Carbon Footprint-Energy Detection for Desalination Small Plant Adaptation Response
Abstract
:1. Introduction
2. Materials and Methods
2.1. Initial Analysis
2.2. Data Inventory
2.3. Calculation of GHG Emission
3. Results and Discussion
3.1. CO2-eq Emissions in the Construction Process
3.2. CO2-eq Emissions in the Operation Process
3.3. Relationship between Limitations, Strategies and Adaption
4. Conclusions
- The total dependency of the electrical source for the SWRO process of fossil fuel was the most critical factor in the carbon footprint issue in this study. However, the GHG emissions from the SWRO plant (3.5 × 10−2 kg CO2-eq/yr) represented a 30- and 39-fold deficit compared to desalination treatment plants in Carnoneras, Spain, and Australia, respectively [28]. This value was affected by minimum chemicals, the performance of new membrane technology, the small plant capacity, land area, water feed, and intermittent operating duration.
- These findings can be used to develop a carbon footprint model that can commercialize carbon tax, carbon economy capital, energy security assurance, and standard carbon regulation and legislation in the context of local desalination projects. However, a further study on the financial investment factor related to new desalination technology adaptation is critical.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thakur, A.K.; Sathyamurthy, R.; Velraj, R.; Lynch, I.; Saidur, R.; Pandey, A.K.; Sharshir, S.W.; Ma, Z.; GaneshKumar, P.; Kabeel, A.E. Sea-water desalination using a desalting unit integrated with a parabolic trough collector and activated carbon pellets as energy storage medium. Desalination 2021, 516, 115217. [Google Scholar] [CrossRef]
- Narasimhan, A.; Kamal, R.; Almatrafi, E. Novel synergetic integration of supercritical carbon dioxide Brayton cycle and Adsorption desalination. Energy 2021, 238, 121844. [Google Scholar] [CrossRef]
- Moreno-Leiva, S.; Haas, J.; Nowak, W.; Kracht, W.; Eltrop, L.; Breyer, C. Integration of seawater pumped storage and desalination in multi-energy systems planning: The case of copper as a key material for the energy transition. Appl. Energy 2021, 299, 117298. [Google Scholar] [CrossRef]
- Pan, S.-Y.; Haddad, A.Z.; Kumar, A.; Wang, S.-W. Brackish water desalination using reverse osmosis and capacitive deionization at the water-energy nexus. Water Res. 2020, 183, 116064. [Google Scholar] [CrossRef]
- Elnour, M.; Meskin, N.; Khan, K.M.; Jain, R.; Zaidi, S.; Siddiqui, H. Full-Scale Seawater Reverse Osmosis Desalination Plant Simulator. IFAC-Pap. 2020, 53, 16561–16568. [Google Scholar] [CrossRef]
- Griffiths-Sattenspiel, B.; Wilson, W. The Carbon Footprint of Water. A River Network Report. Portland, 2009. Available online: https://www.csu.edu/cerc/researchreports/documents/CarbonFootprintofWater-RiverNetwork-2009.pdf (accessed on 20 October 2021).
