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Abstract: Large-Eddy Simulations (LES) of a gasoline spray, where the mixture was ignited rapidly
during or after injection, were performed in comparison to a previous experimental study with quan-
titative flame motion and soot formation data [SAE 2020-01-0291] and an accompanying Reynolds-
Averaged Navier–Stokes (RANS) simulation at the same conditions. The present study reveals major
shortcomings in common RANS combustion modeling practices that are significantly improved
using LES at the conditions of the study, specifically for the phenomenon of rapid ignition in the
highly turbulent, stratified mixture. At different ignition timings, benchmarks for the study include
spray mixing and evaporation, flame propagation after ignition, and soot formation in rich mixtures.
A comparison of the simulations and the experiments showed that the LES with Dynamic Structure
turbulence were able to capture correctly the liquid penetration length, and to some extent, spray col-
lapse demonstrated in the experiments. For early and intermediate ignition timings, the LES showed
excellent agreement to the measurements in terms of flame structure, extent of flame penetration, and
heat-release rate. However, RANS simulations (employing the common G-equation or well-stirred
reactor) showed much too rapid flame spread and heat release, with connections to the predicted
turbulent kinetic energy. With confidence in the LES for predicted mixture and flame motion, the
predicted soot formation/oxidation was also compared to the experiments. The soot location was
well captured in the LES, but the soot mass was largely underestimated using the empirical Hiroyasu
model. An analysis of the predicted fuel–air mixture was used to explain different flame propagation
speeds and soot production tendencies when varying ignition timing.

Keywords: mixed-mode combustion; direct injection gasoline spray; Large-Eddy simulations; flame
propagation; soot; mixture preparation

1. Introduction

Increasingly stringent vehicle emission regulations and fuel efficiency requirements
continue to drive innovations for internal combustion engines [1]. In the context of spark
ignition (SI) engines, gasoline direct injection (GDI) has been extensively adopted over
port-fuel injection. GDI engines have proven to be superior in terms of fuel economy
and control during startup, leveraging the ability directly affect the air–fuel ratio in the
combustion chamber. While GDI engines typically operate at homogenous and stoichio-
metric conditions because of after-treatment requirements, lean combustion can deliver
higher efficiency, but emissions formed within the cylinder must be minimized. In addition,
applications of fuel-lean operation can be problematic because of the intrinsically low flame
speeds and the susceptibility to instabilities. To overcome these difficulties, spark-assisted
compression ignition (SACI) or mixed-mode combustion is a promising strategy. In such
configuration, the fuel is first injected to create a well-mixed, fuel-lean charge. Then, a
second fuel injection event (or multiple injections), delivered later during compression, is
performed to create locally enriched stratified mixtures. The enriched mixtures may be
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designed to provide sequential auto-ignition to control and slow heat release [2], or the
enriched mixtures may be spark-ignited to generate higher heat release that eventually
brings the rest of the fuel-lean charge into controlled auto-ignition, known as spark-assisted
compression ignition or mixed-mode combustion [3,4]. This emerging advanced engine
combustion technology featuring high efficiency, low emission, and stable operation at the
same time, has been demonstrated in the Mazda’s Skyactive-X Engine [5] under the name
spark-controlled compression ignition.

Lean combustion under mixed-mode conditions has been extensively studied over
the last years using optical engines with optical diagnostics [4,6–9]. By analyzing the
heat release and flame imaging, Hu et al. [8] demonstrated that the combustion has three
distinct stages. In this first stage, the pilot-injected fuel ignited by a spark creates a partially
premixed flame propagating into rich mixture resulting in high flame incandescence signal.
The second stage involves blue flame propagation in a well-mixed lean mixture. The third
stage is the compression auto-ignition of a well-mixed and typically very lean end-gas.

For this type of multi-physics problem, computational fluid dynamics (CFD) might
be applied to better understand the governing physics involved in the different com-
bustion processes observed in optical engines. Xu et al. simulated the Sandia DISI en-
gine [4] using Reynolds-averaged Navier–Stokes (RANS) [10] and Large-Eddy simulation
(LES) [11] approaches. The authors used a hybrid level-set G-equation/well-stirred reactor
technique [12] to predict turbulent combustion associated with both flame propagation
and end-gas auto-ignition keeping an acceptable CPU cost. The RANS simulations cap-
tured correctly the heat release corresponding to both flame propagation and auto-ignition
when the mixture is spark-ignited long enough after the last injection (231 crank angle
degrees) [10]. However, RANS simulations, unlike LES, overestimated the first peak of
heat release attributed to flame propagation when the mixture is ignited during the pilot
injection [11]. While the differences between RANS and LES heat release predictions are
plain, the authors of [11] did not accompany data or analysis to understand the reason for
this difference.

The combustion processes listed above, and the resulting pollutant emissions, strongly
depend on the fuel mixture preparation. Therefore, it is critical to enhance the quantitative
understanding of mixture creation. Although there are few prior studies available on
quantitative mixture measurements in gasoline engines [13,14], a detailed understanding of
the fuel-air stratification is still limited due to the complexity of engine flow fields, making
the comparison between CFD and experiments most of the time only qualitative.

These challenges motivated our previous experimental work [15,16] as well as CFD
simulations [16]. With the help of a variety of optical diagnostics techniques, we conducted
the experiments in an optically accessible well-controlled chamber under near-quiescent
environments. We targeted conditions representative of a late-injection, spark-ignition
direct injection (SIDI) gasoline engine operating in a multi-mode combustion regime. After
the end-of-injection, the mixture is laser ignited. The effect of different ignition timings was
investigated by tracking the temporally and spatially behavior of the high-temperature
flame and the soot field. Quantitative measurements of soot formation/oxidation showed
that increasing the delay between the end of injection and ignition drastically reduces soot
formation without necessarily compromising combustion efficiency. Subsequently, RANS
simulations were performed [16] to assess spray mixing and combustion under the same
conditions that were studied experimentally. An analysis of the predicted fuel–air mixture
in key regions indicates that soot production can be avoided if the flame propagates into
regions where the equivalence ratio (Φ) is already below 2. However, this analysis was
limited to non-reactive conditions as the flame speed was massively overestimated because
of the very high level of turbulent viscosity predicted for the high-momentum spray in the
RANS simulations.

