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Abstract: Increased behind-the-meter (BTM) solar generation causes additional errors in short-
term load forecasting. To ensure power grid reliability, it is necessary to consider the influence of
the behind-the-meter distributed resources. This study proposes a method to estimate the size of
behind-the-meter assets by region to enhance load forecasting accuracy. This paper proposes a semi-
supervised approach to BTM capacity estimation, including PV and battery energy storage systems
(BESSs), to improve net load forecast using a probabilistic approach. A co-optimization is proposed
to simultaneously optimize the hidden BTM capacity estimation and the expected improvement to
the net load forecast. Finally, this paper presents a net load forecasting method that incorporates the
results of BTM capacity estimation. To describe the efficiency of the proposed method, a study was
conducted using actual utility data. The numerical results show that the proposed method improves
the load forecasting accuracy by revealing the gross load pattern and reducing the influence of the
BTM patterns.

Keywords: load forecasting; load disaggregation; behind-the-meter (BTM); hidden capacity; capacity
estimation

1. Introduction

Renewable generation has rapidly increased based on governmental support to reduce
carbon emissions and improve energy sustainability. Many countries have provided
financial incentives and deregulated the installation of renewable energy systems to achieve
penetration goals. The incentive schemes were designed to favor small-scale distributed
energy resources (DERs), especially solar plus batteries, and most are developed as small-
scale photovoltaic (PV) power systems that are more profitable than other generation types.
Most small-scale PV companies have signed power purchase agreements (PPAs) with
utilities to avoid financial risk and there are also privately owned small PVs such as rooftop
solar systems. Unlike utility-scale PV systems, facility deregulation allows small-scale PV
systems to use inexpensive metering systems that cannot monitor power in real-time or
distinguish between solar and battery output.

Short-term load forecasting is essential for efficient power grid operations [1]. Electric
demand forecasting was carried out in consideration of weather conditions, time variables,
and holiday information [2]. In recent years, however, it has been more difficult to accu-
rately forecast the net load because the capacity of BTM DERs has increased while it cannot
be properly monitored [3]. In the past few years, many studies have been presented to
address the impact of BTM on net load. There are mainly four contents of related work:
(i) BTM estimation using alternative verification methods without true data points, (ii) BTM
estimation with verification using true data points, (iii) various BTM estimation algorithms
to disaggregate the BTM pattern from net load, and (iv) load forecasting methods to address
the underlying uncertainties and BTM patterns.
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2. Literature Review

BTM capacity estimation methods pose inherent challenges in deploying ground-truth
data points. From a practical perspective, there are limited methods to verify the accuracy of
the estimated BTM capacities. Thus, prior research has validated BTM capacity estimation
results, excluding true data points. Wang et al. represented all BTM PV outputs by adopting
virtual equivalent PV, was derived from weather and location data [4]. Shaker applied
multiple BTM penetration scenarios to demonstrate the overall estimation accuracy [5].
the BTM capacity in low-voltage networks was analyzed using the weather condition
changes and net load difference. Sun et al. focused on extreme weather condition and
compared them to close days when electric demand patterns were less affected [6]. System
operators need to continuously track the quantity of behind-the-meter DERs, which is a
prerequisite for improving the transparency of the grid and reducing the uncertainties in
net load patterns. Pennsylvania-New Jersey-Maryland Interconnection (PJM), which is a
system operator in the United States, reconstitutes the net load using BTM capacity/pattern
estimation and improves the results of net load forecasting integrated with PV forecast [2,3].
Load forecasting accuracy improvement was generally used in previous studies to validate
the BTM capacity estimation results and the California Independent System Operator
(CAISO) used the p-value and Pearson correlation coefficient to measure the load forecast
improvement [7].

However, some research was able to validate its efficiency using actual data. Li et al.
presented a two-stage decoupled estimation for disaggregate net load into load and BTM
PV. The results were validated through actual utility data [8]. Shaffery et al. proposed a
framework based on a Bayesian process to decompose the net load into the gross load and
BTM PV patterns [9]. Representative solar sites were selected from the available historical
data and used to estimate the entire BTM PV pattern [6,10–12]. Several previous studies
have considered BTM resource behavior from a bottom-up approach using low-voltage net-
work data. The BTM BESS was estimated by matching the assumed charging/discharging
schedule patterns using California power system data [13].

BTM capacity estimation are derived from the various methodology. Kabir et al.
presented an unsupervised framework used to disaggregate the residential load patterns
and applied a mixed hidden Markov model (MHMM) to model the human behavior [14].
Li et al. proposed two-stage approach to disaggregate the effect of BTM PV from residential
load pattern and adopted support vector machine (SVR) and an ensemble technique to
address the analysis for 300 customers [15]. To consider regional differences, Mason et al.
used a deep neural network to determine the representative BTM PV characteristics, such
as tilt and azimuth [16]. Pan et al. showed the approach to disaggregate the impact of BTM
PV through variability analysis [17]. Bu demonstrated a data-driven approach on netload
disaggregation using game theory [18]. Peng et al. presented the method to determine the
investment configuration including BTM PV plus BESS operations [19].