- Fellaou, S.; Ruiz-Garcia, A.; Gourich, B. Enhanced exergy analysis of a full-scale brackish water reverse osmosis desalination plant. Desalination 2021, 506, 114999. [Google Scholar] [CrossRef]
- Sanna, A.; Buchspies, B.; Ernst, M.; Kaltschmitt, M. Decentralized brackish water reverse osmosis desalination plant based on PV and pumped storage—Technical analysis. Desalination 2021, 516, 115232. [Google Scholar] [CrossRef]
- Ahmed, F.E.; Khalil, A.; Hilal, N. Emerging desalination technologies: Current status, challenges and future trends. Desalination 2021, 517, 115183. [Google Scholar] [CrossRef]
- ISO. ISO 14043: Environmental Management-Life Cycle Assessment-Life Cycle Interpretation; International Organisation for Standardisation: Geneva, Switzerland, 2000. [Google Scholar]
- Roibás, L.; Loiseau, E.; Hospido, A. A simplified approach to determine the carbon footprint of a region: Key learning points from a Galician study. J. Environ. Manag. 2018, 217, 832–844. [Google Scholar] [CrossRef] [Green Version]
- Fulton, L.; Mejia, A.; Arioli, M.; Dematera, K.; Lah, O. Climate Change Mitigation Pathways for Southeast Asia: CO2 Emissions Reduction Policies for the Energy and Transport Sectors. Sustainability 2017, 1160, 1160. [Google Scholar] [CrossRef] [Green Version]
- Wan Lee, J. Lagged effect of exports, industrialization and urbanization on carbon footprint in Southeast Asia. Int. J. Sustain. Dev. World Ecol. 2019, 26, 1–8. [Google Scholar] [CrossRef]
- Prathapaneni, D.R.; Detroja, K. Optimal design of energy sources and reverse osmosis desalination plant with demand side management for cost-effective freshwater production. Desalination 2020, 496, 114741. [Google Scholar] [CrossRef]
- Elsaid, K.; Sayed, E.T.; Abdelkareem, M.A.; Baroutaji, A.; Olabi, A.G. Environmental impact of desalination processes: Mitigation and control strategies. Sci. Total Environ. 2020, 740, 140125. [Google Scholar] [CrossRef]
- Shahzad, M.W.; Burhan, M.; Ang, L.; Ng, K.C. Energy-water-environment nexus underpinning future desalination sustainability. Desalination 2017, 413, 52–64. [Google Scholar] [CrossRef]
- ISO. ISO. ISO 14040:2006. Environmental Management. In Life Cycle Assessment. Principle and Framework; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- Pazouki, P.; Lu, H.R.; El Hanandeh, A.; Biswas, W.; Bertone, E.; Helfer, F.; Stewart, R.A. Comparative environmental Life Cycle Assessment of alternative osmotic and mixing dilution desalination system configurations. Desalination 2021, 504, 114963. [Google Scholar] [CrossRef]
- Abdul Ghani, L.; Nazaran, I.S.; Ali, N.; Hanafiah, M.M. Improving Prediction Accuracy of Socio-Human Relationships in a Small-Scale Desalination Plant. Sustainability 2020, 12, 6949. [Google Scholar] [CrossRef]
- IPCC. IPCC Guidelines for National Greenhouse Gas Inventories; Prepared by the National Greenhouse Gas Inventories Programme; IGES: Kanagawa, Japan, 2006. [Google Scholar]
- Liu, J.; Chen, S.; Wang, H.; Chen, X. Calculation of Carbon Footprints for Water Diversion and Desalination Projects. Energy Procedia 2015, 75, 2483–2494. [Google Scholar] [CrossRef] [Green Version]
- Ameen, F.; Stagner, J.A.; Ting, D.S.-K. The carbon footprint and environmental impact assessment of desalination. Int. J. Environ. Stud. 2018, 75, 45–58. [Google Scholar] [CrossRef]
- Department of Environment: DOE Malaysia, 2019. Available online: https://www.doe.gov.my (accessed on 10 May 2019).
- Baek, C.-Y.; Tahara, K.; Park, K.-H. Parameter Uncertainty Analysis of the Life Cycle Inventory Database: Application to Greenhouse Gas Emissions from Brown Rice Production in IDEA. Sustainability 2018, 10, 922. [Google Scholar] [CrossRef] [Green Version]
- Jia, X.; Klemeš, J.; Petar, S.V.; Sharifah, R.W.A. Analyzing the Energy Consumption, GHG Emission, and Cost of Seawater Desalination in China. Energies 2019, 463, 463. [Google Scholar] [CrossRef] [Green Version]
- Cornejo, P.K.; Santana, M.V.E.; Hokanson, D.R.; Mihelcic, J.R.; Zhang, Q. Carbon footprint of water reuse and desalination: Review of emissions and tools. J. Water Reuse Desalination 2014, 238–252. [Google Scholar] [CrossRef]
- Biswas, W.; Yek, P. Improving the carbon footprint of water treatment with renewable energy—A Western Australian case study. Renew. Wind. Water Sol. 2016, 3, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Biswas, W.K. Life Cycle Assessment of seawater desalination in Western Australia. World Acad. Sci. Eng. Technol. 2009, 35, 369–375. [Google Scholar]
- Sydney Water. Sydney’s Desalination Plant-Greenhouse Gas Reduction Plan. 2004. Available online: https://sydneydesal.com.au/wp-content/uploads/greenhouse-gas-reduction-plan.pdf (accessed on 20 October 2021).