The present study extends our previous works [15,16] by sharing the same objective:
providing a better prediction of the fuel–air mixture produced by the spray, to gain better
understanding of the ignition, flame propagation, and soot formation/oxidation processes.
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Compared to our previous RANS simulations, we found significant improvements in
predictability when using a Dynamic Structure LES turbulence model [17] in simulations,
coupled with a reduced mechanism and an empirical soot model. The simulations were
computationally intensive (75 million cell count), but did overcome the limitations pre-
sented in [16]. Our objective here is to use these detailed simulations to provide insights
into the underlying flame and soot behavior by analyzing the fuel–air mixture, and to offer
suggestions for how this understanding may be used to offer new simulations and models
for this type of combustion in the future. All of the experimental results presented in this
work come from the works in [15,16]. The organization of the paper is as follows. The
numerical setup is presented first. Then, a comparison of the liquid spray between the
experiments and the simulations is proposed. Next, the high-temperature flame is studied
after igniting the mixture at different timings. Following the same methodology, the soot
formation/oxidation is compared to the experiments. Finally, a detailed analysis of the
mixing is proposed to provide more information on the relation between the local fuel–air
mixture and the soot production.

2. Computational Setup
2.1. Operating Conditions

The operating conditions simulated in this work are described in our previous study
conducted in a high-pressure constant-volume combustion vessel [16]. The conditions
are representative of a late-injection, spark-ignition direction injection gasoline engine
operating in a multi-mode combustion regime, as shown in Table 1 by the high-temperature
(850 K) and density (15 kg/m3).

Table 1. Operating conditions simulated.

Operating Conditions

Oxygen concentration (vol %) 21
Injection pressure (bar) 170

Ambient density (kg/m3) 15
Ambient pressure (bar) 36.8

Ambient temperature (K) 850

2.2. Spray-Related Numerical Setup

Iso-octane is injected in the computational domain by an 8-hole symmetric injector.
The Lagrangian spray boundary conditions inputs, listed in Table 2 and illustrated in
Figure 1, aim to model the Bosch HDEV 1.2 injector (more details on the injector can be
found in [18]). The Lagrangian parcels are injected at the exit of the counterbore, as shown
in Figure 1, where the initial diameter of the parcels is set to 0.14 mm. Experimental
observations made on the ECN Spray G injector [19] showed that the plume direction angle
was smaller than the drill angle during injection. Therefore, the plume direction angle input
is set to 22.5◦, which is 4◦ smaller than the drill angle measured in [18]. As no near-field
spray measurements were available for this injector, at the studied operating conditions, the
cone angle has been adjusted to provide satisfactory agreement to the experiments in terms
of mixture and overall vapor and flame penetration. A cone angle of 40◦ was selected for
this study. Note that the cone angle has been significantly increased (10◦) compared to the
RANS study to capture the strong spray collapsing observed in the experiments. The need
to increase cone angle is also influenced by the switch to LES. Past studies have shown that
larger plume cone angle specifications may be required to produce plume growth similar
to RANS simulations [20]. A deeper analysis of the liquid spray measurement revealed that
the injection duration in our previous numerical study [16] was underestimated by 0.09 ms.
Therefore, the injection duration and the total fuel mass injected have been increased to
better match the latest experimental observation (see Table 2).
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Table 2. Injector characteristics as well as spray inputs used in the simulations.

Injector and Spray Inputs

Iso-octane injected mass (mg) 13
Actual injection duration (ms) 1.158

Nozzle diameter (mm) 0.14
Discharge coefficient (-) 0.7

Cone angle (◦) 40
Plume direction angle (◦) 26.5

Figure 1. Schematic of the Bosch HDEV 1.2 injector with the plume cone angle as well as the plume
direction angle, used as inputs in the LES. Angles and distances are not to scale.

2.3. Non-Reactive Numerical Setup

The simulations are performed in a computational domain representative of the real
vessel geometry, allowing a direct comparison of the pressure rise between the LES and
the experiments. Both fixed cell embedding and adaptive mesh refinement (AMR) are
used to refine the spray plumes and the high-temperature flame as shown in Figure 2.
The AMR is activated on velocity and temperature gradients. The fixed embedding zone
is a 10 mm length cone, centered on the injector with a first radius of 2 mm at the nozzle
holes and a second radius of 4 mm downstream. Existing literature for diesel [21–23] and
gasoline [10,24] sprays indicate that minimum cell size between 125 µm and 62.5 µm is
required for well-resolved LES in CONVERGE. Because predicting accurately the mixing
field is crucial in this work, we choose 62.5 µm as our minimum cell size in the fixed
embedding and AMR regions. To investigate the validity of our meshing strategy, we also
examine the Turbulent Kinetic Energy (TKE) ratio as well as mixing field predicted by
current LES setup. The TKEratio is defined as

TKEratio =
TKE

TKE + K
(1)

where the K is resolved kinetic energy. Figure 2a shows the instantaneous time snapshot
of the equivalence ratio and TKEratio (b) at 1.8 ms for a case where the mixture is ignited
at 1.52 ms. The flow field is considered well-resolved when its TKEratio is less than 20%,
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as suggested by Pope [25]. Figure 2b shows that the simulations are under-resolving the
flow field at the few locations around the radial edges of the jet. However, the jet center
region, which is the bulk of the flow field, is considered well resolved. Therefore, the
computational setup we are using is appropriate for this study.

Figure 2. Slices of equivalence ratio (a) and TKEratio (b) showing the grid layout at 1.8 ms (0.28 ms after ignition and 0.64 ms
after the end of injection). The grid resolution in the AMR and in the fixed embedding region is 62.5 µm. The injector is
located at (Z = 0; Y = 0).

The one-equation Dynamic Structure LES model [17] is employed in this study. This
non-viscosity based model calculates the sub-grid stress tensor using the sub-grid turbulent
kinetic energy and Favre averaged velocities. Table 3 shows the numerical choices made
in terms of turbulence, breakup, vaporization, drag and dispersion models. Note that the
recent Corrected Distortion model [26] has been used, accounting for the non-sphericity of
the drops.

Table 3. Numerical setup and models parameters.

