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Abstract: We study prosumer decision-making in the smart grid in which a prosumer must decide
whether to make a sale of solar energy units generated at her home every day or hold (store) the
energy units in anticipation of a future sale at a better price. Specifically, we enhance a Prospect
Theory (PT)-based behavioral model by taking into account bounded temporal horizons (a time
window specified in terms of the number of days) that prosumers implicitly impose on their decision-
making in arriving at “hold” or “sell” decisions of energy units. The new behavioral model for
prosumers assumes that in addition to the framing and probability weighting effects imposed by
classical PT, humans make decisions that will affect their lives within a bounded temporal horizon
regardless of how far into the future their units may be sold. Modeling the utility of the prosumer
with parameters such as the offered price on a day, the available energy units on a day, and the
probabilities of the forecast prices, we fit the PT-based proposed behavioral model with bounded
temporal horizons to prosumer data collected over 10 weeks from 57 homeowners who generated
surplus units of solar power and had the opportunity to sell those units to the local utility at the price
set that day by the utility or hold the units for sale in the future. For most participants, a model with a
bounded temporal horizon in the range of 1–6 days provided a much better fit to their responses than
was found for the traditional EUT-based model, thus validating the need to model PT effects (framing
and probability weighting) and bounded temporal horizons imposed in prosumer decision-making.

Keywords: prosumer behavior; prospect theory; smart grid; demand-side management; energy
management

1. Introduction

The evolution of the smart grid has made end-user participation an essential char-
acteristic of future energy-management processes. To address this need, several research
efforts over the past decade have aimed at modeling prosumer (an end user who is both a
producer and a consumer of energy) behavior in smart-grid settings and have shed light
on the importance of considering prosumer behavior in smart-grid planning efforts [1–3].
Much of this existing literature on energy management in the smart grid used the economic
framework of expected utility theory (EUT) as the basis for modeling prosumer decision-
making [4–9]. EUT assumes that individuals make rational choices under conditions of
uncertainty based upon objective perceptions of gains and losses. However, decades of
empirical and theoretical work in economics and other domains have shown that human
behavior often deviates significantly from the rational predictions of EUT when individuals
make decisions under conditions of uncertainty and risk. As an alternative approach,
prospect theory (PT) [10,11] has been shown to more accurately describe decision-making
in finance/investment, gambling, insurance, labor supply and other scenarios in which
people must make choices among two or more uncertain outcomes. PT describes decision
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makers’ subjective perceptions of gains and losses, and their tendency to weight uncertain
outcomes [3,10,11].

The main contribution of this paper is an enhancement to the PT-based behavioral
model by taking into account bounded temporal horizons (in terms of the number of
days) that prosumers implicitly impose on their decision-making in arriving at “hold” or
“sell” decisions of energy units. The new behavioral model assumes that in addition to
the framing and probability weighting effects imposed by classical PT, prosumers make
decisions that will affect their lives within a bounded temporal horizon regardless of how
far into the future their units may be sold. In the study, we investigated the behavior of
homeowners in a realistic smart-grid scenario in which their hypothetical solar panels
generated surplus electric power which they could choose to sell to the power utility.
We recorded their daily sell/hold decisions over the course of a 10-week study in which
energy prices varied probabilistically from day to day. Given the daily offered price and
information about the probability of each possible price occurring, participants decided
each day whether to sell none, some or all their surplus energy units. Our results reveal
that the enhanced PT-based model with bounded temporal horizons fits the prosumer
data better than models based on PT alone as well as EUT-based models with and without
bounded temporal horizons.

The rest of this paper is organized as follows. Section 2 highlights some related
literature. In Section 3, we briefly summarize the experiment that yielded the data used
to test alternative decision models. We propose models based on classical PT and PT
enhanced with bounded temporal horizons in Section 4. Section 5 presents data fitting and
results; and finally conclusions are drawn in Section 6. The Appendix A contains proofs of
the theorems in the paper.

2. Related Work

Much of the research on how prosumers will participate (e.g., buy, sell, trade energy)
in the smart grid has adopted one of two theoretical frameworks–game theory or prospect
theory. Several of these investigations are summarized below, including a few that combine
ideas from both frameworks.

