Solid Digestate—Physicochemical and Thermal Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Fuel
2.2. Fuel Characterization Analyses
2.3. Chemical Analyzes
2.4. Fuel Value Index
2.5. Thermogravimetric Analysis
2.6. Calculations of Kinetic Parameters
2.7. Differential Scanning Calorimetry
3. Results and Discussion
3.1. Physical and Chemical Characteristics
3.2. Combustion Behavior of Tested Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bavutti, M.; Guidetti, L.; Allesina, G.; Libbra, A.; Muscio, A.; Pedrazzi, S. Thermal stabilization of digesters of biogas plants by means of optimization of the surface radiative properties of the gasometer domes. Energy Procedia 2014, 45, 1344–1353. [Google Scholar] [CrossRef] [Green Version]
- Grinzi, G.; Guidetti, L.; Allesina, G.; Libbra, A.; Martini, P.; Muscio, A. Increase of net power generation of biogas plants by reduction of heat loss. In Proceedings of the 20th European Biomass Conference and Exhibition, Milano, Italy, 18–22 June 2012; ETA-Florence Renewable Energies: Munich, Germany, 2012. [Google Scholar]
- Negri, M.; Bacenetti, J.; Brambilla, M.; Manfredini, A.; Cantore, A.; Bocchi, S. Biomethane production from different crop systems of cereals in Northern Italy. Biomass Bioenergy 2014, 63, 321–329. [Google Scholar] [CrossRef]
- Lootsma, A.; Raussen, T. Aktuelle verfahren zur aufbereitung und verwertung von gärresten. Witzenhausen-Institut GmbH (Hrsg.) 2008, 20, 559–576. [Google Scholar]
- Szufa, S.; Piersa, P.; Adrian, Ł.; Czerwińska, J.; Lewandowski, A.; Lewandowska, W.; Sielski, J.; Dzikuć, M.; Wróbel, M.; Jewiarz, M.; et al. Sustainable Drying and Torrefaction Processes of Miscanthus for Use as a Pelletized Solid Biofuel and Biocarbon-Carrier for Fertilizers. Molecules 2021, 26, 1014. [Google Scholar] [CrossRef]
- Szufa, S.; Wielgosiński, G.; Piersa, P.; Czerwińska, J.; Dzikuć, M.; Adrian, Ł.; Lewandowska, W.; Marczak, M. Torrefaction of straw from oats and maize for use as a fuel and additive to organic fertilizers—TGA analysis, kinetics as products for agricultural purposes. Energies 2020, 13, 2064. [Google Scholar] [CrossRef] [Green Version]
- Dohler, H.; Schliebner, P. Verfahren und Wirtschaftlichkeit der Garrestaufbereitung. KTBL SCHRIFT 2006, 444, 199. [Google Scholar]
- Vismara, R.F.; Canziani, R.; Malpei, F.; Piccinini, S. Biogas da Agrozootecnia e Agroindustria; Dario Flaccovio: Milano, Italy, 2011. [Google Scholar]
- European Commission. Council Directive 91/676/EEC of 12 December 1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources. Off. J. Eur. Communities 1991, 375, 1–8. [Google Scholar]
- Härdtlein, M.; Eltrop, L.; Thrän, D. Voraussetzung zur Standardisierung Biogener Festbrennstoffe; Schriftenreihe “Nachwachsende Rohstoffe” der Fachagentur Nachwachsende Rohstoffe, Landwirtschaftsverlag GmBH: Münster, Germany, 2004; Volume 23. [Google Scholar]
- Kratzeisen, M.; Starcevic, N.; Martinov, M.; Maurer, C.; Müller, J. Applicability of biogas digestate as solid fuel. Fuel 2010, 89, 2544–2548. [Google Scholar] [CrossRef]
- Li, H.; Lindmark, J.; Nordlander, E.; Thorin, E.; Dahlquist, E.; Zhao, L. Using the solid digestate from a wet anaerobic digestion process as an energy resource. Energy Technol. 2013, 1, 94–101. [Google Scholar] [CrossRef]
- Gudde, J. Manure Digestate Combustion for Decentralized Energy Production: Research About the Feasibility of the Manure Digestate Combustion Processing Route; Internship Report (Master); Twence B.V. Afval en energie: Hengelo, The Netherlands, 2012. [Google Scholar]
- Pedrazzi, S.; Allesina, G.; Belló, T.; Rinaldini, C.A.; Tartarini, P. Digestate as bio-fuel in domestic furnaces. Fuel Process. Technol. 2015, 130, 172–178. [Google Scholar] [CrossRef]
- Barfuss, I.; Gwavuya, S.; Abele, S.; Müller, J. Biogas production vs. dung combustion as household energy in rural Ethiopia. In Proceedings of the CIGR International Symposium on Sustainable Bioproduction—Water, Energy and Food, Stuttgart, Germany, 2013; Available online: http://opus.uni-hohenheim.de/volltexte/2013/816/pdf/Barfuss_2011a.pdf (accessed on 15 October 2021).