Numerical Setup

CFD code CONVERGE V3.0
Computational domain Constant volume vessel

Type of grid AMR and fixed embedding
Base grid (mm) 2

Embedding level for AMR and fixed
embedding (-) 5

Maximum grid resolution (µm) 62.5
Peak cell count (-) 75 million
Turbulence model LES dynamic structure [17]
Time integration Crank–Nicolson and backward Euler

Number of parcel injected 1,024,000 per nozzle
Breakup model KH-RT [27] (B0 = 0.6 and B1 = 5)

Vaporization Frossling [28] and CD [26]
Droplet collision No time counter (NTC) [29]

Droplet drag Dynamic sphere [30] and CD [26]
Droplet dispersion O’Rouke [28]

2.4. Reactive Numerical Setup

The SAGE combustion model [31] has been used with the Liu mechanism [32] com-
posed of 41 species and 124 reactions.
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This mechanism has been validated against various experimental data including
shock tube, jet-stirred reactor, flow reactor, premixed laminar flame speed, and internal
combustion engines over a wide range of temperatures, pressures, and equivalence ratios.
However, because of the high ambient temperature (850 K) and pressure (36.8 bar) in
the vessel, we judged it necessary to validate the premixed flame performance of the
mechanism for such critical conditions. Figure 3 shows the laminar flame speed as a
function of the equivalence ratio Φ for the Liu mechanism and a detailed mechanism
proposed by Mehl et al. [33] composed of 874 species. The pressure is constant in the 1D
domain and the initial temperature is determined assuming an adiabatic mixing process
between the ambient gas and the vapor fuel. The length of the 1D domain is 1 mm, sufficient
to stabilize the 1D premixed flame in the middle of the domain without interactions with
auto-ignition sites ahead of it, as discussed in [34] (this problem is also known as the “cold
boundary problem” [35]). Figure 3 shows that the Liu mechanism slightly under-predicts
the laminar flame speed compared to the detailed mechanism (by 16% for Φ = 1). However,
the performance is adequate to address the high pressure and temperature conditions of
this study, while reducing the computational expense.

Figure 3. Laminar 1D premixed flame speed comparison between the reduced Liu [32] mechanism
and the detailed Mehl [33] mechanism. The pressure is 36.8 bar.

The laser ignition performed in the experiments to ignite the mixture is modeled
imposing a source term of 80 mJ in the energy equation. Following the experimental
observations, described in [16], the mixture is ignited at 17.4 mm downstream of the
injector with a conical shape approximating the focusing beam, with 4 mm length and
2 to 0.25 mm width centered at 3 mm from the spray axis. Ignition is performed at three
different timings after the end of injection (one ignition per simulation): one immediately
at the end of injection (1.12 ms) and two others later, 1.52 and 1.92 ms.

The empirical Hiroyasu soot model [36] is used to predict soot formation. It as-
sumes that the mass production of soot within a computational cell is determined from
a single-step competition between formation and oxidation rates. The soot formation
rate depends on the soot precursor C2H2. Soot oxidation is modeled using Nagle and
Strickland–Constable correlations [37] assuming the soot particles to be spherical and
uniform in size. Table 4 summarizes the model parameters related to combustion and soot.
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Table 4. Combustion and soot models.

Combustion and Soot

Combustion model WSR (SAGE)
Chemical mechanism 44 species Liu et al. [32]
Ignition methodology Energy source term

Ignition duration 20 µs
Ignition timing 1.12; 1.52; 1.92 ms ASOI

Soot model Hiroyasu [36] (C2H2 used as soot precursor)

2.5. Organization of the Simulations

A total of seven LES have been performed in this study: two realizations each for cases
with ignition at 1.12 and 1.92 ms, plus three realizations for ignition at 1.52 ms. Two RANS
simulations (using the standard RANS k− ε turbulence model) with ignition at 1.52 ms
have been performed to verify the conclusion made in previous study [16]. The numerical
setup of the RANS simulation is available in [16]. The duration of the simulations is 10 ms,
covering the evolution of the flame and the soot cloud in time. The CPU cost of the overall
work is 220,000 CPU hours.

3. Liquid Spray Analysis

Diffused back-illumination extinction imaging (DBIEI), from our previous work [15,16],
offers the potential for a quantitative measurement of Projected Liquid Volume (PLV) in the
cross-stream direction. Numerous studies revealed that PLV allows rigorous comparison
between CFD results and the experiments [16,19,26]. Therefore, both Figures 4 and 5 utilize
the PLV to evaluate the performance of the simulations against the experiments in terms of
liquid phase. The PLV for both simulations and experimental measurements is defined as

PLV(x, z) =
∫ y∞

−y∞
LVF(x, y, z)dy, (2)

where the Liquid Volume Fraction (LVF) is defined as the percentage of liquid fuel volume
contained within a single Eulerian (gas) cell volume and y denotes any cross-stream
direction. The result PLV map is a function of both the axial direction (z) and the other
transverse direction (x).

Figure 4 shows the PLV at the early stage of injection (first row) and just before
the end of injection (second row) for both the experiments (left column) and the LES
(middle column). For a better comparison between the experiments and the LES, the color
scale in last column shows the PLV measured in the experiments while the black iso-line
shows the liquid boundary in the simulations. The red and black contour lines represent
the liquid boundary, defined as 2× 10−4 mm3liq./mm2 for both LES and experimental
results. The PLV shown in Figure 4 has been realization-averaged over five realizations
for both the LES and experiments to ensure that the conclusions made do not depend on a
singular event observed in one realization. At 200 µs after the start of injection (ASOI), the
experiments show strong interaction between the plumes, making it difficult to distinguish
the plumes. The LES also show interaction between plumes but to a lesser degree compared
to the experiments. The overall structure of the spray is reasonably well captured in the
simulations. At 1000 µs ASOI it is impossible to distinguish the plumes in the experiments
because of the very strong collapse, consequence of the high ambient density. However,
in the LES, separated plumes can still be observed, indicating an underestimation of the
spray interaction despite the fact that a relatively large cone angle (40◦) has been imposed
as the boundary condition. The plume bending towards spray collapse is quantified by
comparing the liquid width at 5 mm from the injector (indicated by the black arrows in
Figure 4) between 200 and 1000 µs ASOI. In the LES, the liquid spray width is decreased
by 13% between 200 and 1000 µs, while the experiments show a decrease of 61%. Such
observations indicate that the models used in this study only partially capture the physical
phenomena leading to spray collapse under these conditions.
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Figure 4. Projected liquid volume comparison between the experiments (EXP) and the simulations (LES) at the beginning
of injection and just before the end of injection (injection duration is 1.158 ms). Both EXP and LES images shown are
ensemble-averaged. The red and black iso-lines represent PLV = 2× 10−4 mm3 liq./mm2.