2.1. Game-Theoretic Approach

One area in which game theory has been applied to smart-grid issues is in modeling
demand-side management (DSM). In [6], the authors proposed an autonomous demand-
side energy-management model that exploits the features of the smart grid. Rather than
focusing exclusively on the interaction between power company and the consumers, they
considered the interaction among consumers. Using a game-theoretic approach, the au-
thors showed that the global optimal performance can be achieved at a Nash equilibrium of
the formulated energy consumption scheduling game. In [7], instead of optimizing energy
consumption based solely on either utility company or consumer interests, the optimiza-
tion considered the interaction between the power company and the consumer. A more
extensive overview of adopting game theory to model interactions in the smart grid, and ad-
dressing problems in microgrid systems, demand-side management and communications
is provided in [8]. The system model in [9] uses game-theoretic methods to model demand-
side management in smart grids. The model that converges to a unique Nash equilibrium
solution defines a load scheduling method with a dynamic pricing strategy.

2.2. Prospect-Theoretic Approach

As has often been noted, expected utility theory and EUT-based game-theoretic models
often fall short of accounting for how humans actually behave when making risky choices.
In many investigations of decision-making under uncertainty in economics and related
domains (investing, insurance, labor supply and even sports betting), PT has provided a
closer approximation to actual human behavior when assessing possible gains and losses.
See [12,13] for reviews of this literature, including both theoretical and empirical papers.
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More recently, PT has been applied to modeling human behavior in smart-grid settings
as well. The mathematical framework provided by PT hinges on a subjective value function
rather than an objective utility function, and on the subjective perception of probability
and uncertain outcomes. In several theoretical studies in [3,14–20], researchers have shown
that models based on PT often make markedly different predictions regarding prosumer
behavior than do models based on traditional EUT. Specifically, they predict that smart-
grid prosumers will treat gains and losses differently, being more sensitive to losses than
to gains. Saad et al. [3] studied the potential of PT as a decision-making framework
in the smart grid. Based on some examples from smart-grid applications, the authors
show that the accurate understanding of human decision makers’ behavior is essential in
energy-management processes. The authors in [14] modeled a non-cooperative game based
on the features of PT for energy trading between prosumers. In the game, hypothetical
prosumers try to maximize their utilities by increasing the gains realized by selling their
surplus energy, and decreasing the penalties that can be caused by the stochastic nature
of renewable energy sources such as wind. Wang et al. [15], use the weighting effect of
prospect theory to develop their model which is defined based on a non-cooperative game
between prosumers who own storage units and desire to maximize their utilities. It is
shown in [16] that a power company can face a decrease in its profit if it fails to consider the
prosumers’ subjective perceptions of gains and losses. Prospect theory’s framing effect is
used for modeling microgrid operators’ behavior in [17], in which the authors demonstrate
the constructive effect of considering subjective behavior. Xiao et al. [18] use PT to analyze
micro-grids energy exchange and show how subjective behavior can cause a decline in
overall utility. Wang et al. [19] investigated prosumers’ subjective perceptions of their
own and other players’ actions in a demand-side management simulation, and proposed a
PT-based framework for optimal participation time. Similarly, Wang et al. [20] proposed
a game-theoretic model, incorporating framing concepts from PT to describe electricity
customers’ subjective perceptions of gains and losses in a reactive power compensation
game involving coordination between the simulated customers. Again, these simulations
show that customer decision-making under prospect-theoretic assumptions deviates from
what classic EUT-based models predict.

It should be noted that with the exception of our recent work [21], none of the in-
vestigations of prosumer behavior in the smart grid cited above have gathered data from
human participants to test the various model predictions. More empirical studies will be
needed to validate these models.

2.3. Temporal Decision Horizons

In our recent work [21] and in the current paper, we examine and model behavior
in a scenario where prosumers must make a sell or hold decision every day for 10 weeks.
In that regard, it is also worth noting that none of the studies reviewed above have sought
to model human decision-making in a smart-grid scenario over an extended period of
time. Additionally, while there has been extensive work on receding horizon predictive
control models in the control systems engineering literature [22], these models describe
the operation of physical systems, not human decision-making. A few studies from other
domains (principally economics) have observed that humans tend to make decisions within
a relatively short temporal horizon regardless of how far into the future their decisions
could be made [23–27].

In our earlier work [21], we analyzed data from 57 prosumers over 10 weeks and
studied two alternative EUT-based models developed to incorporate the study parameters.
The first model was based upon traditional EUT, and the second model was an extension
of the first one that incorporated the notion of a finite temporal horizon or time window for
making a series of daily buy/hold decisions. The major finding of this study was that the
time window model provided a better fit to the data than traditional EUT. However, there
was one important aspect of the data that neither model could account for. Both EUT-based
models predicted that on any given day participants would always choose to sell either
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none or all their surplus energy units (“all-or-nothing” selling behavior). In this paper, we
consider two additional models based on PT and demonstrate that these models predict
prosumer decision-making more accurately.

