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Abstract: Herein, we report a comparison of the electrochemical performance of two kinds of
NiCo2S4-based electrodes for solid-state hybrid supercapacitors (HSCs). For the binder-free electrode,
NiCo2S4 was grown on Ni foam by the chemical bath deposition (CBD) method. For the binder-using
electrode, NiCo2S4 powder was synthesized by the hydrothermal method. FESEM images depicted
the hierarchical nanostructure of NiCo2S4 synthesized by the hydrothermal method and uniform
distribution of nanostructured NiCo2S4 grown on Ni foam by the CBD method. Half-cell studies of
both NiCo2S4 electrodes showed them exhibiting battery-type charge storage behavior. To assemble
HSCs, NiCo2S4 and activated carbon were used as a positive and negative electrode, respectively.
Electrochemical studies of the HSCs showed that the accessible potential window was wide, up to
2.6 V, through cyclic voltammetry (CV) analysis. Chronopotentiometry (CP) studies revealed that
the energy and power densities of binder-using HSC were 51.24 Wh/kg and 13 kW/kg at 1 Ag−1,
respectively, which were relatively higher than those of the binder-free HSC. The binder-free HSC
showed 52% cyclic stability, relatively higher than that of the binder-using HSC. Both HSCs, with
unique benefits and burdens on energy storage performance, are discussed in this work.

Keywords: NiCo2S4; binder-free electrode; chemical bath deposition; gel electrolyte; solid-state
hybrid supercapacitor

1. Introduction

Supercapacitors store electrical energy in various unusual ways compared to conven-
tional energy storage devices such as batteries and capacitors [1,2]. The storage behaviors
of supercapacitors are classified as electrochemical double layer capacitance (EDLC) and
pseudocapacitance. In these storage behaviors, electrical charge is stored in the elec-
trode/electrolyte interface (EDLC—nonfaradaic reaction) and in surface or near-surface
redox reactions at the electrode/electrolyte interface (pseudocapacitance—faradaic reac-
tion). In recent years, some faradaic-dominated battery-type electrode materials have
also been used as electrode materials in supercapacitors because of diffusion-controlled
kinetics. Diverse ways to progress the storage capacity of symmetric and asymmetric su-
percapacitors have been discussed. Among these methods, hybrid supercapacitors (HSCs)
represent a promising approach to achieve high energy density without lowering power
density and maintain excellent cyclic stability operated in a wide potential window [3–7].
In HSCs, battery-type materials such as bimetallic oxides and lithiated metal oxide have
been used as positive electrodes. On the other hand, EDLC-based materials such as acti-
vated carbon, CNT, and graphene and its derivatives have been used as negative electrode
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materials [8–10]. The reason for using different types of electrode in the positive and
negative side of HSCs is to widen the device’s potential window, as widening the potential
window increases the power and energy density [11]. Furthermore, battery-type materials
enhance the storage capacity of the supercapacitor due to their faradaic-dominant charge
storage behavior. However, numerous factors influence supercapacitor performance, such
as contact resistance between the electrode and current collector, the uniformity of the
electrode material coating on the current collector, the electrolyte decomposition point, and
the oxidation point of the current collectors. To overcome these issues, specific materials
and strategies need to be implemented.

The selection of electrode materials plays a crucial role in the performance of the HSCs.
Spinel-structured materials such as ZnCo2O4, CoFe2O4, LiMn2O4, NiCo2O4, and CuCo2S4
are superior battery-type electrode materials for supercapacitor application [12–17]. Among
those materials, NiCo2S4 is a profound thiospinel electrode material with high electrical
conductivity, low optical band gap, and favorable electron transport structure compared
to its monometal sulfide and oxide spinel NiCo2O4 counterparts [18–23]. In many re-
ports, NiCo2S4 was synthesized by hydrothermal, solvothermal, and coprecipitation meth-
ods [24–28]. From these methods, the NiCo2S4 powders were coated on the current collector
using a low-conductivity binder. This binder might influence the electrical conductivity
of the electrode material and hinder the electron transport between the current collector
and electrode material. To avoid that, NiCo2S4 was grown on Ni foam by the binder-free
CBD method followed by calcination under an inert atmosphere in the present work. CBD
is a novel method to directly grow electrode material on the current collector. The CBD
method had some unique benefits compared to the conventional coating method, such as
lowering the charge transfer resistance between the current collector and electrode material,
uniform growth of electrode material, ease of controlling the growth of electrode material,
and favoring mass production of electrode material with its homogeneous growth [29].