Recently, artificial neural networks have been widely used in short-term load predic-
tion studies and show advanced results when combined with quantitative regression [20,21].
The net load forecasting accuracy was improved through a probabilistic approach that
consider the uncertainties of input variables [22]. Saeedi et al. proposed an adaptive
method to consider changes on load trend, human behavior, and the impact of additional
BTM PV [23]. PJM and CAISO also used neural network framework to improve net load
forecasting accuracy considering BTM patterns [3,7]. Kwon et al. showed that an online
learning method improves the accuracy by quickly adapting underlying changes on net
load [24]. In addition, autoencoder and recurrent neural network models are also used to
forecast PV patterns using weather conditions, capacity data, and locational data [25,26].

From the previous studies, as shown in Table 1, it can be observed that the accuracy of
net load forecasting is improved through the process of disaggregating the net load into
gross load and BTM patterns. It is obvious that BTM capacity estimation accuracy and
net load forecasting accuracy are complementary to each other. Furthermore, the net load
forecasting accuracy was improved by considering hidden BTM patterns [27]. This study
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also aimed to improve short-term load forecasting by considering the presence of behind-
the-meter PVs and BESS. This study proposes a method for considering the uncertainties
inherent in the BTM capacity estimation results for short-term load forecasting. Even
incompletely, the provided true values had a positive effect on verifying the research
results. From a practical perspective, this study referred to statistical data points from
authorities, which are not precise but are sufficiently referenced. Front-the-meter (FTM)
patterns by region were applied to address regional PV pattern differences. Referring
to previous studies on regional differences in BTM PV patterns, this study also aimed
to estimate and disaggregate the BTM capacity into eight major regions incorporating
regional weather differences. The impact of BTM BESS is estimated based on metering
system configuration and operation scheduling considering incentive policy structure.

Table 1. Summary of previous studies for BTM estimation and net load forecasting.

Category Result Validation Forecasting
Target Characteristics Techniques and

Publications

(i)
BTM estimation

using
alternative
methods

Virtual Scenarios Net load Regional BTM PVs were modeled by adopting
equivalent PV models.

MIC, GBM,
QRNN [4]

Actual limited
onsite PVs data

BTM PV Used randomly chosen scenarios to overcome
limited PV data. Fuzzy [5]

Net load BTM patterns were used for post-correction of
forecasted net load. ANN [27]

Load forecast
improvement Net load BTM PV estimation results validated by

alternative method
GBM [6],

ANN [2,3,7]

(ii)
BTM

validation with
true data points

Actual utility data

Residential
load

BTM PV and BESS patterns were estimated
simultaneously to improve housing load

prediction.

Heuristic [13],
Sensitivity Model

[17], DNN [9]

BTM PV BTM PV were estimated without considering
net load forecasting accuracy or BTM BESS.

PCA [10], Fuzzy
[11], HMM [12]

CBL BTM PV estimation was used for improving the
demand response analysis

SVR [15],
K-means [8]

(iii)
Various

BTM
Estimation
methods

Actual utility data

BTM PV BTM patterns were disaggregated from net load
using the probabilistic modeling method.

MHMM [14],
Random Forest,
DNN, etc [23].

BTM PV Test dataset was generated using the simulator. DNN [16]

Net load and
BTM PV

A data-driven approach was used to estimate
the behavior of BTM PVs. Game Theory [18]

Economic
evaluation - Estimating the configuration of BTM system

using economic evaluation

Mixed-integer
optimization [28],

ROI, IRR [19]

(iv)
Load

forecasting
methods

Load forecast
improvement Net load Various machine learning techniques were used

for the net load forecasting
QRNN [20–22],

LSTM [24]

Actual PV data PV Using weather conditions and locational data to
forecast the PV outputs

Auto Encoder,
LSTM [25],
RNN [26]

The remainder of this paper is organized as follows: Section 3 presents the problem
description. Section 4 formulates the proposed approach to estimate the BTM resources
and applies the probabilistic load forecast method using previous results. The numerical
studies and results are described in Section 5. Section 6 concludes the paper.
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3. Problem Description

This section introduces the approach for formulating the behind-the-meter estimation
problem and the proposed method for integrated short-term load forecasting. In general,
load forecasting is a practical/alternative approach to modeling human behavior regarding
electricity consumption; for this reason, weather information is commonly used for load
forecasting to consider heating/cooling device loads. Based on this approach, traditional
load forecasting methods can be formulated as in Equation (1):

Yt = f (X, Yt−1) + e1 (1)

Yt = f (X, Yt−1) + g(X, Yt−1) + e2 (2)

where the error term e1 can be minimized if the load forecasting model f performs well; it
can be defined as white noise.

However, model f is fitted to follow the major human behavior and without additional
information, it is difficult to find another behavior g presented in Equation (2). This study
proposes a hierarchical structure to clarify the relationship between power resources, as
shown in Figure 1. From a bottom-up perspective, the pattern of each power resource
group can be explained simply [5,10]. Conversely, the net load and BTM pattern can be
expressed by Equations (3) and (4)., respectively. Furthermore, e1 can be minimized by
extracting the BTM pattern from e1:

Lt = yt + bt + e3 (3)

bt = Bpv,t + Bin,t + Bout,t (4)

where yt and Lt are the net and gross loads, respectively. bt is an integrated BTM pattern,
including solar and battery charging/discharging.