3. Energy Market Simulation Study

The design of the energy grid experiment is described in detail in [21]. A brief
summary is presented here.

In a 10-week study conducted in October–December 2016, we examined the behavior
of 57 household decision makers in a prosumer-centric smart-grid scenario. The partic-
ipants were recruited through an online research participant recruiting service (www.
findparticipants.com accessed on 1 September 2016), who met certain criteria such as being
the decision-maker in the household regarding energy utility services, and having the
ability to take actions such as “hold” or “sell” renewable energy units locally generated at
the household. The participants were told to assume that they had solar panels on their
roof that generated 1 or 2 surplus “units” of energy on most days (90 units total over the
70-day study) and that they had batteries to store any surplus energy until they chose to
sell it to the power company. In an effort to simulate variability introduced by factors such
as weather and household demand for electricity, the number of surplus units generated
on each day was sampled from a distribution in which one unit of surplus power was gen-
erated on 50% of the days; two units on 35% of the days and no units on the remaining 15%
of days. Electricity prices at which they could sell their surplus units varied stochastically
over a range from $0.10 to $1.50 per unit, using a price distribution approximating that of
US domestic wholesale electricity prices. The data source for modeling prices was monthly
reports of wholesale energy prices published by the U.S Energy Industry Association (e.g.,
www.eia.gov/electricity/monthly/update/wholesale_markets.cfm accessed on 23 August
2016) referencing data from March and April, 2016. The shape of the distribution was
positively skewed, emulating real-world prices, with a mean of $0.60 and a modal price of
$0.50. The probability of each price occurring on any given day of the study is shown in
Table 1. We refer to this set of 15 probabilities as the single-day probabilities (pj) for the
15 possible prices. Their task every day was to decide whether to sell any of their surplus
energy (and if so, how many units) or wait for a better price. The objective of the energy
grid experiment was for participants to maximize their profits from selling their surplus
units. Participants were paid $100 for completing the study. In addition, to motivate them
to optimize their performance, participants also kept the profits they earned from selling
their units, and were further incentivized by having the opportunity to earn a bonus of up
to $100 if they were one of the top 3 earners.

Table 1. Single-day probabilities (pj) of each of the 15 possible wholesale electricity prices.

Price($) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

pj 0.03 0.06 0.09 0.12 0.14 0.11 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01

4. Modeling Approach

In this section, we develop two PT-based models of decision-making in our energy grid
experiment that parallel the two EUT models developed in [21]. Both PT models consider
the finite temporal horizon of the 10-week study, but the second version denoted as PTTW,
introduces the concept of a participant-specific time window (bounded temporal horizon)
over which each individual evaluates their daily sell/hold decisions. Our expectation,
based on the extensive PT literature, was that PT-based models would provide a better
fit to our study data than EUT-based models. Furthermore, we anticipated that unlike
the EUT-based models, PT-based models would be able to predict some degree of the
“some-but-not-all” selling behavior that our study participants exhibited.

After outlining the typical formulation of PT as developed by Kahneman & Tver-
sky [10,11] below, we will extend the models to incorporate our additional study parameters.

www.findparticipants.com
www.findparticipants.com
www.eia.gov/electricity/monthly/update/wholesale_markets.cfm
www.eia.gov/electricity/monthly/update/wholesale_markets.cfm
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The general form of the PT value function is,

v(x) =

{
xα x ≥ 0
−λ(−x)β x < 0,

(1)

where x is either gains (if x > 0) or losses (if x < 0) with respect to the reference point, λ
is the coefficient for loss aversion, and α and β are coefficients for risk aversion and risk
seeking, respectively. Both α and β are typically constrained to range from 0 to 1 with
α ≤ β. The loss aversion coefficient is not bounded. Please note that since α ≤ β the value
function, v(x), is concave for gains and convex for losses, with the slope being steeper for
losses (“losses loom larger than gains”).

PT’s probability weighting effect is typically modeled using the Prelec function (for a
given probability p) [28], defined as,

w(p) = exp(−(− ln p)γ), (2)

where γ = 1 reflects objective perception, i.e., EUT behavior. When γ < 1, the subjective
probability, w(p), in (2) overweights low probabilities and underweights high probabilities.