- Cooley, H.; Matthew, H. Key Issues for Seawater Desalination in California Energy and Greenhouse Gas Emissions; Pacific Institute: Oakland, CA, USA, 2013. [Google Scholar]
- Shahabi, M.P.; McHugh, A.; Anda, M.; Goen, H. Environmental Life Cycle Assessment of seawater reverse osmosis desalination plant powered by renewable energy. Renew. Energy 2014, 67, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Aumashvini, G.; Debbie, S.; John, O.; Neil, A.; Fadiel, A. Assessing the energy and carbon footprints of exploiting and treating brackish groundwater in Cape Town. Water SA 2019, 45, 63–74. [Google Scholar]
- Raluy, R.G.; Serra, L.; Uche, J. Life Cycle Assessment of desalination technologies integrated with renewable energies. Desalination 2005, 183, 81–93. [Google Scholar] [CrossRef]
- Stokes, J.R.; Horvath, A. Energy and air emission effects of water supply. Environ. Sci. Technol. 2009, 43, 2680–2687. [Google Scholar] [CrossRef] [Green Version]
- Menachem, E.; William, A.P. The future of seawater desalination: Energy, technology, and the environment. Am. Assoc. Adv. Sci. 2011, 333, 712–717. [Google Scholar] [CrossRef]
- Abdul Ghani, L.; Ali, N.; Nazaran, I.S.; Hanafiah, M.M. Environmental Performance of Small-Scale Seawater Reverse Osmosis Plant for Rural Area Water Supply. Membranes 2021, 11, 40. [Google Scholar] [CrossRef]
- Gao, L.; Zhang, J.; Liu, G. Life Cycle Assessment for algae-based desalination system. Desalination 2021, 512, 115148. [Google Scholar] [CrossRef]
- Alon, T. Addressing Desalination’s Carbon Footprint: The Israeli Experience. Water 2018, 10, 197. [Google Scholar] [CrossRef] [Green Version]
- Bundschuh, J.; Kaczmarczyk, M.; Ghaffour, N.; Tomaszewska, B. State-of-the-art of renewable energy sources used in water desalination: Present and future prospects. Desalination 2021, 508, 115035. [Google Scholar] [CrossRef]
- Ghyselbrecht, K.; Huygebaert, M.; Van der Bruggen, B.; Ballet, R.; Meesschaert, B.; Pinoy, L. Desalination of an industrial saline water with conventional and bipolar membrane electrodialysis. Desalination 2013, 318, 9–18. [Google Scholar] [CrossRef]
- Bello, A.S.; Zouari, N.; Da’ana, D.A.; Hahladakis, J.N.; Al-Ghouti, M.A. An overview of brine management: Emerging desalination technologies, Life Cycle Assessment, and metal recovery methodologies. J. Environ. Manag. 2021, 288, 112358. [Google Scholar] [CrossRef]
- Ihsanullah, I.; Atieh, M.A.; Sajid, M.; Nazal, M.K. Desalination and environment: A critical analysis of impacts, mitigation strategies, and greener desalination technologies. Sci. Total Environ. 2021, 780, 146585. [Google Scholar] [CrossRef] [PubMed]
- Saleh, L.; Mezher, T. Techno-economic analysis of sustainability and externality costs of water desalination production. Renew. Sustain. Energy Rev. 2021, 150, 111465. [Google Scholar] [CrossRef]
- Shahzad, M.W.; Burhan, M.; Ng, K.C. Pushing Desalination Recovery to the Maximum Limit: Membrane and Thermal Processes Integration. Desalination 2017, 416, 54–64. [Google Scholar] [CrossRef]
Inputs | Calculated Value | Unit | Source |
---|---|---|---|
Materials/fuels | |||
Reinforcing steel | 3.96 × 10−4 | kg/m3 | Calculation |
Polyethylene | 1.75 × 10−4 | kg/m3 | Calculation |