The performance of the simulations can also be evaluated by comparing the liquid-
penetration length between the LES results and the experiments as shown in Figure 5.
The solid lines represent the liquid length based on the ensemble-averaged PLV, while the
dashed lines show the liquid length for individual realizations. For both the LES and the
experiments, the liquid length is defined as the furthest distance where there is no break
in connected PLV (2× 10−4 mm3liq./mm2 threshold). This definition, called the “main
core liquid length” in [26], excludes small pockets of liquid detached from the main core,
causing high fluctuation in the liquid length for individual realizations. For both LES and
experimental results, the solid lines (ensemble-averaged) seem to be representative of the
liquid length observed in individual realizations, indicating that the number of realizations
was sufficient for this analysis. During the first half of injection (up to 0.6 ms), the LES are in
very good agreement to the experiments. Then, due to the strong collapse observed in the
experiments, the liquid length continues to rise in the experiments unlike the simulations.
Note that the liquid length differences between the measurement and the simulations are
partially caused by the non-symmetric behavior of some plumes in the experiments, which
is not modeled. Blessinger et al. [18] using the same injector, had already noticed such
behavior, performing side- and front-view Mie-scattering. This asymmetry can be observed
in Figure 4 at 1000 µs, where the liquid length, at the radial distance +2 mm penetrates
significantly more than at the radial distance −2 mm.

In conclusion, Figures 4 and 5 show that the simulations are matching well the
experiments during the first half of injection. Then, the simulations under-predict the level
of plume-to-plume interaction observed in the experiments, leading to underestimate the
liquid length by approximately 3–4 mm. Despite differences observed between LES and
experiments, the overall performance of the simulations is judged adequate to represent
key features of mixture, such as vaporization and spray collapse. A deeper evaluation of the
simulation against the experiments is provided in the section focusing on the combustion.
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Figure 5. Liquid length comparison between the experiments (EXP) and the simulations (LES). The
solid lines represent the liquid length computed using the ensemble-averaged PLV, while the dashed
lines show the liquid length for individual realizations.

4. Flame Propagation after Ignition

Figure 6 shows the pressure rise in the vessel after ignition at different timings for
the experiments and the simulations. The solid lines represent the pressure rise in the
experiments, the dashed lines show the LES results and for ignition at 1.52 ms. Moreover
two RANS simulations have been performed and are represented with the circular symbols.

For ignition at 1.12 ms (immediately at the end of injection) the LES agree with the
experiments at the initial rise in pressure to 3 ms, as well as the slower rise to 10 ms. The fact
that the onset, slope, and final value (at 10 ms) of the pressure rise are well captured in the
LES indicates that the mixture and the ignition source are well predicted in the simulations.
More details justifying these claims will be provided later in the article. The realization-to-
realization variability is low for both LES and experiments, generating confidence that the
simulation can be used with reliability to interpret the experiment.

Similar success in LES heat release fidelity is demonstrated for the ignition at 1.52 ms
(0.4 ms after the end of injection). The delayed heat release essentially catches up to
the 1.12 ms ignition case by approximately 3 ms. By contrast to the LES, two RANS
simulations show huge disparities compared to the experiment. The RANS simulations
include one with the SAGE combustion model [31] (identical numerical setup as our
previous study [16]) and another with the G-equation combustion model developed for
premixed flame applications [38]. Both RANS simulations largely overestimate the pressure
rise, with very fast flame propagation and large total burned charge. The main culprit,
regardless of the turbulent combustion model being employed, can be explained using the
following turbulent flame speed correlation [39]:

St = Sl + u′
(
−

a4b2
3

2b1
Da +

[(
a4b2

3
2b1

Da
)2

+ a4b2
3Da

]1/2)
(3)

where st, sl is the turbulent and laminar flame speed, respectively. a4, b1, b3 are modeling
constants. Da is the turbulent Damkohler number, defined as

Da =
sl lt
u′δl

, (4)

where lt is the resolved turbulent length scale, and δl is the laminar flame thickness. In both
equations above, u′ is the turbulent fluctuating velocity. For the current scaling analysis, we can
assume u′ is the same in both LES and RANS. For a given fuel and thermodynamics conditions,
both flame speed and thickness are also assumed constant. Then, the turbulent flame speed
is simply a function of the Damkohler number, which in turn is a function of the resolved
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turbulent length scale. In the current RANS calculation, such characteristic length scale is in the
order of the integral length scale [40] and can be computed based on RANS theory as

lt = c3/4
µ

k3/2

ε
, (5)

with ε the turbulent dissipation and cµ is equal to 0.09. Using Equation (5), the resolved
scale in the RANS simulations at the time of ignition is 321 µm. The turbulent length scale
resolved in an LES model is the size of the filter width, which is 62.5 µm in this work. It
should be reiterated that the turbulent length scales computed in the above analysis are the
ones resolved by the simulations and should not be confused as the real physical turbulent
length scale of the problem. The above analysis indicates that the turbulent flame speed is
significantly overestimated in the RANS calculation compared to LES. Because we can treat
any reactive scalar in the SAGE model as a progress variable where the mean flame front
propagates according to the turbulent flame speed correlation in Equation (3). Therefore,
the scaling argument above is applicable to both the SAGE as well as G-equation model.
Furthermore, the agreement with the experiment throughout both the early-burn and late-
burn stages is strong evidence that the LES coupled to standard well-stirred combustion
model (SAGE) is much more accurate than RANS simulations (using G-equation or SAGE).
It echoes Xu et al. [11] engine simulations, where they observed an overestimation of
heat release in RANS when the mixture is ignited during the pilot injection. Simulations
using a LES turbulence model did not show such overestimation. While it has become
common to tune parameters in a G-equation formulation [10,11] to match heat release,
results here show that this practice is not predictive, as the variation in modeling constants
is not motivated by any physical phenomena. In this experimental case, injection velocities
and turbulence are particularly high immediately at the end of injection, thus exacerbating
this RANS/combustion model shortcoming. Fortunately, the use of Dynamic Structure
LES and a well-stirred reactor combustion model appears to be an adequate solution.