4.1. Prosumer Behavior Model Using Prospect Theory

The total number of days in the energy grid experiment is D. Each individual day is
indexed by the variable d and days are numbered consecutively in ascending order, such
that on the final day, d = D. Please note that data were not collected on 2 days of the
10-week study, so D in our models is 68. On each day d, a participant typically has one or
more units of energy to sell.

The price on offer for a unit of energy for any given day d is denoted by id, where id
could assume any of the 15 possible unit prices from $0.10 to $1.50 in $0.10 increments.
Please note that to simplify modeling and data analysis, the unit prices were linearly
transformed to the values ranging from 1 to 15. The maximum possible price of 15 is
denoted by J.

In our PT model, the expected gain from selling n units at price id is determined by
considering both the probability weighting and framing effects. If n units were sold on
day d, then the probability that they would be sold at a lower price on a subsequent day
over all possible lower prices is multiplied with the corresponding gain in prices, and both
framed by the variable α and weighted by the variable γ. Similarly, the expected loss from
selling n units at a price id is determined by considering both the probability weighting
and framing effects. If n units were sold on day d, then the probability that they would be
sold at a higher price on a subsequent day over all possible higher prices is multiplied with
the corresponding loss in prices, and both framed by the variable β and weighted by the
variable γ.

Let Nd be the number of units available for sale on day d and let n be the number of
units sold at price id on day d. The lowest price for which a sale of one unit on day d yields
a positive expected value is called the cutoff price, denoted i∗PT

d . In other words, i∗PT
d is the

lowest price on day d for which the expected gain of selling one unit is greater than the
expected loss of selling that unit. Notice that a sale will only be made if the price offered



Energies 2021, 14, 7134 6 of 16

is at or above the cutoff price. Based on the above reasoning and notation, the expected
utility from selling n units on day d can be formally given as,

E[Ud(n)] =
id−1

∑
j=i∗PT

d+1

w(pj)
(

n(id − j)
)α
−

λ
J

∑
j=max(i∗PT

d+1 ,id+1)

w(pj)
(

n(j− id)
)β

+

D−d−1

∑
k=1

[{ k

∏
h=1

i∗PT
d+h−1

∑
j=1

w(pj)

}
×

{ id−1

∑
j=i∗PT

d+1+k

w(pj)
(

n(id − j)
)α
−

λ
J

∑
j=max(i∗PT

d+1+k ,id+1)

w(pj)
(

n(j− id)
)β
}]

,

(3)

where pj is the probability that the price j would be the unit price on offer. In (3), the first
two terms describe the expected gain relative to day d + 1 and the expected loss relative to
day d + 1, respectively. The last expression in (3) is the expected utility relative to all the
remaining days, d + 2 to D. Each term corresponding to k in the summation ranging from
k = 1 to k = D− d− 1 is computed by multiplying the probability of holding for k days
with the difference between the expected gain and expected loss relative to day d + 1 + k.

The cutoff price can now be formally defined as,

i∗PT
d = arg min{id|E[Ud(n = 1)] > 0,

(0 < α ≤ β ≤ 1, λ ≥ 1, 0 < γ ≤ 1)}.
(4)

For evaluating the cutoff price, we first consider the fact that on the last day, D, there
is no chance of selling any units of energy at any price on a subsequent day. Thus, there can
be no gain for holding any stored units on the final day of the study since the probability
that any price will be subsequently offered is 0. Therefore, all the available units should be
sold regardless of the price offered on the last day. Equations (3) and (4) are used to set the
value of cutoff prices, computed in a backward iterative method. By working backwards
through the sales period, all cutoff prices can be computed.

Given the model parameters α, β, λ, γ, if PT is considered to be a model of human
decision-making, then the model predicts the number of units to be sold as follows,

n∗d(α, β, λ, γ) = arg max
n
{E[Ud(n)]|(α, β, λ, γ)}, (5)

where n∗d(α, β, λ, γ) is the optimum units predicted to be sold by the model.

Theorem 1. The PT model does not always predict “all-or-nothing” selling behavior.