In addition to the selection of electrode material and synthesis method, the electrolyte
and current collector also play critical roles in the performance of HSCs. There are various
types of electrolytes used in HSC applications. Aqueous, nonaqueous, solid- state, inor-
ganic, dry solid polymer, and redox-active gel polymer electrolyte have all been employed
in HSC development. From the above electrolyte types, carboxymethyl cellulose and KOH
(CMC/KOH)-based gel electrolyte show high accessible potential windows, amended
attachment with electrode material, nontoxicity, high dielectric constants, and high ther-
mal and chemical stability [30–35]. Furthermore, various kinds of current collectors have
used in the development of HSCs, including Ni foam, Al foil, carbon cloth, Ni foil, and
stainless-steel mesh. The current collector should have a high oxidation point and high
electrochemical stability [36–38]. In this present work, carbon-coated Ni foam was used as
a current collector and CMC/KOH gel as an electrolyte to widen the potential window of
the HSCs.

To investigate the intrinsic properties of NiCo2S4 for utilization as a supercapacitor
electrode, two kinds of NiCo2S4 electrodes were prepared. The first was a nanostructured
NiCo2S4 film was grown directly on the current collector by the CBD method, which
served as the binder-free electrode. The other was a NiCo2S4 powder synthesized by the
hydrothermal (HT) method, which was coated on the current collector with PVDF binder
without any conductive additives and which served as the binder-using electrode. In
many research works, aqueous or polymer gel-based electrolytes have been used; however,
works employing cellulose-based gel electrolytes were very few. Comparative analyses
of electrode coating methods using the same material were also limited in the previous
literature. This type of work helps to understand the influence of the engineering and
configuration of a device over the chemistry and structure of the electrode material.
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2. Materials and Methods
2.1. Material Details

The reagents nickel acetate, cobalt acetate, thioacetamide, and PVDF were purchased
as analytical grade without any additional purification from PanReac Applichem (Spain).
Ni foam was purchased from ChangSha Lyrun New Material Co. Ltd., Changsha, China,
110 pores per square inch.

2.2. Hydrothermal Synthesis of NiCo2S4 Powder and Binder-Using Electrode Preparation

The NiCo2S4 powder was prepared as follows. First, 0.1 M nickel acetate, 0.2 M cobalt
acetate, and 0.4 M thioacetamide were dissolved in 160 mL of deionized (DI) water and
stirred for 15 min. Then, the solution was transferred into a 200 mL Teflon-lined stainless-
steel autoclave and kept in a box furnace for 6 h at 200 ◦C. Finally, the collected product
was washed with DI water and ethanol mixture several times and dried in a vacuum oven
for 12 h at 100 ◦C. For the preparation of the binder-using electrode, NiCo2S4 powders and
polyvinylidene fluoride (PVDF) binder were mixed with 400 µL N-Methyl-2-Pyrrolidone
(NMP) in mortar and pestle to make an ink-like slurry. To make a comparison of the
intrinsic properties of NCS, conductive additives were not used. Then, the electrode was
coated on 2 cm × 3 cm Ni foam and dried in a vacuum oven for 6 h at 70 ◦C. In this article,
NCS(PW)/Ni refers to hydrothermally synthesized NiCo2S4 powder coated on Ni foam
using a PVDF binder. This same notation refers to the hybrid supercapacitor assembled
with the aforementioned NiCo2S4 electrode. Figure 1 schematically represents the synthesis
process of NiCo2S4 by the hydrothermal method.
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Figure 1. The synthesis process of NiCo2S4 by the hydrothermal method.