Rounding out the ignition timing variation, experiments for the late-ignition case at
1.92 ms (0.8 ms after the end of injection) showed delayed but adequate heat release for some
realizations, but also complete misfire in one realization. The ignition (with nanosecond laser
ignition) at this timing is therefore highly variable and unstable but understanding the different
realizations and underlying reasons for success or failure has merits. Notably, the LES predict
heat release intermediate to experiments, although with less variability than the experiments.
Nevertheless, the overall realization-to-realization variability for the LES events does increase,
in consistency with the experiments. Such higher variability is expected since after the injection
the mixture is more subjected to random fluctuation, presenting mixtures at the ignition location
that are progressively more fuel lean.

A deeper analysis of the flame behavior is presented in Figure 7. The color scale shows
the ensemble-averaged normalized OH* chemiluminescence signal for ignition at different
timings (experimental setup described in [16]). In order to perform an accurate comparison
to the experiments, OH* reactions have been added to the Liu chemical mechanism. One-D
premixed flame calculations confirmed that adding OH* into the chemistry did not alter the
flame speed. OH* mass fraction has been integrated in the y direction and projected onto
the X–Z plane using the same method as projected liquid volume to mimic the line-of-sight
measurement. The resulting flame boundary is shown with the magenta and green isolines
in Figure 7. The two different colors correspond to two different realizations. At 300 µs
after Laser Ignition (taLI = 300 µs) the LES and the experiments show a small flame kernel
in vicinity of the ignition source (~3 mm above the injector and 17.4 mm downstream) for
all the cases. At 700 µs after ignition, both LES and experiments show that the flame is
accelerating and moving in the center of the jet where the flow velocity is higher; 800 µs
later (at 1500 µs) the flame continues to expend radially and axially. Generally, at the timing
of 1500 µs the shape of the projected flame is well captured in the 1.12- and 1.52 ms ignition
simulations, in terms of both the axial and radial shape and penetration. However, for the
late ignition case (1.92 ms), the LES underpredict the radial expansion of the flame, and
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the predictions also show axial expansion greater than the experiment, suggesting some
mismatch in charge position or flame. At 2900 µs after ignition, the simulations with early
ignitions (1.12 and 1.52 ms) continue to match the experimental measurement. Note that
only small differences are observed between different LES realizations for the same case.
For late ignition, the trend observed at taLI = 1500 µs, continues to be manifest at 2900 µs:
the flame in the LES propagates too fast in the head of the jet and does not consume the
mixture radially as much as observed in the measurements. The underestimation of the
radial expansion (and thus flame volume) leads to an under-prediction of the heat release,
compared to successfully ignited experimental cases. Therefore, the predicted pressure rise
is lower than the burning experimental cases in Figure 6.

Figure 6. Pressure rise in the vessel after ignition at 1.12, 1.52, and 1.92 ms for different realizations.
The solid lines show the experiments while the dashed lines indicate the LES. The pressure rise for
the two RANS simulations are illustrated with the circular symbols (only for ignition at 1.52 ms).

Figure 7. The color scale shows the ensemble-averaged normalized OH* chemiluminescence from the
experiments. The green and magenta isolines represent the flame boundary from LES. The green and
magenta colors allow to identify different realizations. The images are ranked by the time after laser
ignition (taLI). The time after the start of injection is shown in the bottom right corner of each image.
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Figure 8 shows observations of the flame axial flame penetration (defined as the
farthest axial position of the flame) quantitatively as function of time for different laser
ignition timings. Multiple realizations are shown for both the experiments and the LES. The
LES results for ignition at 1.12 and 1.52 ms agree with the experiments as has been discussed
above. For late ignition (1.92 ms), the axial flame penetration is first underestimated in the
simulations. Then, after 0.35 ms, the simulations overshoot the experiments confirming
what observed in Figure 7. The simulations are able to capture the two different regimes
identified by the slope change in Figure 8 and already observed in [16].

Figure 8. Axial OH* penetration for different laser ignition timings. Multiple realizations are shown
for both the experiments (solid lines) and the LES (dashed lines).

Figures 7 and 8 demonstrated excellent agreement between LES and the measurements
in terms of global heat release and flame structure in time for laser ignition at 1.12 and
1.52 ms. It indicates that the mixture preparation as well as the ignition source have
been correctly modeled for these cases. However, comparing the successful combusting
experiments, when ignition is performed 0.76 ms after the end of injection (1.92 ms ASOI),
the flame topology does not exactly match, as discussed above. It is important to note that,
for this condition, in the experiments many laser ignition attempts failed, while for the
two LES realizations performed, both were successfully ignited. Possibly, the source term
modeled in the LES is too powerful and ignites the charge for local mixture which was
impossible to ignite in the experiments (too lean). This mismatch in ignition volume is
a known problem for experiments and simulations in the lean limit, and it can generate
a flame in the LES that does not occur in the experiments. If this theory is correct and
the realization-to-realization variation is similar between experiments and LES, we could
expect a better agreement to the experiments performing a larger number of simulations.

5. Soot Formation and Oxidation

The soot formation and oxidation from the LES, using the empirical Hiroyasu-NSC
(Nagle and Strickland–Constable) soot model [36], is compared to the experimental mea-
surement in this section. Figure 9 shows the total soot mass in the vessel as function
time for all three ignition timings. Following the same illustration methodology as in
Figures 6 and 8, the solid lines indicate different realizations from DBI measurement while
the dashed lines represent the simulations. Comparing the experiments and the simulations,
it appears that the time of peak soot in the LES is in fair agreement to the measurement, as
indicative that mixing of oxygen is also correctly modeled. However, for early ignition, the
simulations largely underestimate the maximum soot concentration measured. Further-
more, the soot onset timing is advanced in the LES compared to the measurement. The same
observations made for early ignition are also true for ignition at 1.52 ms: underestimation
of the maximum soot concentration and over-prediction of the soot onset in the simula-
tions. The empirical Hiroyasu-NSC soot model uses acetylene as soot precursor, which is
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a significant simplifying assumption. Studies show [41] that larger soot precursors (not
available in the mechanism used) are better candidates to model accurately the Polycyclic
Aromatic Hydrocarbons (PAH) and soot formation. As PAH molecules are formed after
acetylene, using PAH molecules as a soot precursor is expected to delay the soot formation
and, therefore, better match the experiments. Interestingly, the experiments show high
realization-to-realization variation in terms of soot prediction while the global pressure
rise (Figure 6) and axial flame penetration (Figure 8) did not show this phenomenon. Such
variation is indicative of local variances in rich mixture from realization-to-realization.
Such high realization-to-realization variation was not observed in the LES as illustrated
with the dashed lines in Figure 9.