- Thorin, E.; Guziana, B.; Song, H.; Jääskeläinen, A.; Szpadt, R.; Vasilic, D.; Ahrens, T.; Anne, O.; Lõõnik, J. Potential Future Waste-to-Energy Systems. REMOWE Reports; Report no: 4.1.3; Mälardalen University: Västerås, Sweden, 2012; Available online: http://mdh.diva-portal.org/smash/get/diva2:583809/FULLTEXT01.pdf (accessed on 15 October 2021).
- Wiśniewski, D.; Gołaszewski, J.; Białowiec, A. The pyrolysis and gasification of digestate from agricultural biogas plant/Piroliza i gazyfikacja pofermentu z biogazowni rolniczych. Arch. Environ. Protection. 2015, 42, 70–75. [Google Scholar] [CrossRef] [Green Version]
- Mudryk, K.; Frączek, J.; Jewiarz, M.; Wróbel, M.; Dziedzic, K. Analysis of mechanical dewatering of digestate. Agric. Eng. 2016, 20, 157–166. [Google Scholar] [CrossRef] [Green Version]
- EN ISO 14780:2017-07. Solid Biofuels—Sample Preparation; European Committee for Standardization: Geneva, Switzerland, 2017. [Google Scholar]
- EN ISO 18134-3:2015-11. Solid Biofuels—Determination of Moisture Content—Oven Dry Method—Part 3: Moisture in General Analysis Sample; European Committee for Standardization: Geneva, Switzerland, 2015. [Google Scholar]
- EN ISO 18122:2016-01. Solid Biofuels—Determination of Ash Content; European Committee for Standardization: Geneva, Switzerland, 2016. [Google Scholar]
- EN ISO 18123:2016-0. Solid Biofuels—Determination of the Content of Volatile Matter; European Committee for Standardization: Geneva, Switzerland, 2016. [Google Scholar]
- EN ISO 18125:2017-07. Solid Biofuels—Determination of Calorific Value; European Committee for Standardization: Geneva, Switzerland, 2017. [Google Scholar]
- EN ISO 17828:2016-02. Solid Biofuels—Determination of Bulk Density; European Committee for Standardization: Geneva, Switzerland, 2016. [Google Scholar]
- ASTM B923—16. Standard Test Method for Metal Powder Skeletal Density by Helium or Nitrogen Pycnometry; ASTM International: West Conshohocken, PA, USA, 2016. [Google Scholar]
- EN ISO 16948:2015-07. Solid Biofuels—Determination of Total Content of Carbon, Hydrogen and Nitrogen—Instrumental Methods; European Committee for Standardization: Geneva, Switzerland, 2015. [Google Scholar]
- EN ISO 16994:2015-06. Solid Biofuels—Determination of Total Content of Sulfur and Chlorine; European Committee for Standardization: Geneva, Switzerland, 2015. [Google Scholar]
- DIN 51733:2008-12. Testing of Solid Mineral Fuels—Ultimate Analysis and Calculation of Oxygen Content; German Institute for Standardization: Berlin, Germany, 2008. [Google Scholar]
- Faithfull, N.T. Methods in Agricultural Chemical Analysis: A Practical Handbook; Cabi Publishing: New York, NY, USA, 2002. [Google Scholar]