Figure 1. Hierarchical relationships between distributed energy resources including net loads and
hidden components.

In previous studies, BTM patterns were derived from solar radiation and locational
information using physical PV modeling [4,13]. However, the variation in installation status
is quite different in the real world. The integrated outputs of PVs are highly correlated
with solar radiation but also distributed owing to other weather parameters, as shown in
Figure 2a. To consider regional weather differences and the physical properties of PVs, it is
reasonable to incorporate front-the-meter PV data. This study assumed that the equivalent
properties of the BTM are the same as those of the FTM for the same period.
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Figure 2. Annual changes in solar power generation efficiency in South Korea. (a) shows that solar
power generation efficiency per hour. The fitted 2nd order line of (a) is described in (b), which
denotes the power generation efficiency. From 2015 to 2017, the fitted lines were almost unchanged,
but the upper-right tails have bent significantly since 2018.

In addition, Figure 2b shows that the slope between power generation and solar
radiation, or power generation efficiency, decreased. This can be explained through the
operation of behind-the-meter batteries. Behind-the-meter batteries are encouraged to
charge during the day and discharge at night to receive the maximum renewable incentives
in South Korea. It can also be observed in the upper tail of Figure 2b. BTM batteries are
charged and discharged according to the scheduling of the operator, regardless of external
environmental changes. To estimate the output of BTM BESS, this study assumed that
all BTM BESS are operated to maximize the incentive revenue. In addition, this study
assumed that the BTM capacity does not decrease because PVs and batteries last for at least
15 years.

Figure 3 shows the overall process of the proposed approach, which is combined with
three components: probabilistic net load forecasting, BTM capacity estimation, and beam
search. For probabilistic net load forecasting, this study applied a weak forecasting model
to generate the forecasting error, which is considered a system-biased error, such as BTM
solar pattern. The proposed BTM capacity estimation extracts the BTM pattern from the
forecasting error using the regulated gradient descent. For the beam search stage, the final
BTM estimation results are derived by selecting an advantageous option among the various
probabilistic cases.

Finally, the gross load was reconstituted using the estimation results and short-term
load forecasting method is proposed that combines the forecasted gross load and the
forecasted BTM pattern into net load.
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Figure 3. The overall procedure of the proposed BTM capacity estimation method using autoencoder
based anomaly detection technique. As an example, one process is organized in order from step 1 to
7. Autoencoder is used to extract the likelihood distribution of gross load and its regenerated gross
load is used to find additional BTM capacities.

4. Proposed Load Forecasting Method

The proposed behind-the-meter estimation method has four components, as shown in
Figure 3. Each component is based on a data-driven approach. The detailed process details
and data descriptions are provided in this section.

4.1. Preprocess to Decompose PV and BESS

The FTM output data require preprocessing to decompose the solar and BESS outputs
because the solar plus BESS resources were measured in an integrated form. Some solar
plants can distinguish between solar power and BESS output by extracting data from
inverters whereas some simply install more metering systems. For economic reasons,
non-mandatory facilities have been minimized; hence, most solar power plants only use
one meter, as shown in Figure 4.

Figure 4. Solar plus battery installation types. (a) shows the AC-Coupled System, and (b) shows
DC-Coupled System. In both cases, a mandatory metering system is located just before the grid and
measures integrated outputs.

Owing to the phase difference, the integrated output is slightly less than the numerical
sum of the solar and battery AC powers but can be neglected in the utility-scale problem.
The BTM BESS charging/discharging schedule can be estimated by considering the incen-
tive policy of the utility. BTM BESSs are motivated to be charged between 11 a.m. and
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4 p.m. and discharged after 7 p.m. until 9 a.m. the following day. Figure 5 shows the daily
operation of a PV plus BESS plant.

Figure 5. Integrated PV plus BESS system outputs (red line). BESS is set to be charged during the
daytime (downside bars), when the PV output (orange line) exceeds the threshold (green dotted line).
The discharging (upside bars) starts after 19:00 to maximize incentives for reducing the duck curve.
X axis means hour, and Y axis means power output in MW.

The BESS facility capacities, such as the inverter output and battery size, can be
reasonably estimated through empirical facts. Many studies have proposed optimization
investment methods to determine the capacities of inverters and batteries for solar plus
battery systems [28]. However, the BTM pattern is combined with only PV and PV plus
BESS plants. Moreover, the bottom-up method of estimating individual BESS operations in
various places risks leading to the spread of errors [11].

For this reason, this study applied the simplified ratio in Table 2 and estimated the
size of the BTM inverter and battery.

Table 2. Average Ratio of PV Plus BESS Size on Front-the-Meter Data.

