insulation because the heat flux generated on the foundation
slab surface was large near the air conditioner. The heat flux generated on the insulated
foundation slab surface was small compared to the other measurement points. Placing
insulation on the foundation slab or foundation wall is effective for decreasing heat loss.
However, in the measurement, the heat flux of outer peripheral portion cannot be accurately
evaluated. Therefore, the analysis is used to supplement the evaluation of the heat flux of
the foundation slab and to propose the insulation length.

Figure 21. Comparison of heat flux generated in foundation slabs and foundation walls.
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3.4.2. Calculating Heat Loss by Analysis

An analysis was conducted to understand the differences in the insulation placement.
Figure 22 shows an example of the distribution of the ground temperature and heat flux for
each insulation placement. In the original model, a temperature gradient was generated
near the foundation wall, and the heat was easily transferred. Therefore, the heat flux
generated on the foundation slab surface near the foundation wall increases. It is necessary
to employ measures to reduce the maximum heat flux to suppress the heat loss. In Case
1 (L = 1820 mm), the temperature lines at 10 ◦C and 15 ◦C were distributed under the
foundation slab. It was difficult for the heat to escape because the temperature gradient
was smaller than that of the original model. Therefore, the maximum heat flux decreased.
In Case 2 (L1 = 1820 mm), the ground temperature distribution was similar to that of the
original model, even when the insulation was placed. The foundation concrete became
a thermal bridge, and a temperature gradient was generated, which made it easy for the
heat to escape; therefore, the maximum heat flux did not decrease. In Case 3 (L2 = 100 mm),
the ground temperature under the foundation slab was 20–30 ◦C because the outside
cold air was blocked outside the foundation wall. The heat flux was small because the
temperature gradient under the foundation slab was small.

Figure 22. The example of the distribution of ground temperature and heat flux in each insulation
placement. (a) Original (L = 1820 mm), (b) Case 1 (L = 1820 mm), (c) Case 2 (L = 1820 mm), (d) Case 3
(L = 100 mm).
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The heat flux generated on the foundation slab surface was analyzed for each insu-
lation placement. Figure 23 shows the heat flux distribution generated on the surface of
the foundation slab when the insulation length is changed. Furthermore, the figure shows
the heat flux distribution on February 1, when the maximum surface temperature of the
foundation slab was set. In Case 1, the maximum heat flux generated on the foundation
slab surface was reduced by extending the insulation; however, the decrease in the maxi-
mum heat flux became smaller as the heat-insulating material was extended. In Case 2, the
heat flux distribution generated on the foundation slab surface showed the same heat flux
distribution as the original model. Because the thermal bridge occurred in the foundation
concrete, the change in the maximum heat flux caused by the extension of the insulation
was small. In Case 3, the heat flux was larger as it was closer to the foundation wall; the
maximum value changed in the range of 15.6 to 16.3 W/m2. There was no change in the heat
flux distribution generated on the foundation slab surface by extending the skirt insulation.

Figure 23. Heat flux distribution on the foundation slab surface in each insulation placement. (a) Case 1,
(b) Case 2, (c) Case 3.

The average heat loss during the heating period was calculated. The heating period
was assumed to be 121 days, from 1 December to 31 March. Figure 24 shows the relationship
between the insulation length and heat loss; the result is the heat loss per 9.9 m2 in the
analysis range. The heat loss in Case 1 was the smallest at L = 3640 mm, and the heat loss
was 369.0 MJ. It was 578.3 MJ less than that of the original model. The longer the insulation,
the smaller is the heat loss. However, the longer the insulation length, the smaller the effect
of decreasing the heat loss caused by the extension of the insulation. In Case 2, the heat
loss was the smallest at L1 = 3185 mm, which was 749.9 MJ. However, it was 770.7 MJ at
L1 = 910 mm. Comparing L1 = 910 mm with L1 = 3185 mm, the heat loss decreased by
only 2.8%. Therefore, it is not expected that the heat loss will be reduced by extending
the insulation. In Case 3, at L2 = 100−1000 mm, the minimum heat loss was 408.4 MJ and
the maximum was 423.6 MJ. It cannot be expected that skirt insulation will decrease heat
loss. The results indicate that the appropriate insulation length in Case 2 is L1 = 910 mm,
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and in Case 3, it is L2 = 100 mm. However, in Case 1, it was not possible to determine
the appropriate insulation length only from the viewpoint of heat loss. Therefore, it is
necessary to consider the insulation length. The insulation length for Case 1 was proposed
based on electricity and insulation costs.