Finally, for laser ignition at 1.92 ms Figure 9 shows that the LES do not predicate
significant level of soot as observed in the measurement for laser ignition at 1.92 ms.

Figure 9. Soot mass in the vessel as a function of time. Experiments (from DBI measurement) are
shown with solid lines, while the LES results are illustrated with dashed lines. The different lines
show multiple realizations.

The color scale in Figure 10 shows ensemble-averaged temporal images of optical
thickness (proportional to soot mass), for laser ignition at 1.12 and 1.52 ms. Following the
same methodology as developed for Figure 7, the soot concentration in the computational
domain has been integrated in the y direction and projected onto the X–Z plane to mimic
the line-of-sight measurement. The resulting soot cloud boundary from this processing
is shown with the magenta and green isolines in Figure 10. The two different colors
corresponding to two different realizations.

For early laser ignition (1.12 ms), the measurements and the simulations show that
the soot formation starts radially offset from the injector (−5 mm). Then, the soot cloud
moves toward the injector axis. At 2400 µs ASOI the simulations slightly overestimate
the size of the soot cloud, which is consistent with the early soot prediction observed in
Figure 9. From 3000 to 5000 µs, the soot boundary predicted in the simulations are in good
agreement with the experiments.

For laser ignition at 1.52 ms, high soot concentration is first detected on the injector
axis, the presumed result of rich fuel–air pockets consumed by the flame. The LES are able
to capture correctly the shape of the soot cloud starting at 15 mm downstream of the injector,
including the large-scale vortexes at the head of the jet. From 4200 to 5000 µs, the optical
thickness measurement shows a decrease in soot due to oxidation at high temperature and
within mixture fractions that are progressively more lean and abundant with oxygen. The
last region where soot can be observed, for both experiments and LES, is at the head of the
jet in the large-scale vortexes.

In conclusion, a comparison of the soot formation/oxidation processes between the
measurements and the LES revealed that the Hiroyasu-NSC soot model captured accurately
the structure of the soot cloud. However, the simulations failed to match the experiments
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quantitatively. The high-temperature flame analysis, detailed in the previous section,
showed that the LES matched well the measurements (for ignition at 1.12 and 1.52 ms).
As the topology of the flame and heat release closely matches the experiment, we have
strong reason to conclude that the mixture is well captured in the simulations, and the
differences observed in soot formation are coming from the soot modeling. A more
accurate prediction of soot is expected using more realistic soot precursors in the chemical
mechanism and as inputs in the soot model, as well as using a detailed soot model (the
sectional methods can be found, for example, in [42–44]).

Figure 10. The color scale shows the ensemble-averaged optical thickness from the experiments. The green and magenta
isolines represent the soot cloud boundary from LES. The green and magenta colors allow to identify different realizations.

6. Fuel-Air Mixture Analysis

Because the LES show strong indicators that mixture is adequately predicted, we seek
to capitalize on this success to better understand the critical evolution of mixture and how
this affects soot and overmixed regions as sources of combustion inefficiency. The fuel–air
mixture after ignition is first analyzed by plotting the equivalence ratio as a function of
the temperature in Figure 11. The equivalence ratio (Φ) is a passive scalar, independent
of the reaction state (same definition as in [16]). The points in the scatter plots are colored
by the soot concentration, which is defined as the soot mass divided by the total gaseous
mass in the Eulerian grid. In addition, the red curves show the burnt gas temperature from
1D premixed flames where the fresh gas temperature is determined assuming an adiabatic
mixing, like shown in Figure 3. Note that some points largely exceed the maximum 1D
flame temperature (2500 K) just after ignition. These cells are localized at the ignition site,
where the energy source term considerably increases the temperature.

Immediately after ignition (taLI = 480 µs), the flame propagates in very rich mixture
(Φ > 4) for ignition at 1.12 ms. Such observation is also true for ignition at 1.52 ms, where
high-temperature reactions can be seen up to Φ = 3.5. At this stage, the soot concentration
is low for both laser ignition timings. For late ignition (1.92 ms), the fuel has more time
to mix with the ambient gas. Therefore, even 480 µs after ignition, the flame does not
consume mixture greater than 2. Moreover, the scatter plot shows a high concentration of
points at the stoichiometric mixture (Φ = 1) indicating high combustion efficiency.
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At taLI = 1280 µs high soot concentration is observed for rich mixture and high-
temperature, which is in agreement with the “soot island” representation available in the
literature [45]. The maximum soot concentration is identified at Φ = 3 and T = 2000 K,
corresponding to the optimal condition to form soot. Higher temperature resulting in
soot oxidation, while richer mixture does not allow sufficient temperature for the soot to
develop. When ignition is performed at 1.52 ms, the optimal region for soot cannot be
reached because of the leaner mixture available, resulting in less soot produced. In this
case, the maximum soot concentration is observed at Φ = 2.5 and T = 2100 K. For ignition
at 1.92 ms, no soot is observed and the mixture consumed by the flame is mainly fuel lean
and stoichiometric.

Finally, taLI = 1880 µs represents the soot mass peak in Figure 9 for ignition at 1.12 and
1.52 ms. In both cases, the mixture being consumed by the flame is now below Φ = 2 as
indicated by the absence of points in the scatter plot between T = 850 K and the 1D burnt
gas temperature at Φ = 2. The maximum soot concentration is located on the 1D premixed
flame burnt gas curve. Because there is no rich mixture to burn, the soot production first
stops, and then soot is oxidized, as shown in Figure 9.

Figure 11. Scatter plot of equivalence ratio (passive scalar) as a function of temperature at different times after laser ignition
(taLI) for the three laser ignition timings. The points are colored by the soot concentration (soot mass/total mass). The red
curve shows the burnt gas temperature from 1D premixed flame calculation.

Figure 12 spatially illustrates the relation between rich mixture, high-temperature
flame, and soot formation observed in Figure 11. The black (Φ = 1) and green (Φ = 2)
isolines help to visualize the mixture preparation. We highlight Φ = 2 because previous
studies have shown that the soot production can be avoided if combustion occurs at
premixed Φ < 2 [45–49].