In other words, Theorem 1 states that prosumers optimal strategy of selling under
the PT model, n∗d, is not necessarily equal to Nd or 0. n∗d can also take values such that
0 < n∗d < Nd. Furthermore, the sell-some-but-not-all strategy is independent of probabil-
ities of offered prices when a sale of one unit on a day yields a positive expected value.
Additionally, the sell-some-but-not-all strategy is independent of the cutoff price when a
sale of one unit on a day yields a positive expected value.
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4.2. Bounded Temporal Horizon Model of Prosumer Behavior Using Prospect Theory

In the bounded temporal horizon model with prospect theory (denoted as PTTW),
a prosumer may compute the probability of selling at a higher price over a fixed number
of days called a time window, t, until near the end of the study when the remaining days
are fewer than the number of days in the prosumer’s time window. If d̃ = D− d denotes
the number of remaining days, then the time period over which the expected gains and
the expected losses are computed is defined as τ = min(t, d̃). In the bounded temporal
horizon model, i∗PT

τ , is the lowest price at which the expected utility is positive when n = 1
or the lowest price for which the expected gain is greater than the expected loss from a sale
for a time period of τ days. Therefore, the expected utility from selling n units of energy on
day d with a time window of t is defined as,

E[Ud,τ(n)] =
id−1

∑
j=i∗PT

τ−1

w(pj)
(

n(id − j)
)α
−

λ
J

∑
j=max(i∗PT

τ−1,id+1)

w(pj)
(

n(j− id)
)β

+

τ−1

∑
k=1

[{ k

∏
h=1

i∗PT
τ−h−1

∑
j=1

w(pj)

}
×

{ id−1

∑
j=i∗PT

τ−1−k

w(pj)
(

n(id − j)
)α
−

λ
J

∑
j=max(i∗PT

τ−1−k ,id+1)

w(pj)
(

n(j− id)
)β
}]

.

(6)

The cutoff price for the PTTW model with a time window of t days can now be formally
defined as,

i∗PT
τ = arg min{id|E[Ud,τ(n = 1)] > 0,

(0 < α ≤ β ≤ 1, λ ≥ 1, 0 < γ ≤ 1)}.
(7)

Equations (6) and (7) are used to set the value of cutoff prices, computed in a backward
iterative method. By working backwards through the sales period, all cutoff prices can
be computed.

Given the model parameters α, β, λ, γ, τ, the PTTW model predicts the number of units
to be sold as follows,

n∗d,τ(α, β, λ, γ, τ) = arg max
n
{E[Ud,τ(n)]|(α, β, λ, γ, τ)}, (8)

where n∗d,τ(α, β, λ, γ, τ) is the optimum units predicted by the model.

Theorem 2. The PTTW model does not always predict “all-or-nothing” selling behavior.

In other words, Theorem 2 states that prosumers optimal strategy of selling under
the PTTW model, n∗d,τ , is not necessarily equal to Nd or 0. n∗d,τ can also take values such
that 0 < n∗d,τ < Nd. Furthermore, the sell-some-but-not-all strategy is independent of
probabilities of offered prices when a sale of one unit on a day yields a positive expected
value. Additionally, The sell-some-but-not-all strategy is independent of the cutoff price
when a sale of one unit on a day yields a positive expected value.

4.3. Modeling Prosumer Behavior Using EUT and EUTTW

To benchmark the PT models against EUT models, we briefly describe the baseline
EUT models without and with bounded temporal horizon (denoted as EUTTW) [21]. EUT
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is fundamentally a conventional game-theoretic concept that is instructed by objective
notions of losses and gains and rationality of people who make decisions. Let i∗d denote
the unit cutoff price, which is the lowest price on day d for which the gain from a sale
on that day is greater than the expected gain from a hold on that day. Expected utilities
are computed for sell and hold decisions, the components of which are the gains realized
from selling and the potential (future) gains from not selling. Hence, the equation for
computing the expected utility of selling a unit of energy on day d at price id has two
components. The first component is the gain realized by selling the unit at price id on day d.
The second component is the possible gain that may be realized by holding the unit on day
d and selling on a subsequent day. The possible gain from holding is determined by the
probability of selling at a higher price on a subsequent day. The probability of selling at a
higher price on a subsequent day is determined by the cutoff price on each subsequent day
and the probability of it being met or exceeded by the price on offer on that day. Therefore,
the expected utility of selling n units on day d is defined as,

E[Ud(n)] = nid + (Nd − n)

 J

∑
j=i∗d+1

pj j + fh,d+1

i∗d+1−1

∑
j=1

pj

, (9)

where fh,d+1 is the expected gain for a hold on day d + 1 and is defined recursively as:

fh,d =



J
∑

j=i∗d+1

pj j + fh,d+1

i∗d+1−1

∑
j=1

pj d = 1, ..., D− 2

J
∑

j=i∗D

pj j d = D− 1

0 d = D.