- Oleszczuk, N.; Castro, J.T.; da Silva, M.M.; Maria das Graças, A.K.; Welz, B.; Vale, M.G.R. Method development for the determination of manganese, cobalt and copper in green coffee comparing direct solid sampling electrothermal atomic absorption spectrometry and inductively coupled plasma optical emission spectrometry. Talanta 2007, 73, 862–869. [Google Scholar] [CrossRef]
- Goel, V.L.; Behl, H.M. Fuelwood quality of promising tree species for alkaline soil sites in relation to tree age. Biomass Bioenergy 1996, 10, 57–61. [Google Scholar] [CrossRef]
- Flynn, J.H.; Wall, L.A. General treatment of the thermogravimetry of polymers. Journal of research of the National Bureau of Standards. Sect. A Phys. Chem. 1966, 70, 487. [Google Scholar]
- Ozawa, T. A new method of analyzing thermogravimetric data. Bull. Chem. Soc. Jpn. 1965, 38, 1881–1886. [Google Scholar] [CrossRef] [Green Version]
- Kissinger, H.E. Reaction kinetics in differential thermal analysis. Anal. Chem. 1957, 29, 1702–1706. [Google Scholar] [CrossRef]
- Akahira, T.; Sunose, T. Method of determining activation deterioration constant of electrical insulating materials. Res. Rep. Chiba Inst. Technol. (Sci. Technol.) 1971, 16, 22–31. [Google Scholar]
- Holtmeyer, M.L.; Li, G.; Kumfer, B.M.; Li, S.; Axelbaum, R.L. The impact of biomass cofiring on volatile flame length. Energy Fuels 2013, 27, 7762–7771. [Google Scholar] [CrossRef]
- Brewer, C.E.; Chuang, V.J.; Masiello, C.A.; Gonnermann, H.; Gao, X.; Dugan, B.; Driverc, L.E.; Panzacchide, P.; Zygourakisb, K.; Daviese, C.A. New approaches to measuring biochar density and porosity. Biomass Bioenergy 2014, 66, 176–185. [Google Scholar] [CrossRef]
- Niemczyk, M.; Kaliszewski, A.; Jewiarz, M.; Wróbel, M.; Mudryk, K. Productivity and biomass characteristics of selected poplar (Populus spp.) cultivars under the climatic conditions of northern Poland. Biomass Bioenergy 2018, 111, 46–51. [Google Scholar] [CrossRef]
- Pahla, G.; Mamvura, T.A.; Ntuli, F.; Muzenda, E. Energy densification of animal waste lignocellulose biomass and raw biomass. S. Afr. J. Chem. Eng. 2017, 24, 168–175. [Google Scholar] [CrossRef]
- Koppejan, J.; Van Loo, S. (Eds.) The Handbook of Biomass Combustion and Co-Firing; Routledge: London, UK, 2012. [Google Scholar]
- Miles, T.R. Alkali Deposits Found in Biomass Power Plants; Research Report NREL/TP-433-8142 SAND96-8225; National Renewable Energy Laboratory: Oakridge, BC, Canada, 1996; Volumes I and II. [Google Scholar]
- Riedl, R.; Obernberger, I. Corrosion and fouling in boilers of biomass combustion plants. In Proceedings of the 9th European Bioenergy Conference, Copenhagen, Denmark, 24–27 June 1996; Elsevier Science: Oxford, UK, 1996; Volume 2. [Google Scholar]
- Spiegel, M.; Grabke, H.J. Hochtemperaturkorrosion des 2.25 Cr-1Mo-Stahls unter simulierten Müllverbrennungsbedingungen. Mater. Corros. 1995, 46, 121–131. [Google Scholar] [CrossRef]