2.3. Chemical Bath Deposition (CBD) of NiCo2S4 on Ni Foam as Binder-Free Electrode

For the preparation of binder-free electrode, 0.1 M nickel acetate, 0.2 M cobalt acetate,
and 0.4 M thiourea were dissolved into 50 mL of DI water and stirred for 5 min; the
solution turned pink throughout this process. Then, the solution was kept in a 90 ◦C
preheated water bath and stirred at 400 rpm. In the above solution condition, 2 cm × 3 cm
Ni foam was inserted and incubated for 45 min. After that, the Ni foam was removed,
dried in a vacuum oven for 6 h, and then calcinated in a tubular furnace at 350 °C for 3 h
in 100 cm/Hg N2 flow. Finally, the Ni foam’s weight was measured, and the difference in
weight before and after the CBD process was considered as the NiCo2S4 electrode’s mass.
This process is schematically represented in Figure 2. In this article, NCS(CBD)/Ni referred
to the electrode created through in situ growth of NiCo2S4 by the CBD method without
using any binders. In half-cell and hybrid supercapacitor electrochemical analysis graphs,
the same notation is used for the supercapacitors assembled with the same electrode.
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2.4. Electrochemical Measurements

Half-cell electrochemical measurements of NiCo2S4/Ni electrodes (NCS(PW)/Ni
and NCS(CBD)/Ni) and activated carbon/Ni electrodes were performed in a 6 M KOH
electrolyte. For the half-cell measurement, active electrode material/Ni foam was used
as the working electrode, saturated calomel electrode (SCE) as the reference electrode,
and platinum wire as the counter electrode. Cyclic voltammetry (CV) analyses were
recorded from 100 to 5 mVs−1. Chronopotentiometry (CP) analyses were recorded from
10 to 1. Electrochemical impedance spectroscopy (EIS) analyses were recorded at the AC
frequencies in the 10 kHz to 0.1 Hz range.

2.5. Assembly of Hybrid Supercapacitor

Hybrid supercapacitors (HSCs) were assembled in the ambient condition using
NCS(PW)/Ni or NCS(CBD)/Ni) as a positive electrode, activated carbon as a negative
electrode, polypropylene sheet as a separator, (CMC)/KOH gel as a gel electrolyte, and
antistatic aluminum film as an outer case. In the typical process, 2 g of CMC and 2 g of
KOH were dissolved in 50 mL of DI water and then stirred at 45 ◦C for 20 h to make a
gel. During stirring, the solvent was evaporated, and ~25 mL viscous CMC/KOH gel
was obtained. After the assembling of the positive/negative electrodes and separator,
CMC/KOH gel electrolyte was filled in between the positive and negative electrodes, and
then the aluminum outer case was vacuum sealed.

2.6. Characterization Techniques

X-ray diffraction (PANalyticalX’Pert PRO, Almelo, The Netherlands) was performed
with Cu radiation (λ = 0.15418 nm) in the 2θ range of 20–80◦. The surface morphology of
the prepared samples was captured by field emission scanning electron microscopy (JEOL
JSM-6700F, Tokyo, Japan). The electrochemical measurements were analyzed using a CHI
6273E electrochemical workstation (CH Instruments, Inc. Austin, TX, USA).

2.7. Electrochemical Characterization

The specific capacity Csc (Cg−1) of the half cell and those of the HSCs from CV and
CP measurement were calculated by following Equations (1) and (2), respectively:

Csc =
1

mVs

V2∫
V1

I(V) (1)

where m is the mass loading (g) on the carbon-coated Ni foam electrode, Vs is the applied
scan rate (mVs−1), and I is the current (A) obtained from the applied scan rate;

Csc =
I dt
m

(2)
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where I is the current density (Ag−1) and dt is the discharge time (s). The energy and power
density of the HSC were calculated by Equations (3) and (4), respectively:

E = 0.5CscV2
(

Wh.kg−1
)

(3)

P = E/t
(

W.kg−1
)

(4)

The mass balancing of the prepared positive and negative electrodes to assemble the HSC
was calculated by Equation (5).

m+

m−
=

C−∆V−
C+∆V+

(5)

where m+ and m- were the active material mass loading (mg) on the positive and negative
electrodes, respectively; C+ and C− were the specific capacities (F/g) of the positive and
negative electrodes, respectively; and ∆V+ and ∆V− were the potential window (V) of the
positive and negative electrodes, respectively. The proper mass balancing was effective
to achieve high-performance HSCs [39]. The loaded masses of NCS(PW) and NCS (CBD)
were ~2.4 mg/cm−1.