Category PV Capacity
(MW)

Inverter Capacity
(MW)

Battery Capacity
(MWh)

Only PV 1.0 - -
PV Plus BESS 1.0 0.8 3.2

Table 2 can be justified because, for operational safety, the battery management system
(BMS) approves charging when the solar output is larger than a certain threshold lb; usually
lb is set to 10% of the solar capacity, indicated by the green dotted line in Figure 5, so the
inverter capacity is less than PV. According to official statistics, the expected PV generation
time is 3.7 h. Considering only the amount of power generated during the incentive period,
this is approximately 320% of the PV capacity.

As shown in Figure 6, it is possible to approximate the size of the combined PV and
battery based on the estimated inverter size, as presented in Table 2.

This study focused on BTM patterns after sunset, i.e., after 8 p.m., and is considered the
maximum inverter output. To approach conservatively, the inverter capacity was derived
on average, excluding the maximal and minimal 5 days from the monthly output at 8 p.m.;
this method is proposed herein and is referred to as Mid (20/30). Individual differences by
site were neglected, and the average BESS round-trip efficiency η was considered as 95%.
The BTM inverter capacity was estimated as follows:

Cinverter = Mid(20/30)(Pd,20H) ∀ d in a month (5)
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The BTM battery capacity was estimated as follows:

Cbattery,d =
3.2
η
× Cinverter (6)

Figure 6. Capacity estimation for inverter (MW) and battery (MWh). (a) shows the observed FTM
pattern and the amplitude used to find inverter, and (b) shows the following estimation approach.

4.2. Regulated Probabilistic Net Load Forecast

The behind-the-meter patterns are hidden in the load forecast error patterns, but
they cannot be simply identified owing to other factors, such as weather conditions,
holidays, and long-term load growth. To minimize the impact of external factors, the load
forecast error was derived using weekdays and reconstituted gross loads. Each month, the
forecasting models were fitted using data from the preceding 12 months to consider the
monthly changes on load pattern [29]. In general, short-term load forecasting models can
be formulated as in Equation (7). The models use recent loads, observed weather, weather
forecasts, and calendar features:

ŷt = model(yt−w:t−1, ot−w:t−1, ft−w:t+h, ct−w:t+h) (7)

where ŷt is the forecasted net load at time t. ot−w:t−1 and ft:t+h are observed weather in the
past window w and weather forecasts in the forecasting horizon h, respectively. ct−w:t+h
denotes calendar features, such as year, month, and day of the week, which are known for
all times.

However, in this study, the model was designed as an ex-post analysis, and there is
a limit to the input data to avoid effects other than the BTM effect. Observed weather is
used to avoid weather forecast errors, and previous loads are not used as input data to
avoid pre-reflected BTM effects and autoregressive properties. The proposed regulated
load forecasting model for detecting the BTM pattern is given in Equation (8):

ŷt−w:t−1 = model(ot−w:t−1, ct−w:t−1) (8)

The net load forecasting errors, which are used for BTM capacity estimation, are
derived from the quantile forecasting method. Quantile regression is widely used to
measure forecast points in consideration of underlying uncertainties and to estimate the
reliability of forecasted results [20,22]. This study used quantile forecasting to generate
quantile forecast values that provide a probabilistic range for each forecasted value.

This study adopted a quantile forecasting method to address the reliability of the BTM
capacity estimation. The pinball loss is used as a loss function, as described in Equation (9):

Pinball(yt, τ) =

{
(yt − z)τ i f y ≥ z
(z− yt)(1− τ) i f z > y

(9)

where τ is generally a quantile value that lies between 0.1 and 0.9. yt is the target value
and z is the forecasted value at quantile τ. Pinball loss is the sum of losses in all quantiles.
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Applying pinball loss can treat weak net load forecasting models as probabilistic
detectors to reveal hidden patterns, regardless of specific forecasting date issues. The
quantile forecasting results are shown in Figure 7. It can be observed that the range of
forecasted results varies over time. The gap is narrow at night, when net loads are less
volatile, and widens during dawn or daytime.

Figure 7. The proposed weak net load forecasting results with quantile values between 10~90%. The
black line is actual net load.

4.3. BTM Estimation Using Probabilistic Forecasting Error

This study proposes a method for extracting reasonable BTM capacities from proba-
bilistic net load errors. Using this method, the BTM solar, inverter, and battery sizes can be
estimated. Previous studies have proposed BTM pattern estimation using insolation data
and an equivalent solar panel model by region [4,13]. However, it should assume an ideal
environment in which all solar panels have the same characteristics, such as generation
efficiency, location, installed angle, and shading. This study used front-the-meter data,
including solar and battery, that could represent average physical specifications by diver-
sity. From a practical perspective, FTM data enables realistic analysis because it reflects the
smoothing effect that must be considered when analyzing aggregated BTM resources.

The proposed BTM estimation method comprises three components, as shown in
Figure 8. BTM PV estimation, BTM BESS estimation, and net load accuracy gain calculation.
These processes are combined as an optimization problem to maximize the expected net
load forecasting accuracy improvement using the gradient descent method.

Figure 9 depicts the estimation method used to find additional BTM PV capacity.
As introduced in Section 4.1, the FTM data are decomposed into PV and BESS patterns.
Regional FTM PV patterns were used to estimate the BTM patterns.