- Obernberger, I.; Biedermann, F.; Kohlbach, W. FRACTIO—Fraktionierte Schwermetallabscheidung in Biomasseheizwerken, Annual Report for a Research Project Funded by the ITF and the Bund-Bundesländerkooperation; Institute of Chemical Engineering, Graz University of Technology: Graz, Austria, 1995. [Google Scholar]
- Ruckenbauer, P.; Obernberger, I.; Holzner, H. Erforschung der 52 The Handbook of Biomass Combustion and Co-firing Verwendungsmöglichkeiten von Aschen aus Hackgut-und Rindenfeuerungen, Final Report; Part II Research Project No. StU 48, Bund-Bundesländerkooperation; Institute of Plant Breeding and Plant Growing, University for Agriculture and Forestry: Vienna, Austria, 1996. [Google Scholar]
Test Fuel Symbol | Feedstock Composition | Share of Fresh Matter |
---|---|---|
10CS90AP | CS | 10 |
AP | 90 | |
25CS75AP | CS | 25 |
AP | 75 | |
50CS50AP | CS | 50 |
AP | 50 | |
75CS25AP | CS | 75 |
AP | 25 |
Parameter | Method |
---|---|
Sample preparation | EN ISO 14780:2017-07 |
Carbon, hydrogen, nitrogen content | EN ISO 16948:2015-07 |
Sulfur and chlorine content | EN ISO 16994:2016-10 |
Oxygen content | DIN 51733:2008-12 |
Ash content | EN ISO 18122:2016-01 |
Volatile matter content | EN ISO 18123:2016-01 |
Calorific value | EN ISO 18125:2017-07 |
Moisture content | EN ISO 18134-1:2015-11 |
Density | EN ISO 18847:2016-11 |
Na, Mg, K, Ca, P, Cr, Mn, Fe, Ni, Cu, Zn, Cd, Pb | [18] |
Parameter | Unit | Digestate Type | |||
---|---|---|---|---|---|
10CS90AP | 25CS75AP | 50CS50AP | 75CS25AP | ||
Mad | % | 12.10 | 12.20 | 11.90 | 11.90 |
Ad | % | 8.20 | 8.40 | 10.10 | 11.60 |
Vd | % | 83.10 | 89.80 | 79.70 | 78.80 |
HHV | J g−1 | 19,600 | 18,550 | 18,310 | 16,420 |
LHV | J g−1 | 18,410 | 17,140 | 17,110 | 15,340 |
SD | g cm3 | 0.88 | 0.88 | 0.82 | 0.89 |
AD | g cm3 | 1.53 | 1.55 | 1.56 | 1.53 |
p | % | 42.50 | 43.20 | 47.10 | 41.80 |
FVI | - | 173.80 | 159.30 | 124.90 | 105.90 |
Parameter | Unit | Digestate Type | |||
---|---|---|---|---|---|
10CS90AP | 25CS75AP | 50CS50AP | 75CS25AP | ||
C | % | 44.700 | 44.600 | 45.900 | 44.400 |
H | % | 6.100 | 6.300 | 6.400 | 6.300 |
N | % | 0.900 | 1.400 | 1.400 | 1.500 |
O | % | 29.600 | 32.600 | 31.400 | 32.400 |
S | % | 0.100 | 0.100 | 0.200 | 0.200 |
Cl | % | 0.310 | 0.290 | 0.3400 | 0.360 |
H/C | - | 0.140 | 0.140 | 0.140 | 0.140 |
O/C | - | 0.660 | 0.730 | 0.680 | 0.730 |
Na | mg kg−1 | 4.448 | 99.900 | 64.840 | 49.110 |
Mg | mg kg−1 | 45.330 | 112.300 | 110.900 | 111.700 |
K | mg kg−1 | 536.900 | 871.300 | 789.800 | 726.100 |
Ca | mg kg−1 | 77.100 | 2271.000 | 1607.000 | 998.200 |
P | mg kg−1 | 100.900 | 205.000 | 239.700 | 241.200 |
Cr | mg kg−1 | 0.026 | 0.403 | 0.108 | 0.0790 |
Mn | mg kg−1 | 1.003 | - | 47.610 | 36.460 |
Fe | mg kg−1 | 2.665 | 17.900 | 17.460 | 12.770 |
Ni | mg kg−1 | 0.060 | 8.360 | 0.292 | 0.062 |
Cu | mg kg−1 | 0.272 | 0.402 | 0.838 | 0.756 |
Zn | mg kg−1 | 0.498 | 8.470 | 4.007 | 7.710 |