3. Results and Discussion
3.1. Structural and Morphological Analysis of NiCo2S4

Figure 3a,b shows the XRD analysis results for NiCo2S4 prepared by the hydrothermal
and CBD method, respectively. Both diffraction patterns coincided with Joint Committee on
Powder Diffraction Standards (JCPDS) card no. 20–0782 [40–43]. Intense and broad peaks
confirmed the formation of nanostructured NiCo2S4 created by the hydrothermal method
(Figure 3a). On the other hand, the CBD-synthesized NiCo2S4 was directly deposited on
the carbon-coated Ni foam, so the intensity of the Ni foam was dominant in the diffraction
pattern. However, in the closed view, the peaks were matched with standard JCPDS data.
From the XRD analysis, the thiospinel structure (AB2S4, where A and B are the M2+ and
M3+ oxidation states, respectively) of NiCo2S4 was confirmed. In this thiospinel structure,
Ni2+ occupied the tetrahedral site and Co3+ occupied the octahedral site with a built-in,
tightly packed with the array of S−2 ions [44].

Figure 3c,d shows the Raman spectroscopic analysis results. The F2g and A1g modes of
vibration were shown at 520 cm−1 and 661 cm−1, respectively. This confirmed the formation
of NiCo2S4 synthesized through the hydrothermal and CBD methods. In particular, CBD-
synthesized NiCo2S4 was directly deposited on the carbon-coated Ni foam, so the G band
vibration appeared at 1580 cm−1 [26–28].

Figure 3e,f depicts field emission scanning electron microscope (FESEM) images of
NiCo2S4 synthesized from hydrothermal and CBD methods, respectively. The hydrothermal-
synthesized NiCo2S4 showed a hierarchical nanostructure morphology. CBD-synthesized
NiCo2S4 showed a relatively small nanostructure morphology compared to that of the
hydrothermal method. Moreover, NiCo2S4 (CBD) showed better attachment with the Ni
foam than its counterpart due to the direct in situ growth mechanism.
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3.2. Electrochemical Performance of NiCo2S4 Materials

The electrochemical behavior of the synthesized NiCo2S4 was analyzed by a three-
electrode setup. CV, CP, and EIS analysis results are shown in Figure 4. Figure 4a,d shows
the CV curves of NiCo2S4 electrodes synthesized by the hydrothermal (NCS(PW)/Ni)
and CBD methods (NCS(CBD)/Ni), respectively, with various sweep rates from 100 to
5 mVs−1. The shapes of the CV curves were similar in both NiCo2S4 electrodes, and the
NCS(PW)/Ni electrode showed higher current density than NCS(CBD)/Ni electrode. In
terms of potential window, the NCS(CBD)/Ni electrode showed a 0.3 V wider potential
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window (−0.1 to 0.6 V) than the NCS(PW)/Ni electrode (−0.1 to 0.3 V). In Figure 4a,d,
the oxidation and reduction peaks present in the CV curves show the battery-type storage
behavior of NiCo2S4 electrodes [44]. The higher current density and shorter potential
window showed that the NCS(PW)/Ni electrode stored a greater amount of charge than
the NCS(CBD)/Ni electrode, which resembles in the specific capacity of the electrode from
Figure 4f. The specific capacity of the NCS(PW)/Ni electrode was relatively higher than
that of NCS(CBD)/Ni electrode.
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Figure 4. Electrochemical properties of NiCo2S4 materials: (a) the CV curves of NiCo2S4 electrodes synthesized by the
hydrothermal method (NCS(PW)/Ni electrodes); (b) charging and discharging analysis by chronopotentiometry (CP)
measurements for NCS(PW)/Ni electrodes; (c) the EIS spectra of both NCS(PW)/Ni and NCS(CBD)/Ni electrodes; (d) the
CV curves of NCS(CBD)/Ni electrodes, (e) CP measurements of NCS(CBD)/Ni electrodes, (f) a comparison of the specific
capacities of both NCS(PW)/Ni and NCS(CBD)/Ni electrodes.
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Figure 4b,e shows the charging and discharging analysis by chronopotentiometry (CP)
measurements of NCS(PW)/Ni and NCS(CBD)/Ni electrodes, respectively. The CP curves
were recorded from 10 to 1 Ag−1 current rates. Both NCS(PW)/Ni and NCS(CBD)/Ni elec-
trodes showed similar curve shapes. Moreover, the electrodes were able to charge at high to
low current rates (10 to 1 Ag−1); this indicated the superior capacitance behavior of the ma-
terial. The iR drop of the NCS(PW)/Ni electrode was higher than that of the NCS(CBD)/Ni
electrode because of the higher charge transfer resistance to release the stored charge from
the NCS(PW)/Ni electrode, which was due to the lower-conductivity binder (Figure 4b,e).
Furthermore, the electrode/electrolyte interface and resistance play major roles in the
performance of the electrode. An electrode with a high electrode/electrolyte interface and
lower interface resistance stores more energy than a highly resistive electrode [37,38,45].
Apart from the iR drop analysis from CP curves, the resistance and charge storage behavior
of the electrode material can be analyzed by EIS measurements. Figure 4c shows the
EIS spectra of both NCS(PW)/Ni and NCS(CBD)/Ni electrodes. The initial starting point
of the curve was considered as the bulk electrolyte resistance or electrochemical series
resistance (ESR). These resistances were responsible for contact resistance between the
electrode material and the current collector [46–50]. NCS(CBD)/Ni electrode showed a
0.6 Ω ESR which is relatively lesser than the NCS(PW)/Ni electrode’s 1.8 Ω ESR value,
which confirms the in situ binder-free growth CBD process reduced the contact resistance
between the current collector and electrode material [51–53].