In Figure 9, P is a constant matrix, which is a given FTM pattern. W is a learnable
weight matrix, which indicates additional BTM PV capacities by region. The ReLU function
was applied based on the assumption that the BTM capacity did not decrease. C is a
constant matrix, which is a BTM capacity estimation result from the former iteration and
its details are formulated as in Equation (10). The weight value of W is initially randomly
selected from the standard distribution. Weight values are updated through optimization
iterations and fit to maximize accuracy gain. Matrix C is updated after iteration completes
as in Equation (11).

From the proposed hierarchical relationship:

BPV,t = PPAt + SELFt
= (ReLU(W)⊕ Ct)·max(BPV,t−1)

(10)

Ct = BTMt−1/max(BPV,t−1) (11)
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where PPAt is a matrix of known BTM solar capacities at time t, which are given data
from the utility. SELFt is a matrix of self-use BTM capacities and can be derived using the
estimated BTM results and PPA data. Scaling is necessary to improve the convergence of
the optimization process.

Figure 8. Illustrated BTM estimation method using joint optimization.

Figure 9. Illustrated BTM PV estimation procedure in Figure 8.

The BTM BESS capacity was estimated using the B matrix in Figure 9. B is a learnable
weight matrix that represents regional inverter capacity, at the same time regional battery
capacity can be estimated using Equation (6). The BTM BESS operation was modeled based
on the greedy algorithm using previous size estimation. The daily BTM BESS operation
can be classified by three time periods. The BTM BESS operation was generated as follows:

For t in 11~16 h:

Bin,t =
√

η·max(0, min(Cbattery −
t−1

∑
t=0

Bin,t, BPV,t − lb·CPV , Cinverter))Bout,t = 0 (12)

For t in 18~24 h:

Bout,t =
√

η·max(0, min(Cbattery −
t

∑
t=0

Bout,t , Cinverter − BPV,t))Bin,t = 0 (13)

otherwise:
Bin,t = 0 and Bout,t = 0 (14)
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where E is the energy charged in a day. Bin,t and Bout,t are the charging and discharging
powers, respectively. η is the BESS round-trip efficiency. The BESS operating lower bound
lb is set to 10%.

After estimating the BTM pattern, depicted as Step I in Figure 8, estimating the
expected gain improves the net load forecasting accuracy. The expected accuracy gain is
the convolution area between the net load error and estimated BTM pattern, as shown in
Figure 10. In this step, the proposed accuracy gain is calculated for all quantiles and all
hours in the target period. The proposed accuracy gain can be formulated as follows:

G(t) = ∑
t,τ

g(rt,τ , bt) (15)

g(rt,τ , bt) =


bt if |rt,τ | ≥ |bt| and rt,τbt ≥ 0
−bt i f rt,τbt ≤ 0
2rt,τ − bt otherwise

(16)

where g is the proposed accuracy gain function. rt,τ is an error by quantile and time t. bt is
a BTM pattern at time t.

Figure 10. The simplified concept of accuracy gain. The blue line is the error between the actual
net load and forecasted load. The red dash line is the estimated BTM pattern. The yellow striped
area is an expected change on forecasting result. (a,d) show that adding a BTM pattern to net load
forecasting can improve performance. (b,e) show the situation in which reflecting the BTM pattern
increases the forecasting error, so it is marked as negative. (c,f) show that a BTM pattern exceeds
the error.

The gain matrix consists of the accuracy gains per quantile. The quantile results can
indicate the confidence level of the weak net load forecasting. BTM capacity is estimated
conservatively because the sum of the gain matrix increases with narrower confidence
level. This design also improves the convergence of the optimization process.

By maximizing the proposed gain, the proposed weights, such as W and B, are fitted
to minimize the net load forecasting errors. This study used the gradient descent method
to optimize this problem and provided sufficient iterations for convergence. Through this
process, W and B are determined by quantiles. The proposed method can be applied to
any length; however, in this study, it was applied monthly.

4.4. Navigation Method Using Beam Search

The beam search method is an expanded form of the greedy search algorithm. By
tracking and updating the top-K paths in sequential programming, the beam search method
can provide a more effective path than the greedy algorithm. Recently, beam search has
been widely used in neural machine translation.
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The previous results are only optimal BTM capacity estimates for the target period;
thus, the best results are not guaranteed when used for the next estimation. In this study, a
beam search algorithm was used to choose more profitable results for overall periods. The
proposed navigation method is illustrated in Figure 4. The proposed method keeps the
top-K paths and drops the rest. After estimating the next period using the remaining K
paths, the method keeps the next top-K paths based on the connected gain and moves on.
Finally, this method determines the result path with the highest gain among the remaining
top-K paths.

4.5. BTM Pattern Forecasting

In the prediction stage, a model for forecasting the BTM pattern is required. Be-
cause the operation of the BTM BESS is determined by the BTM PV pattern, the BTM
PV pattern is forecasted first. Then, the pattern of the BTM BESS can be derived using
Equations (12)–(14). and the forecasted BTM solar pattern. The proposed BTM PV forecast-
ing model applies a neural network and uses the weather features [25,30]. The details are
formulated in Equation (17):

Bpv,t:t+h = BTMPV,t·Model(wt:t+h) (17)

where Bpv,t:t+h is the target BTM solar pattern. The model output was scaled up using the
estimated BTM solar capacity. In addition, wt:t+h means a set of observed weather features
including solar irradiation, temperature, rainfall, and cloud amount. ft:t+h is for weather
forecasts and replace wt:t+h during the training. In this study, the solar forecasting models
were fitted for each region and, on the 1st of every month, they were trained for the last
12 months.