Figure 12a shows an axial slice of the temperature at 80 µs after ignition (for ignition
at 1.52 ms). Due to the strong spray collapsing caused by the high-density condition, a
rich mixture is clustered in the center of the injector axis, even though the fuel comes
from an 8-hole symmetric injector with no plume directly targeting the injector axis. This
example illustrates that strong spray collapse can significantly change the mixture prepa-
ration compared to low-density (and non-flashing) case where the mixture follows the
nozzle axis. Figure 12a also illustrates the flame just after ignition, which is centered on the
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stoichiometric line. Featuring the ignition zone in a zoomed-in region, a triple flame [50]
can be observed, as illustrated by plotting the heat-release rate iso-line in yellow. The three
characteristic branches of triple flames can be observed [50]: a rich premixed flame, a lean
premixed flame and, in between, a third branch, which is a diffusion flame situated on the
stoichiometric line. Triple flames are observed in stratified mixture when the flame encoun-
ters at the same time fuel-lean, rich, and stoichiometric mixture. Xu et al. [11] identified a
triple flame while performing LES engine simulations for mixed mode combustion.

Figure 12b shows the soot concentration at 1280 µs after ignition. The flame bound-
ary (illustrated with the red isoline) is defined using a progress variable (c = 0.5) [39],
computed using the following equation:

c = (T − Tamb)/(Tburnt − Tamb), (6)

where T is the temperature in the Eulerian cells, Tamb is the ambient temperature in the
vessel (850 K), and Tburnt is the burnt gas temperature (2500 K). The flame dynamic over
time is illustrated by the dashed white arrows. The flame first propagates along the injector
axis where the flow velocity is high, reaching the head of the jet as illustrated with the
horizontal arrow. Then, the flame propagates into the large-scale vortices where there is
still fuel available for combustion. The high soot concentration pockets are localized in the
burnt gases, in fuel-rich regions encircled by the green isoline (indicating mixture richer
than Φ = 2). These pockets are localized near the ignition location at ~25 mm from the
injector and at the head of the jet.

Figure 12c shows the soot concentration at the same time after ignition as image (b)
(1280 µs), but for early ignition. The flame dynamic is different compared to ignition at
1.52 ms as shown with the dashed arrows. For early ignition, the mixture is more radially
expended at the 17.4 mm from the injector (axial location of ignition spot). As a result,
the flame first consumes the fuel available far from the injector (radially). Then, the flame
propagates at the periphery of the main charge reaching the rich mixture at the head of the
jet and, ultimately, crossing the injector axis to consume the rest of the fuel available on the
other side. Therefore, in this case, the high soot concentration pockets are not localized in
the jet axis near the ignition location but at the head of the jet where the mixture is fuel-rich.
As observed in the scatter plot Figure 11, the soot production at 1280 µs for ignition at
1.12 ms is much higher than the one at 1.52 ms. Note that in Figure 12c the maximum of
the color scale is increased (compared to image (b)) to avoid saturation.

Figure 12. Slices of temperature (a) and soot concentration ((b,c) images) for ignition at 1.12 (c) and 1.52 ms (a,b)). The black
line shows the stoichiometric mixture (Φ = 1). The green line indicates Φ = 2. The flame boundary is illustrated by the
progress variable (c = 0.5). The yellow line, used to show the triple flame, corresponds to a heat release of 4× 1011 W/m3.
The dashed arrows illustrate the flame movement.
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Tracking the Mixture Consumed by the Flame

In this last section, we track in time the mixture consumed by the flame for the different
laser ignition timings. One objective of this analysis is to understand how to successfully
propagate a stratified flame, but to avoid soot formation. Figure 13 shows a slice of the
equivalence ratio at 280 µs after ignition. On each image two lines are plotted: the black
line represents the flame boundary (defined by c = 0.5) at taLI = 280 µs (time matching
Φ in slice) while the green line shows the flame boundary 100 µs later. Taking the early
ignition case as example (Figure 13a), the mixture consumption between 1400 and 1500 µs
is defined by extracting Φ at 1400 µs in between the flames at 1400 and 1500 µs. This
postprocessing technique assumes that the flame consumes the mixture instantly within
the time step of 100 µs (time resolution corresponding to the 3D outputs frequency). Such
assumption will be discussed later in the article. For the sake of clarity, the methodology is
illustrated in slices but the post-processing is applied to the full 3D flame.

Figure 14 shows the equivalence ratio distribution in the 3D domain corresponding
to the time shown in Figure 13. For early ignition (Figure 14a), the Φ probability peaks at
Φ = 2, and the cumulative distribution function (CDF), in red, indicates that 75% of the
mixture consumed by the flame is richer than Φ = 2, representing a great potential for soot.
This value drops to 27% for ignitions at 1.52 ms. However, the rich mixture (Φ > 3) in the
center of the jet is still observed and will participate in the soot formation process. Finally,
for late ignition, the mixture is more homogeneous and the equivalence ratio is below 2.
Consequently, almost no soot is formed as shown in Figure 9. This result is in agreement
with previous studies [45–49] where it has been found that soot is not formed if the flame
consumes mixture leaner than Φ = 2.

Figure 13. Slices of equivalence ratio at 280 µs after laser ignition. The back and the green lines represent respectively the
flame boundary at 280 and 380 µs after laser ignition. The flame boundary is defined by c = 0.5.

Figure 14. Equivalence ratio distributions consumed by the flame between 280 and 380 µs after laser ignition (computed in
the 3D domain). The red lines show the cumulative distribution function (CDF).
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Before using our postprocessing technique to estimate the equivalence ratio and fuel
mass consumed by the flame for further analysis, it is important to evaluate the error
resulting from the simplifying assumptions. Extracting the mixture information at a time
t0 based on the flame movement between t0 and t1 (where t1 − t0 = 100 µs) implies that
when the flame propagates the flow between t0 and t1 is frozen. Figure 15 is used to
evaluate such assumption. The dashed lines show the total fuel mass consumption in
the domain, while the solid lines show the fuel mass consumed by the flame using our
postprocessing technique. For laser ignition at 1.12 and 1.52 ms, the fuel mass consumption
is first overestimated using the flame tracking technique. For these early ignition timings,
the flame propagates in regions where the flow velocity is high and the rich mixture is
located at the head of the jet as shown in Figure 13. Therefore, when the flame propagates in
the jet head direction, the downstream portion of the mixture identified as being consumed
may not be consumed because of flow convection, resulting in overestimation of the fuel
mass consumed by the flame. Because of lower flow velocity for late laser ignition, the
fuel mass consumed by the flame is much closer to the total fuel mass consumption (green
curve) compared to the early ignition timings. After the peak of fuel mass consumption,
Figure 15 shows that the fuel mass consumed by the flame is lower than the total fuel
mass consumption in the domain. This can be explained by the low-temperature reactions
occurring outside of the high-temperature flame, responsible for breaking is-octane into
intermediate species at low temperature (e.g., 1200 K).