Figure 4f shows a comparison of the specific capacities (Cg−1) of both NCS(PW)/Ni
and NCS(CBD)/Ni electrodes. The results showed 1454.3 Cg−1and 120.6 Cg−1 specific
capacities for NCS(PW)/Ni and NCS(CBD)/Ni electrodes, respectively, at a 1 Ag−1 cur-
rent density. The specific capacity of NCS(PW)/Ni was perceptibly higher than that of
NCS(CBD)/Ni at all sweep rates. With the specific capacity values of the positive and
negative electrodes (activated carbon/Ni foam), the loading mass (g) of the active materials
on the Ni foam was balanced using Equation (5).

3.3. Electrochemical Measurements of NiCo2S4/Activated Carbon Hybrid Supercapacitors

The negative electrode (activated carbon) showed a potential window in the 0 to −1 V
range. In the aqueous electrolyte, the total potential window of the cells was 1.5 V and
1.6 V for NCS(PW)/Ni and NCS(CBD)/Ni electrodes, as shown in Figure 5a,c. Figure 5b,d
shows the CV of NCS(PW)/Ni and NCS(CBD)/Ni HSCs, respectively, from 2 to 3 V of the
potential window in the CMC/KOH gel electrolyte. The curves were similar and extended
the potential window up to 2.8 V for the NCS(PW)/Ni HSC (recorded from −1.4 to 1.4 V),
and 3 V for the NCS(CBD)/Ni HSC (−1.5 to 1.5 V). In the CV curves of the HSCs, positive
potential oxidation and reduction peaks due to Ni and Co ions appeared. The increase in
the cell voltage was due to the usage of cellulose-based gel electrolytes. In the gel-based
electrolyte, the solvent was evaporated during the gel preparation process, so electrolyte
decomposition due to water was prevented. In the CMC/KOH gel electrolyte, solvated ions
were surrounded by a complex CMC matrix; that matrix enhanced the electrode/electrolyte
interactions through strong attachment of the electrolyte to the electrode material [33–35].
Moreover, the current collector was coated with a thin layer of carbon, so the oxidation
of the Ni current collector was inhibited. The carbon coating also gave electrochemical
stability during a wider potential window [36].
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Figure 6a,b shows the results of CP analysis of NCS(CBD)/Ni and NCS(PW)/Ni
HSCs, respectively, with scan rates from 1 to 10 Ag−1. The charging and discharging curves
reached up to 2.6 V for both NCS (PW)/Ni and NCS(CBD)/Ni HSCs at all scan rates. This
CP curves exploits that assembled HSCs were profound design to develop high voltage
HSC. The NCS(PW)/Ni HSC showed a longer discharge time than the NCS(CBD)/Ni HSC
as well as a higher potential window. As shown in Figure 6a,b, the NCS(PW)/Ni HSC
had a high iR drop at initial discharge time compared to that of NCS(CBD)/Ni HSC. The
iR drop was rapid discharge at a high potential rate; this kind of sudden discharge was
due to the high ESR value of the HSC components. From EIS analysis, the NCS(CBD)/Ni
electrode had a lower ESR value. The high impedance in the NCS(PW)/Ni HSC caused a
huge iR drop in the CP curves. Even with this iR drop, the discharge time was prolonged
and the potential window was wider, leading to higher power and energy density for
the HSC [39]. Figure 6c shows the comparative specific capacities of NCS(PW)/Ni and
NCS(CBD)/Ni HSCs. The NCS(PW)/Ni HSC delivered a higher specific capacity than the
NCS(CBD)/Ni HSC. Figure 6d depicts the EIS curve of the assembled HSCs. The ESR value
of the binder-free electrode (2.5 Ω) was much lower than that of the binder-using electrode
(4.8 Ω). The assembled HSCs’ ESR values were higher than those of the half-cell electrodes
because the HSCs had electrolyte and negative electrode resistance, which were added
to the total ESR of the HSCs [54–56]. Figure 6e shows a Ragone plot of energy vs. power
density for NCS(PW)/Ni and NCS(CBD)/Ni HSCs compared to the literature mentioned
in Table 1. The power and energy densities of the NCS(CBD)/Ni HSC were 13 kW/kg and
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29.11 Wh/kg, respectively, which were relatively lower than those of the NCS(PW)/Ni
HSC with power density of 13 kW/kg and energy density of 51.24 Wh/kg at 1 Ag−1.
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Table 1. Comparisons of the present work with previously reported NiCo2S4-based supercapacitors.