(10)

In the EUTTW, a prosumer may compute the probability of selling at a higher price
over a time window. So i∗τ is the cutoff price that is the lowest price for which the gain
from a sale is greater than the expected gain from a hold for a time window of τ days.
The expected utility of selling n units on day d with a time window of τ is defined as,

E[Ud,τ(n)] = nid + (Nd − n)

 J

∑
j=i∗τ−1

pj j + fh,τ−1

i∗τ−1−1

∑
j=1

pj

, (11)

where fh,τ is the expected gain for hold on day d with a time window of τ and is defined as,

fh,τ =



J
∑

j=i∗τ−1

pj j + fh,τ−1

i∗τ−1−1

∑
j=1

pj τ > 1

J
∑

j=i∗τ−1

pj j τ = 1

0 τ = 0.

(12)

The best strategy of selling for both models is the number of unit, n that maximizes
the expected utility. Therefore, both models predict that on any given day participants
would always choose to sell either none or all their surplus energy units (“all-or-nothing”
selling behavior) [21].

5. Data Fitting and Results

In this section, we evaluate our system models using a data fitting procedure. The ex-
pected utility of selling n units on day d is a function of that day, and the analysis of
finding the optimal model parameters needs to be done for each prosumer independently.
The responses of prosumer participants in our energy grid experiment are compared with
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the predictions of each model. To this end, the minimum average normalized deviation
for each participant is computed. For each participant, Nd denotes the number of units
available for sale on day d, nd represents the number of energy units actually sold on
day d, and n∗d is the number of units predicted to be sold by the PT model. Therefore,
the minimum average normalized deviation (MAND) between the PT model and real data
is given as,

MANDPT = min
(α,β,λ,γ)

∑d∈D′ |
n∗d(α,β,λ,γ)

Nd
− nd

Nd
|

|D′|

, (13)

where the set D′ = { d | Nd > 0 }, and |D′| is the number of days on which Nd > 0.
Consequently, the optimal model parameters (α∗, β∗, λ∗, γ∗) are obtained as,

(α∗, β∗, λ∗, γ∗) = arg min
(α,β,λ,γ)

∑d∈D′ |
n∗d(α,β,λ,γ)

Nd
− nd

Nd
|

|D′|

. (14)

Figure 1 illustrates the minimum average normalized deviation with the best fit of the
model parameters for the PT model obtained through an exhaustive search. Additionally
shown in Figure 1 are the MAND results for the EUT model considered in our previous
work [21]. Please note that unlike the PT model that evaluates only gains and losses,
the EUT model considers the expected utility of both sell and hold decisions. This figure
shows the minimum average normalized deviation between the number of units predicted
to be sold by the models and the number of units that participants actually decided to
sell in our energy grid experiment. Figure 1 captures the fact that the PT model predicts
prosumer decision-making in the smart grid better than the EUT model described in [21].
The mean percentage of improvement of PT is 40.9% over EUT. The 57 study participants
are ordered across the x axis, from the participant who sold units on the fewest number of
days to the participant who sold on the most number of days. The figure demonstrates that
temporally unbounded PT outperforms EUT relative to our human decision-making data,
i.e., predictions of the PT-based model are closer to actual human behavior than predictions
of the EUT model.

The MAND between the PTTW model and real data is given as,

MANDPTTW = min
(α,β,λ,γ,τ)

∑d∈D′ |
n∗d,τ(α,β,λ,γ,τ)

Nd
− nd

Nd
|

|D′|

, (15)

where the set D′ = { d | Nd > 0 }, and |D′| is the number of days on which Nd > 0.
Therefore, the optimal model parameters (α∗, β∗, λ∗, γ∗, τ∗) are obtained as,

(α∗, β∗, λ∗, γ∗, τ∗) = arg min
(α,β,λ,γ,τ)

∑d∈D′ |
n∗d,τ(α,β,λ,γ,τ)

Nd
− nd

Nd
|

|D′|

. (16)

The constraints for the model parameters are given in (4) and (7) for the PT and PTTW
models, respectively. The time window τ is a positive integer takes values less than D.
Figure 2 shows the minimum average normalized deviation with the best fit of model
parameters for the PT and PTTW models for each participant. Additionally shown in
Figure 2 are fits of the data to the EUT and EUTTW models considered in our previous
work [21]. The figure demonstrates that adding the notion of time window to EUT and PT
can improve each model’s predictions of prosumer decision-making behavior in the smart
grid with PTTW performing best. However, it can be seen that the model’s performance
may decline when a participant decides to sell too often in the study (participants are
ordered on the horizontal axis from those who made the fewest number of sales to those
who made the most). The mean percentage of improvement of PTTW is 45.29% over EUT.
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Figure 1. The minimum average normalized deviation (MAND) between actual and predicted
number of units sold for the EUT and PT models. Each participant is represented by two marks that
shows minimum average normalized deviation for each model. The plot demonstrates that the PT
model outperforms EUT in terms of prediction prosumer behavior. The 57 study participants are
ordered across the x axis, from the participant who sold units on the fewest number of days to the
participant who sold on the most number of days.