4.6. Net Load Forecasting Incorporating with BTM Forecast

From the BTM capacity estimation results, it is possible to restore the gross load
from the actual net load and BTM estimation results. The BTM capacity was estimated
using a probabilistic method but derived deterministically. Therefore, the gross load may
be restored through a linear combination of the net load and BTM pattern. However,
simply combining the two forecasting results may increase the error of the individual
forecasting models. In addition, it can be estimated that solar power generation will affect
the power usage behavior of users who have self-used solar systems. Therefore, the net
load forecasting model uses gross load L and BTM pattern b as input data and can be
formulated by modifying Equation (7) as follows:

ŷt = model(Lt−w:t−1, bt−w:t+h, ot−w:t−1, ft−w:t+h, ct−w:t+h) (18)

Unlike the previous weak net load forecasting model, this model has an input/output
structure using autocorrelation and was implemented by applying a deep neural net-
work technique.

5. Results

In this section, a short-term load forecasting simulation is provided to verify the effi-
cacy of the proposed method. The data set used in this study consisted of observed weather
and forecast data, calendar data, and power market data, as detailed in Tables 3 and 4. The
net load forecasting model performance is evaluated using the mean absolute percentage
error (MAPE) and the standard deviation of MAPE. MAPE is defined as follows:

MAPE(%) = 100× 1
n

n

∑
t=1

|ŷt − yt|
yt

(19)
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Table 3. Classification of Distribution Energy Resources Based on Contract Type and Visibility.

Category Contract Type Meter Resolution Capacity Monitoring

Front-the-Meter Wholesale Market 1 Hourly/Regional Daily

Behind-the-Meter
PPA Monthly/Regional Irregularly

Private Monthly/Regional No
1 PPA: Power Purchase Agreement.

Table 4. Data Resources for BTM Capacity Estimation and Day-Ahead Load Forecasts.

Name Period Feature
Resolution Provided Features

Load 2013.01–2020.07 Hourly Observed Net Load (MW)
Demand Response

Outputs 2015.01–2020.07 Hourly Estimated Demand Response (MW)

FTM Outputs 2015.01–2020.07 Hourly Integrated solar and BESS outputs by
regionFTM Solar Capacity 2015.01–2020.07 Daily

PPA Solar Capacity 2015.01–2020.07 Irregularly
Observed Weather 2013.01–2020.07 Hourly Temperature, Humidity, Cloud

Amount, etc. by regionForecasted Weather 2013.01–2020.07 3 Hourly

5.1. Data Description and Applying Demand Response

Historical net load and front-the-meter solar power data were used for the BTM
capacity estimation. To increase the contribution of this study, the dataset used actual data
from South Korea, as provided by official organizations. Solar data, including capacity,
address, and hourly output, are managed by the Korea Power Exchange (KPX) and Korea
Electric Power Corporation (KEPCO), according to the contract type. KPX is an isolated
system operator and KEPCO is a monopoly utility in South Korea. The details are listed in
Table 3.

Hourly load data were provided by KPX and weather data were collected by API
service from the Korea Meteorological Administration (KMA). Weather forecast data were
also prepared for a realistic numerical simulation. Because of the divided management
described in Table 3, the FTM and BTM solar data followed different standards; however,
the same regional division was applied to both. The details are listed in Table 4.

This study aims to uniformly model human behavior by using the gross load in a
load forecasting model. Demand-side flexible resources such as time-of-use (ToU) and
real-time pricing (RTP) can change the shape of the system load, but can be considered
part of natural human behavior. On the other hand, direct load control (DLC), which is
one of the incentive-based demand-side programs, is operated by the system operator. The
participation amount of DLC, which is demand response output in Table 4, is estimated
by the system operator. The effect of DLC can be incorporated by adjusting the observed
net load. Therefore, the net load used in this study was derived by adding the estimated
demand response output to the observed net load.

This simulation is performed in the following steps, as introduced in Section 4. Based
on the FTM data, the FTM pattern was decomposed into PV and BESS pattern. As shown
in Figure 11, the PPA solar capacity data provided by KEPCO show regional differences,
which can be observed to worsen.

5.2. BTM Capacity Estimation

In this subsection, the generated net load forecast error and FTM data between January
2015 and August 2020 were used. To generate the net load forecasting error, a weak
forecasting model M1(weak) was used, which comprises four fully connected layers with
hidden size = 32. The quantile of the pinball loss was applied with nine values, from 0.1–0.9.
Techniques for improving the performance of neural network, such as batch normalization,
and hyperparameter optimization, were excluded to show the generality of this study. The
Adam optimizer was used for training, with β1 = 0.9, β2 = 0.98, and learning rate = 0.06.
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The maximum epoch was set to 200 and early stopping was not applied. The BTM capacity
was estimated monthly, and its suitability was quantified using the proposed gain. A beam
search was performed using k = 3.