Material and Substrate Synthesis Method Morphology
Potential
Window
Full Cell

Specific
Capacitance
or Capacity

Energy
Density

Power
Density

Cyclic
Stability Ref.

NiCo2S4-Ni foam Hydrothermal Mesoporous
nanosheet 1.6 V 744 Fg−1 @ 1

Ag−1 25.5 Wh/kg 8 kW/kg
93.4%
1500

cycles
[20]

NiCo2S4/polyaniline-
Carbon
Cloth

Hydrothermal/
chemical oxidative

polymerization

Petal-like
nanosheet 1.6 V 1879 Fg−1 @ 1

Ag−1 54.6 Wh/kg 27.1 W/kg 72% [41]

NiCo2S4-Ni foam Hydrothermal Hydrangea
flower — 1475 Fg−1 @ 3

Ag−1 78.1% [42]

NiCo2S4/graphene
hydrogel−Ni foam Hydrothermal Nanosphere 1.6 V 23 mAg−1 @1

Ag−1 23.38 Wh/kg 1.16 kW/kg
91.4%
5000

cycles
[43]

NiCo2S4/rGO−Ni
foam Hydrothermal Hierarchic

porous 1.5 V 1107 Fg−1 @ 1
Ag−1 36 Wh/kg 1.6 kW/kg 85% 8000

cycles [44]

Hollow mesoporous
NiCo2S4−Ni foam Hydrothermal Ellipsoids 1.5 V 607 Fg−1 @ 3

Ag−1 28.9 Wh/kg 187.5 W/kg
71.9%
2500

cycles
[53]

NiCo2S4 Hydrothermal Nanosheets 1.7 844 Cg−1 @ 1
Ag−1 25.8 Wh/kg 8kW/kg 72.5% [57]

NiCo2S4@Co(OH)2−Ni
foam

In situ hydrothermal
growth

Core–shell
nanotube

array
1.6 V 9.6 F/cm2 @ 2

mA/cm2 35.89 Wh/kg 0.4 kW/kg 70.1% [58]

NiCo2S4@CoMoO4
(core−shell)−carbon

cloth
Hydrothermal

Core–shell
nanowire

arrays
1.6 V 2118.8 Fg−1 @ 1

Ag−1 66.6 Wh/Kg 0.8 kW/Kg
85.6%
5000

cycles
[59]