Chromium steel pipe | 1.90 × 10−4 | kg/m3 | Calculation |
Concrete, 30–32 MPa | 2.79 × 10−5 | kg/m3 | Calculation |
Steel | 2.76 × 10−5 | kg/m3 | Calculation |
Nylon | 1.41 × 10−3 | kg/m3 | Calculation |
Polypropylene resin | 1.96 × 10−3 | kg/m3 | Calculation |
Electricity | |||
Pumping seawater | 3.00 × 10−1 | kWh/m3 | Calculation |
Pre-treatment | 1.50 × 10−1 | kWh/m3 | Calculation |
Reverse Osmosis | 2.40 × 100 | kWh/m3 | Calculation |
Wastewater | 2.50 × 10−1 | kWh/m3 | Calculation |
Post-treatment | 1.70 × 10−1 | kWh/m3 | Calculation |
Storing + distribution | 1.00 × 10−1 | kWh/m3 | Calculation |
Chemical products | |||
Polyaluminium chloride | 2.70 × 10−3 | kg/m3 | Ecoinvent 3 |
Polyacrylamide | 1.80 × 10−3 | kg/m3 | Ecoinvent 3 |
Soda ash | 1.50 × 10−1 | kg/m3 | Ecoinvent 3 |
Hydrochloric acid | 4.50 × 10−3 | kg/m3 | Ecoinvent 3 |
Sodium hydroxide | 5.40 × 10−3 | kg/m3 | Ecoinvent 3 |
Chlorine | 1.00 × 10−3 | kg/m3 | Ecoinvent 3 |
Sodium hydrogen sulphite | 1.08 × 10−2 | kg/m3 | Ecoinvent 3 |
Sodium hypochlorite | 5.40 × 10−3 | kg/m3 | Ecoinvent 3 |
Calcium carbonate | 5.40 × 10−3 | kg/m3 | Ecoinvent 3 |
Phase | Material Description |
---|---|
Site preparation (including division work | Backhoe, lorry, laborer |
Office site | Cabin, footing and poles, cold form truss, metal deck |
Store and toilet | Footing, poles, Ground beams, roof beams, concrete slabs, ceramics, Paint, windows, inlet pipes, doors, hoses, basins, taps, asbestos ceilings, plaster, brick wall, BRC, R10, FWK, Polythene sheet, render, toilet bowl, mirrors, sewage tanks, asbestos ceilings and so on. |
House for seawater desalination plant | Footing F1, F2, column stump C1, concrete floor, expansion joint, rooftop, 1 column |
Pump house | Concrete floors, steel frames, roofs, locks |
Water tank | Hardcore, concrete, BRC, cement, FWK, PE tank, accessories |
Distribution pipeline | Concrete floors, brick walls, plaster, tap |
Entrance road | Sand, CR300 mm, binder, wearing |
Surface drainage system | Drain, sump |
Plumbing system | HDPE, water intake to salt water tanks, concrete blocks etc. |
Environmental indicator for CO2 Kg CO2/m3 | 6 |
Environmental indicator for SO2, Kg SO2/m3 | 0.005 |
Environmental indicator for NOx Kg NOx/m3 | 0.009 |
Fuel resource indicator, Kg fuel /m3 | 1.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghani, L.A.; Ali, N.; Nazaran, I.S.; Hanafiah, M.M.; Yatim, N.I. Carbon Footprint-Energy Detection for Desalination Small Plant Adaptation Response. Energies 2021, 14, 7135. https://doi.org/10.3390/en14217135
Ghani LA, Ali N, Nazaran IS, Hanafiah MM, Yatim NI. Carbon Footprint-Energy Detection for Desalination Small Plant Adaptation Response. Energies. 2021; 14(21):7135. https://doi.org/10.3390/en14217135
Chicago/Turabian StyleGhani, Latifah Abdul, Nora’aini Ali, Ilyanni Syazira Nazaran, Marlia M. Hanafiah, and Norhafiza Ilyana Yatim. 2021. "Carbon Footprint-Energy Detection for Desalination Small Plant Adaptation Response" Energies 14, no. 21: 7135. https://doi.org/10.3390/en14217135
APA StyleGhani, L. A., Ali, N., Nazaran, I. S., Hanafiah, M. M., & Yatim, N. I. (2021). Carbon Footprint-Energy Detection for Desalination Small Plant Adaptation Response. Energies, 14(21), 7135. https://doi.org/10.3390/en14217135