Figure 11. Differences in regional PPA capacity and changes by year.

The optimal monthly proposed accuracy gain derived from the results of the beam
search is shown in Figure 12. In some cases, it can be observed that the proposed gain
decreased, and it is interpreted that reflecting the BTM local optimal result in that month
does not help to improve overall load forecasting errors. In Figure 13, it can be seen that
the distribution of prediction errors was narrowed, and in particular, the errors of positive
numbers decreased.

Figure 12. Monthly evaluated proposed accuracy gain determined through beam search algorithm.
Before means net load forecasting without BTM pattern. After means the maximal improvement at
target month. X axis means month between Jan 2015 to Aug 2020. Y axis means the expected accuracy.

In Figure 13, it can be seen that the error distribution is reduced after considering
BTM. The normality of the error distribution can be measured using the Shapiro-Wilk test.
According to the Shapiro-Wilk test, if the distribution follows a normal distribution with
the null hypothesis, the test statistic decreases, and the p-value is less than the criterion 0.05.
Table 5 shows that the p-values of 13–16H are changed to satisfy normality after considering
BTM. Furthermore, average test statistics and p-value are also reduced after considering
BTM, so it can be seen that the proposed method is effective in extracting the BTM pattern
from the forecasting error. The regional BTM solar capacities were determined from the
above results and are described in Figure 14. Comparing Regions 4 and 7, a noticeable
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result can be observed. Region 7 is the region with the largest PPA penetration rate but the
BTM estimate is lower than that of Region 4.

Figure 13. Detailed difference in the distribution of net load forecasting errors before and after
reflecting BTM from May to July 2020. (a) shows the error distributions between 7 to 10H, (b) shows
between 10 to 13H, (c) shows between 13 to 16H, and (d) shows between 16H to 19H.

Table 5. Shapiro-Wilk Test results on net load forecasting errors after BTM capacity estimation from
May to July 2020.

Case without BTM Case Considering BTM

Time Period Test Statistics p-Value Test Statistics p-Value

7:00–10:00 0.9696 0.0010 0.9767 0.0062
10:00–13:00 0.9977 0.9970 0.9934 0.6418
13:00–16:00 0.9898 0.2725 0.9696 0.0010
16:00–19:00 0.9624 0.0002 0.9615 0.0001

Average 0.9799 0.3174 0.9753 0.1623

Figure 14. Estimated regional BTM solar capacity using the proposed BTM estimation method.
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To demonstrate the contributions of this study to the net load forecasting method, the
BTM utilization method is applied to each model in five cases: without BTM, estimate BTM
pattern using physical PV model as introduced in [4], estimate BTM using a fixed ratio as
is currently used by KPX, adding BTM after forecast, and the proposed method, which
uses BTM as the input variable. Two additional neural network models were simulated to
confirm that the proposed method is generally effective: M2 (linear) comprises four fully
connected layers. M3 (LSTM) comprises two long short-term memory layers as the input
layer and one fully connected layer as the output layer. Each case was simulated using M1
(weak), M2 (linear), and M3 (LSTM). The test results are presented in Table 6.

Table 6. Comparison of Day-Ahead Load Forecast Error for Cases by Applying BTM Methods based
on Three Different Scenarios.

Scenarios Cases
M1 (Weak) M2 (Linear) M3 (LSTM)

MAPE
(%) StDev MAPE

(%) StDev MAPE
(%) StDev

Scenario A
(Base)

Case I 3.78 3.55 3.31 3.22 2.98 1.92
Case II 3.61 3.37 2.95 2.68 2.86 2.54
Case III 3.55 3.30 3.04 2.97 2.56 2.47
Case IV 3.56 3.34 2.96 2.70 2.43 2.25
Case V

(Proposed) - - 2.85 2.61 2.35 2.10

Scenario B
(Without PPA)

Case I 3.78 3.55 3.31 3.22 2.98 1.92
Case II 3.69 3.46 3.27 3.10 2.90 2.61
Case III - - - - - -
Case IV 3.60 3.48 3.15 2.65 2.85 2.44
Case V

(Proposed) - - 3.13 2.67 2.84 2.44

Scenario C
(Without ReLU)

Case I 3.78 3.55 3.31 3.22 2.98 1.92
Case II 3.73 3.46 3.05 2.94 2.94 2.63
Case III 3.55 3.30 3.04 2.97 2.56 2.47
Case IV 3.62 3.49 2.92 2.83 2.79 2.50

Case
V(Proposed) - - 2.88 2.80 2.58 2.26

Five case studies were applied to each model to compare how BTM patterns were
incorporated into net load forecasting. In Case I, the model did not use BTM as an input
variable or post-correction. In Case II, the BTM pattern was predicted using the estimated
BTM capacity and the physical PV model, which is introduced in [4]. The forecasted net
load result is obtained through the post-correction of subtracting the BTM pattern from the
model output. Case III shows the result of existing method currently used by KPX. In Case
III, the hidden BTM PV capacity was estimated by 50% of PPA capacity, and the impact
of BTM BESS was ignored. Case IV is similar to Case II, but the proposed BTM pattern
prediction model was used instead of the physical PV model. For Case V, the model used
the proposed BTM pattern as an input variable and forecasted the net load directly.