NCS(PW)/Ni/AC Hydrothermal Nanohierarchical
structure 2.6 V 311.7 Cg−1 @ 1

Ag−1 51.24 Wh/Kg 13 kW/kg 14% 1500
cycles

This
work

NCS(CBD)/Ni/AC Chemical bath
deposition

Spherical
morphology 2.6 V 198.6 Cg−1 @ 1

Ag−1 29.1 Wh/Kg 13 kW/kg 52% 1500
cycles

This
work

Cyclic stability analysis gives insight about the charge storage capability of the super-
capacitor for prolonged cycles. Figure 6f shows the cyclic stability results of NCS(CBD)/Ni
and NCS(PW)/Ni HSCs for 1500 cycles. The cyclic stability of NCS(CBD)/Ni and NCS(PW)/
Ni HSCs was 52% and 14%, respectively. The effect of the binder and high impedance in
NCS(PW)/Ni HSC components reduced the stability of the HSC even with high energy
and power density. On the other hand, the binder-free NCS(CBD)/Ni HSC, with less
impedance in the HSC component and stable coating on the Ni foam, had relatively higher
stability compared to the NCS(PW)/Ni HSC. Moreover, the binder-free HSC showed >20%
cyclic retention in the initial 200 cycles due to the formation of a new ion=diffusion path
in the electrode structure, which is called the “activation process”. After that, the stability
was retained up to 52%. After the same initial 200 cycles, the NCS(PW)/Ni HSC showed
better stability due to the hierarchical structure of NiCo2S4, but the absence of conduc-
tive additives and the resistive binder reduced the stability after 200 cycles compared
to the NCS(CBD)/Ni HSC. Moreover, from the CP curves, the iR drop was less in the
NCS(CBD)/Ni HSC, which improved its stability because of its structural stability and
lower-impedance HSC components. However, the cyclic stability was relatively lower
compared to previously reported HSCs with similar types of materials that were men-
tioned in Table 1. In Table 1, the reported HSCs’ working potential window was restricted
to a maximum of 1.7 V; above 2 V, the reports are scarce because of the degradation of
electrode and decomposition of electrolyte. However, because of this, all solid-state HSCs
with polymer/cellulose gel-based electrolyte structure gave up access to a 2.6 V potential
window as well as high energy and power density with reasonable cyclic stability. The
weak stability of the material was due to the battery-type energy storage behavior of the
material. The performance of battery-behavior materials could be limited by the diffusion
of reactant molecules or ions, phase transformation, and chemical binding changes. A pos-
sible solution to improve the stability of the binder-free HSC is to composite the electrode
material with high-surface graphitic carbons as nanocomposites [57–62].

4. Conclusions

NiCo2S4 electrodes were synthesized by the chemical bath deposition and hydrother-
mal methods. Structural and morphological analysis such as XRD and FESEM showed the
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crystal structure and nanohierarchical morphology of the synthesized NiCo2S4 electrodes.
Raman spectra confirmed the formation of spinel−structure NiCo2S4 through the A1g and
E2g modes of vibration present at 520 cm−1 and 661 cm−1, respectively. As seen from
electrochemical analysis, both binder−free and binder−using HSC had added benefits
and drawbacks. Cyclic voltammetry analysis showed that both HSCs were stable up to
2.6 V without any electrolyte decomposition. Chronopotentiometry analysis revealed that
the binder−using HSC had a huge iR drop compared to the binder−free HSC. The resis-
tance at the electrode/electrolyte interface was relatively higher for the binder−using HSC
compared to the binder−free HSC. These resistances directly affected the stability of the
supercapacitor. In terms of energy storage performance, the specific capacity (Cg−1) of the
binder−using HSC (311.7 Cg−1) was higher than that of the binder−free HSC (198.6 Cg−1)
at 1 Ag−1 current density. Moreover, the power density was equal for both HSCs. However,
the binder−free HSC showed higher performance in cyclic stability (52%) and lower energy
density (29.11 Wh/kg) compared to the binder−using HSC (51.24 Wh/kg). As a compar-
ative analysis, the binder−free HSC has added advantages over the binder−using HSC
because of the easy uniform coating of electrode materials. The CMC/KOH electrolyte
showed profound energy storage performance in both HSCs. Finally, the battery−type
electrode material, gel electrolyte, and optimized coating methods conjointly enhanced the
storage capacity and performance of the supercapacitor.
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