Cd | mg kg−1 | 0.004 | 0.016 | 0.010 | 0.008 |
Pb | mg kg−1 | 0.515 | 0.946 | 0.248 | 0.326 |
α | OFW | KAS | ||
---|---|---|---|---|
E kJ mol−1 | R2 | E kJ mol−1 | R2 | |
0.050 | 25.100 | 0.075 | 18.800 | 0.040 |
0.075 | 84.200 | 0.248 | 80.500 | 0.214 |
0.100 | 156.400 | 0.462 | 156.300 | 0.436 |
0.125 | 210.100 | 0.644 | 212.500 | 0.626 |
0.150 | 236.400 | 0.765 | 240.100 | 0.752 |
0.175 | 247.200 | 0.838 | 251.400 | 0.829 |
0.200 | 250.100 | 0.885 | 254.100 | 0.879 |
0.225 | 249.600 | 0.915 | 253.700 | 0.910 |
0.250 | 247.100 | 0.936 | 250.200 | 0.933 |
0.275 | 243.700 | 0.951 | 247.400 | 0.947 |
0.300 | 240.400 | 0.961 | 243.800 | 0.958 |
0.325 | 236.800 | 0.967 | 240.000 | 0.965 |
0.350 | 233.800 | 0.973 | 236.800 | 0.971 |
0.375 | 230.600 | 0.975 | 233.300 | 0.973 |
0.400 | 228.600 | 0.978 | 231.200 | 0.976 |
0.425 | 227.100 | 0.979 | 229.500 | 0.978 |
0.450 | 225.300 | 0.981 | 227.700 | 0.979 |
0.475 | 223.500 | 0.982 | 225.700 | 0.981 |
0.50 | 220.600 | 0.984 | 222.600 | 0.983 |
0.525 | 216.900 | 0.986 | 218.500 | 0.985 |
0.550 | 211.500 | 0.988 | 212.800 | 0.987 |
0.575 | 205.000 | 0.991 | 205.900 | 0.989 |
0.600 | 199.500 | 0.993 | 200.100 | 0.993 |
0.625 | 195.700 | 0.996 | 195.900 | 0.995 |
0.650 | 191.900 | 0.998 | 191.800 | 0.997 |
0.675 | 183.900 | 0.999 | 183.300 | 0.999 |
0.700 | 174.700 | 0.999 | 173.300 | 0.999 |
0.725 | 169.400 | 1.000 | 167.600 | 1.000 |
0.750 | 173.400 | 0.999 | 171.600 | 0.999 |
0.775 | 180.400 | 0.999 | 178.700 | 0.999 |
0.800 | 188.200 | 0.998 | 186.900 | 0.998 |
0.825 | 194.600 | 0.997 | 193.500 | 0.996 |
0.850 | 201.100 | 0.996 | 200.100 | 0.996 |
0.875 | 207.600 | 0.996 | 206.800 | 0.996 |
0.900 | 209.200 | 0.998 | 208.400 | 0.998 |
0.925 | 204.800 | 0.999 | 203.600 | 0.999 |
0.950 | 203.700 | 0.998 | 202.100 | 0.998 |
0.975 | 205.600 | 0.963 | 203.800 | 0.958 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dziedzic, K.; Łapczyńska-Kordon, B.; Jurczyk, M.; Arczewska, M.; Wróbel, M.; Jewiarz, M.; Mudryk, K.; Pająk, T. Solid Digestate—Physicochemical and Thermal Study. Energies 2021, 14, 7224. https://doi.org/10.3390/en14217224
Dziedzic K, Łapczyńska-Kordon B, Jurczyk M, Arczewska M, Wróbel M, Jewiarz M, Mudryk K, Pająk T. Solid Digestate—Physicochemical and Thermal Study. Energies. 2021; 14(21):7224. https://doi.org/10.3390/en14217224
Chicago/Turabian StyleDziedzic, Krzysztof, Bogusława Łapczyńska-Kordon, Michał Jurczyk, Marta Arczewska, Marek Wróbel, Marcin Jewiarz, Krzysztof Mudryk, and Tadeusz Pająk. 2021. "Solid Digestate—Physicochemical and Thermal Study" Energies 14, no. 21: 7224. https://doi.org/10.3390/en14217224
APA StyleDziedzic, K., Łapczyńska-Kordon, B., Jurczyk, M., Arczewska, M., Wróbel, M., Jewiarz, M., Mudryk, K., & Pająk, T. (2021). Solid Digestate—Physicochemical and Thermal Study. Energies, 14(21), 7224. https://doi.org/10.3390/en14217224