In Scenario A, which is base scenario, case studies were applied using PPA data
and each BTM PV estimation results were corrected to be equal to or larger than PPA. In
addition, under the proposed assumption, BTM capacities were estimated that the BTM
capacities are not decreased and thus the ReLU function was used for the proposed process.
However, Scenario B assumed that PPA data was not provided, and Scenario C does not
used ReLU assuming that BTM capacity could be decreased. Comparing scenarios A and
B, it can be observed that using PPA data enables effective BTM estimation, improving the
accuracy of day-ahead load forecast. Through comparison between scenarios A and C, it
can be shown that proposed assumptions are needed to improve the day-ahead net load
forecasting accuracy.
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In all scenarios, it can be observed that each model performed best when the BTM
pattern was used as the input variable. Adding the BTM pattern also improves the fore-
casting performance; thus, this result indicates that the proposed approach is reasonable,
and it is possible to increase the model accuracy by applying BTM patterns. The results
of Case II show that the physical PV model can improve the MAPE of M1, M2 and M3.
However, it can be seen from the results that the proposed method is more effective and
that the FTM pattern data makes this difference possible. Case III showed the best result in
Scenario C, but in Scenario A to which all assumptions were applied, the proposed method
was 0.21%p more accurate, showing a distinct difference. Furthermore, Case III has a
disadvantage in that it cannot be applied to Scenario B because it depends on PPA data.
Through comparison between Case IV and V, the accuracy was more improved when BTM
pattern is used as an input variable. From the results in Table 6, it can be concluded that the
proposed short-term load forecasting method is improved by applying the BTM patterns.

6. Conclusions

This paper proposes a short-term load forecasting method that incorporates the estima-
tion of behind-the-meter resources, including solar plants, batteries and demand resources.
A preprocessing method to reflect the demand response and preprocessing method to
decompose front-the-meter data into solar and battery patterns has been proposed.

To reveal the BTM patterns hidden in the net load, a regulated probabilistic net load
forecasting model was presented using pinball loss. This paper also proposes a BTM
battery size estimation method based on an incentive policy and a data-driven approach.
The proposed accuracy gain quantified the effect of the BTM pattern on improving the
load forecasting accuracy, allowing the BTM capacity to be estimated through optimization.
Each optimization result was connected using a beam-search algorithm to increase the
overall efficiency.

The simulation shows that the proposed method is applicable for estimating BTM
resources and improves short-term net load model accuracy. The test results are presented
using actual utility data in South Korea from January 2015 to August 2020. The regional
BTM capacity estimation results obtained by the proposed method had the effect of reduc-
ing the uncertainty of the historical net load pattern. As a result of the Shapiro test analysis,
the normality of the net load forecast error between 13:00 and 16:00 was significantly im-
proved, reducing the p-value from 0.2725 to 0.0010, and the p-value between 7:00 and 19:00
from 0.3174 to 0.1623. It can be seen from the test results that the proposed BTM capacity
estimation effectively detected the BTM pattern hidden in the net load. Using BTM capacity
estimation, it can be observed through both the existing and proposed methods that net
load forecast accuracy is improved. Comparing the existing methods with the proposed
method in various scenarios, the best result of the existing methods was 2.56%, while the
proposed method showed clearly improved to 2.35%. Furthermore, the BTM pattern is
more suitable when used as an input variable than when used for post-correction. The
proposed method was used based on the degree of improvement in net load forecasting
accuracy by referring to existing studies to validate the BTM estimation results without
actual data points for the BTM capacity. However, the proposed method is different from
other studies in that it complementarily improves net load prediction accuracy while esti-
mating the BTM PV and BESSs and corrects the estimation process using auxiliary data. In
addition, the results are improved compared to the existing BTM estimation methods.

This study has a limitation that the scheduling of BTM BESS is fitted for the dominant
objective function. Considering the various purposes of BTM BESS operation, future
research is needed to directly estimate the BTM capacity. The future study will help to
increase the visibility of the system considering distributed energy resource operation and
improve the load forecasting performance.
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Nomenclature

Acronyms
ANN Artificial Neural Network
BESS Battery Energy Storage System
BMS Battery Management System
BTM Behind-the-Meter
CAISO California Independent System Operator
CPP Critical Peak Pricing
DER Distributed Energy Resources
DLC Direct Load Control
DNN Deep Neural Network
FTM Front-the-Meter
GBM Gradient Boosting Machine
HMM Hidden Markov Model
KEPCO Korea Electric Power Corporation
KPX Korea Power Exchange
KMA Korea Meteorological Administration
MHMM Mixed Hidden Markov Model
MIC Maximum Information Coefficient
PJM Pennsylvania-New Jersey-Maryland Interconnection
PPA Power Purchase Agreement
PV Photovoltaics
QRNN Quantile Regression Neural Network
RTP Real-time Pricing
ToU Time of Use
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