Figure 2. The minimum average normalized deviation between actual and predicted number of
units sold for EUT, PT, EUTTW, and PTTW. Each participant is represented by four marks that show
the minimum average normalized deviation for each model.

Figure 3 shows the size of the best fitting time window obtained by (16) for each
participant with the participants being ordered as stated earlier.
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Figure 3. The size of the best fitting time window for each participants.

It can be seen that more than half of the prosumer participants were best fit by a time
window ranging from 1–6 days.

Figure 4 shows the number of sale days predicted by each model, and the actual
number days on which each of the 57 participants sold during the course of the study. It
can be observed that EUT predicts that rational prosumers would sell their surplus energy
units on just four days–the three days when the price exceeded the cutoff price and on
the final day (as the probability of selling any units at any price on a subsequent day is
zero)–and this prediction is the same for all participants. However, introducing the notion
of time window to classic EUT can improve its performance. Although the frequency of
selling in EUTTW is greater than EUT (and thus, closer to observed behavior), the extended
model, EUTTW, still suffers from predicting either sell all or none of the available units [21].
Figure 4 also shows that both PT and PTTW have a better fit to the participants’ selling
behavior than do the EUT models.

Figure 4. Comparing the number of sale days predicted by each model and the number of days on
which each prosumer made a sell decision in the 10-week energy grid experiment. Each participant
is represented by five marks for observed behavior and four models’ predictions.

In addition to providing a closer fit to our study data in terms of predicting the
number of days on which participants sold one or more units, the PT models are also
able to predict the observed pattern of selling some-but-not-all units. The stacked bar
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charts in Figures 5 and 6 illustrate these predictions. In Figure 5 (PT model) and Figure 6
(PTTW model), each participant is represented by three different colored bars that show
the number of days that the model predicts sell none, some or all available units. The two
figures also serve to validate theorems 1 and 2 which state that the PT and PTTW models,
respectively, can predict selling some but not all available units of energy.

Figure 5. Illustration of number of days on which the prediction made by the PT model is selling
none of available units, some, or all of it during the period of the study.

Figure 6. Demonstration of number of days on which the prediction made by the PTTW model is
selling none of available units, some, or all of it during the course of the study.

6. Conclusions

We studied prosumer decision-making in the smart grid in which a prosumer had to
decide whether to make a sale of solar energy units generated at her home every day or
hold (store) the energy units in anticipation of a future sale at a better price. Specifically, we
enhanced a prospect theory (PT)-based behavioral model by taking into account bounded
temporal horizons (a time window specified in terms of the number of days) that prosumers
implicitly imposed on their decision-making in arriving at “hold” or “sell” decisions of
energy units. The new behavioral model for prosumers assumed that in addition to the
framing and probability weighting effects imposed by classical PT, humans made decisions
that affected their lives within a bounded temporal horizon regardless of how far into the
future their units could be sold. Modeling the utility of the prosumer with parameters such
as the offered price on a day, the available energy units on a day, and the probabilities of the
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forecast prices, we fitted the PT-based proposed behavioral model with bounded temporal
horizons to prosumer data collected over 68 days from 57 homeowners who generated
surplus units of solar energy. These homeowners had the opportunity to sell those units
to the local utility at the price set that day by the utility or hold the units for sale in the
future. For most participants, a bounded temporal horizon in the range of 1–6 days was
observed to provide a much better fit to their responses than was found for the traditional
EUT-based model, thus validating the need to model PT effects (probability weighting and
framing) and bounded temporal horizons imposed in prosumer decision-making.