Figure 24. Heat loss on the foundation slab surface in each insulation placement. (a) Case 1, (b) Case 2, (c) Case 3.

The electric, insulation, and total costs were calculated for a detached house to examine
the appropriate insulation length in Case 1. The total cost is the sum of the electric and
insulation costs. The length that minimizes the total cost is the appropriate insulation
length. First, it was converted into power consumption, corresponding to the heat loss.
Subsequently, the power consumption was divided by the COP of the air conditioner
to calculate the power consumption expected to be consumed. Finally, the electric costs
were calculated by multiplying the power consumption by the standard unit price of the
electricity rate.

Figure 25 shows the relationship between the insulation length and the annual cost
for a detached house. Annual costs were compared assuming 20, 40, and 60 years of
residence. In this study, heat loss other than that during the heating period was not
considered, and only heating was assumed. Because the heating period was fixed, the
annual electric costs were constant regardless of the residence years. The annual insulation
costs varied depending on the residence years, and the longer the residence years, the
lower the insulation cost. The appropriate insulation length based on the annual total
cost calculation was 455 mm for 20 residence years and 910 mm for 40 and 60 residence
years. Considering the longevity of wooden buildings, the insulation length placed on
the foundation slab was appropriate at L = 910 mm. The insulation length in the target
house of this study was 300 mm; however, the heat loss could be reduced by extending the
heat-insulating material. Furthermore, setting the insulation length to 910 mm was found
to be cost-effective.

Figure 25. Annual cost of insulation cost and electric cost versus insulation length. (a) 20 residence years, (b) 40 residence
years, (c) 60 residence years.

In Japan’s energy-saving housing design [3], it is not necessary to make the foundation
slab a heat insulating structure. However, due to the influence of external cold air, the
temperature under the foundation slab decreased. The insulation of foundation slabs
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requires the elimination of thermal bridges and the reduction of the maximum heat flux
generated in foundation slabs. This study showed that heat loss was suppressed by the
placement and extension of insulation. This result will help the design when introducing
the crawl space heating not only in Japanese houses but also in other region houses.

4. Conclusions

This report showed the comfort of the indoor thermal environment, the operating
performance of the room air conditioner, and the appropriate length of the insulation of
the foundation slab. This result aids in the design of the crawl space heating in detached
homes. Some simple results, limitations, and future challenges are shown as follows:

When operating the air heat source heat pump in winter, there was a risk that the
operating performance would deteriorate due to frost formation on the evaporator. How-
ever, from the research results, the heat pump operated efficiently. According to the p–h
diagram, it was shown that the heating operation of the heat pump was performed nor-
mally. Therefore, it is possible to select air heat source heat pump as the heating equipment
in cold region. In this study, the installation position of the room air conditioner was not
examined. Since it is important to distribute the heating air into the crawl space, there is
room to consider the installation position of the air conditioner.

In the indoor thermal environment survey, there was almost no local thermal dis-
comfort, and the subjects were satisfied with the indoor thermal environment. However,
the subjective survey was conducted in a stable temperature environment, so the change
in the thermal sensation with respect to the temperature change could not be confirmed.
In addition, the number of subjects was small, and it was difficult to discuss individual
differences in the thermal sensations. Therefore, by expanding the temperature range in
which the subjective survey is conducted and increasing the number of thermal sensation
vote, comfort will be evaluated more clearly.

Three types of insulation placements were set for the foundation slab, and an ap-
propriate length was presented from the viewpoint of suppressing heat loss. However,
Latent heat and moisture transfer were not considered in the comparison of heat loss by
two-dimensional analysis. Freezing of the ground and groundwater levels can affect heat
transfer and should be reproduced in the next study.
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