Figure 15. Fuel mass consumption after laser ignition using two approaches. First, by estimating
the fuel mass consumed by the flame (solid lines). Second, by computing the total fuel mass in the
computational domain (dashed lines).

Figure 16 (colored curves) shows the equivalence ratio consumed by the flame on the
left y-axis as a function of the time after laser ignition. The equivalence ratio is binned into
four groups: mixture richer than Φ = 2 representing high potential for soot (yellow), rich
mixture between 1.1 and 2 (red), stoichiometric (green) and lean (blue) mixture. Figure 15
showed that the methodology used to track the mixture consumed by the flame might over-
estimate the fuel mass consumption due to rich-fuel pockets unduly taken into account.
Therefore, the results in Figure 16 are analyzed with caution when the deviation between
the solid and dashed lines in Figure 15 are high, which is mainly during the early flame
growth for laser ignition at 1.12 and 1.52 ms.

For early laser ignition, the equivalence ratio consumed by the flame is mainly fuel-
rich until 1.5 ms after LI (time when the lean mixture becomes dominant), resulting in
fast decrease of the normalized total fuel mass (black curve using the y-axis on the right).
At 1.5 ms after LI, 68% of the fuel mass injected has been consumed. Then, the flame
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consumes stoichiometric (up to 20% of the mixture is at Φ = 1 at 1.7 ms) and fuel-lean
mixture. Less than 1% of the total fuel remains in mixtures where combustion is totally
fuel-lean.

Similarly for ignition at 1.52 ms, a rich mixture is first consumed. In this case, the
maximum percentage of Φ > 2 consumed by the flame is 43%, compared to 74% for
early ignition. Moreover, for ignition at 1.52 ms, 56% of the fuel mass injected has been
consumed when the fuel-lean consumption becomes dominant, which is 12% less than the
early ignition case.

The normalized total fuel mass curve for late ignition behaves differently from the two
other cases. For late ignition, the black curve first shows a relatively low fuel consumption
rate (indicated by the mark a) in Figure 15 right). During this stage, the mixture consumed
is mainly lean (60% lean, 20% stoichiometric, and 20% rich). Then, the flame momentarily
propagates in regions where there is no rich mixture (Φ < 1.1) (marked as b)), resulting in
a decrease of the fuel consumption rate. In region c), the flame again encounters fuel-rich
mixture, as shown by the decrease of the blue curve and the increase of the red curve. The
fuel consumption rate, in region c, is at the highest level for this case. Finally, all the fuel
left is lean, resulting in a slow decrease of the fuel mass, as observed for the other cases.

Figure 16 also shows (vertical dashed purple lines) the time of soot peak extracted
from Figure 9. For laser ignition at 1.12 and 1.52 ms, it is interesting to observe that
even when the equivalence ratio is below 2, soot are still formed for a short period time.
As discussed in [16], soot can continue to grow even if Φ < 2 because of further mixing
with hot combustion products, and will only decrease when approaching the oxidizing
diffusion flame. However, when the equivalence ratio consumed by the flame is always
below 2, no soot is formed, as shown in Figures 9 and 15.

Figure 16. Equivalence ratio (Φ) consumed by the high-temperature flame. The Φ distribution is binned into four groups
shown in yellow, red, green, and blue (y-axis on the left). The normalized total fuel mass in the domain (black curve) is
plotted using the right y-axis. The time corresponding to maximum peak soot concentration is displayed with vertical
dashed purple lines.

7. Conclusions

Large-eddy simulations of an 8-hole GDI spray have been used to gain better un-
derstanding of the ignition, flame propagation and soot formation/oxidation processes
under conditions relevant to mixed-mode combustion. Compared to our previous RANS
simulations [16], significant improvements have been found in predictability when using
a Dynamic Structure LES turbulence model [17] in simulations, coupled with a reduced
mechanism. The modeling weakness in RANS is attributed to artificially high flame speed
induced by very high turbulent kinetic energy, consequence of ignition in the turbulent
GDI spray.

A detailed comparison of the simulations and the experiments showed that the LES
were able to capture correctly the liquid penetration length, and to some extent, a degree of
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spray collapse demonstrated in the experiments. Then, following the same methodology as
employed in the experiments, the mixture has been ignited at various times after the end of
injection. For early and intermediate ignition timings, the LES showed excellent agreement
to the measurements in terms of flame structure, extent of flame penetration, and heat
release rate. The soot formation/oxidation was also compared to the experiments, and
revealed that the soot location from the simulations was well captured in the LES. However,
the soot mass was largely under-estimated using the empirical Hiroyasu model [36].

In order to explain the different flame propagation speeds and soot production tenden-
cies when varying ignition timing, a mixture analysis has been performed by dynamically
extracting and analyzing the fuel mass and equivalence ratio (Φ) being consumed by the
flame. When ignition is performed immediately at the end of injection, the mixture con-
sumed by the flame is dominated by fuel-rich mixture (Φ > 2) until 0.7 ms after ignition.
Delaying ignition by 0.4 ms, reduced the soot production by 80%. The mixture consumed
by the flame is significantly leaner than the early ignition. For late ignition, the equivalence
ratio burned by the flame is never greater than 2, resulting in no significant soot production
as observed in the experiments.

Despite the fact that the flame propagation is well captured in the simulations, the
empirical Hiroyasu soot model [36] showed limitations in terms of quantitative soot
prediction. Therefore, simulations with a more complex chemical mechanism (including
soot precursor up to pyrene), coupled with a detailed sectional soot model are ongoing to
provide a more accurate representation of soot.
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