The above findings lead us to two conclusions. First, as has been demonstrated in
other contexts in many previous investigations, PT-based models appear to provide a closer
description of human decision-making than do EUT-based models. And second, in our
energy grid experiment, where a series of related sell/hold decisions must be made over
an extended period of time, the introduction of a bounded time window parameter to the
decision model can significantly improve the degree to which model predictions fit actual
data. This is true both in terms of predicting which days (i.e., at which offered prices)
participants choose to sell their energy units and, when they do choose to sell, in predicting
whether they sell all or just some of their units. Future directions for study include testing
the generalizability of the bounded temporal horizon concept to additional experiments
that could take into account other risk factors. The current survey for collecting the data is
intended to be a simulation of prosumers in the smart grid. Although it captures prosumer
actions from a behavioral perspective, it may not perfectly reflect real-world energy policy
and markets. For future work, we plan to compare the collected data in a simulated setting
to real energy generation data as well as real-world factors such as intra-day energy price
fluctuations and battery storage limitations. We would also like to conduct a longer
(perhaps 4–5 month) study that would allow us to simulate seasonal changes in energy
prices and would afford a longitudinal analysis of decision behavior as prosumers learn
how to optimize their profits.
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Abbreviations

λ Coefficient of loss aversion.
α Coefficient of risk aversion.
β Coefficient of risk seeking.
D Total number of days in the energy grid experiment.
id Price on offer for a unit of energy for any given day d.
J The maximum possible price.
Nd Number of units available for sale on day d.
n Number of units sold at price id on day d.
i∗PT
d Lowest price for which a sale of one unit on day d yields a positive expected

value.
i∗PT
τ Lowest price for which the expected gain is greater than the expected loss

from a sale for a
time period of τ days.

fh,d Expected gain for a hold on day d.
fh,τ Expected gain for a hold on day d with time window of τ.
i∗d Lowest price on day d for which the gain from a sale is greater than the

expected gain from a hold.
i∗τ Lowest price for which gain from a sale is greater than the expected gain

from a hold for a time window of τ days.
pj Single-day probabilities of each of the 15 possible wholesale electricity prices.
d̃ Number of remaining days.
n∗d Optimum units predicted to be sold by the model on day d.
PT Prospect Theory
EUT Expected Utility Theory
TW Time Window
MAND Minimum Average Normalized Deviation
DSM Demand-Side Management

Appendix A

Appendix A.1. Proof of the Theorem 1

We prove this by contradiction. If EG is the expected gain of selling one unit of energy
under the PT model which is defined as,

EG =
id−1

∑
j=i∗PT

d+1

w(pj)(id − j)α+

D−d−1

∑
k=1

[{ k

∏
h=1

i∗PT
d+h−1

∑
j=1

w(pj)

}
×

{ id−1

∑
j=i∗PT

d+1+k

w(pj)(id − j)α

}]
,

(A1)

and EL is the expected loss of selling a unit of energy defined as,

EL = λ
J

∑
j=max(i∗PT

d+1 ,id+1)

w(pj)(j− id)β+

λ
D−d−1

∑
k=1

[{ k

∏
h=1

i∗PT
d+h−1

∑
j=1

w(pj)

}
×

{ J

∑
j=max(i∗PT

d+1+k ,id+1)

w(pj)(j− id)
β

}]
.

(A2)
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Hence, the expected utility function can be re-stated as,

E[Ud(n)] = nαEG − nβEL, (A3)

where EG and EL are positive values. Two cases can be considered depending on the values
of EG and EL:

• Case I If EG ≤ EL, due to framing effect in which we have 0 < α ≤ β ≤ 1, we can infer
that expected utility is always negative regardless of the value of n, i.e., E[Ud(n) =
nαEG − nβEL ≤ 0. Hence the best strategy in this case is to sell no units, i.e., n∗d = 0.

• Case II If EG > EL, considering the condition 0 < α ≤ β ≤ 1, then expected utility of
selling a unit of energy, n = 1, is always positive,

E[Ud(n = 1)] = nαEG − nβEL > 0. (A4)

Therefore, n∗d ≥ 1. However, the expected utility function is a nonlinear function of n,
and for the condition 0 < α < β, the growth rate of EG is greater than EL’s. Therefore,
there exists a threshold nt > 1, for which nα

t EG ≤ nβ
t EL. Hence,

E[Ud(nt)] = nα
t EG − nβ

t EL ≤ 0. (A5)

For given EG and EL, and 0 < α < β, Equation (A5) holds for any n > nt. Conse-
quently, for any Nd > nt,

E[Ud(Nd)] = Nα
d EG − Nβ

d EL ≤ 0, (A6)

which means selling all available energy units is not the optimal strategy. It can be
concluded from (A4) and (A6) that n∗d ∈ [1, nt − 1].

Appendix A.2. Proof of the Theorem 2

The proof follows by contradiction as in Theorem 1 with the time window being
explicitly taken into consideration in the definition of EG and EL.
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