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Abstract: This paper proposes a full-order terminal sliding-mode (FOTSM) control scheme for brush-
less doubly fed induction generator (BDFIG)-based islanded microgrids. To deal with mismatched
uncertainties in the BDFIG system, virtual control technique-based full-order sliding-mode control
is applied to stabilize the amplitude and frequency of terminal voltage. In the current loops, two
full-order terminal sliding-mode controllers are designed to make sure that the current tracking
errors can reach their equilibrium points in finite time. It is demonstrated by the comprehensive
simulations that the proposed method can significantly improve the tracking accuracy, the rapidness,
and the robustness to the uncertainties of the BDFIG control system and can enhance the output volt-
age quality. Furthermore, an experimental study of the proposed control method for BDFIG-based
islanded microgrids would be another important future work.

Keywords: brushless doubly fed induction generator (BDFIG); islanded microgrids; sliding-mode
control (SMC); terminal sliding-mode; mismatched uncertainties

1. Introduction

The brushless doubly fed induction generator (BDFIG) has demonstrated promising
prospects in the energy-saving performance of microgrids, such as applications in wind
power systems, ship shaft power generation systems, etc. Among the members of the
induction motor (IM) family, the BDFIG has no brushes and slip rings, which is the main
difference from the traditional doubly fed induction generator (DFIG) [1–3]. The BDFIG
not only inherits the merits of the DFIG but also shows higher reliability and longer work
lifetime. Therefore, it has been regarded as a feasible alternative [4,5].

The BDFIG consists of a rotor and two stator windings with different pole pairs. The
indirect electromagnetic coupling effect between the two stator is generated via a specially
designed squirrel-cage type rotor without the rotor voltage [6,7]. The BDFIG-based system
for a ship microgrid is depicted in Figure 1. The BDFIG is connected to the main engine of
the ship, the power winding (PW) is directly joined to the grid, while the control winding
(CW) is supplied by a back-to-back converter achieving the bidirectional power flow [8].
The PW-side converter maintains the stability of the DC-bus voltage, and the CW-side
converter regulates the frequency variable exciting current.

The control strategies proposed for BDFIGs include the typical vector control (VC) [9];
the direct torque control (DTC) [10]; and some others such as the phase angle control [11],
indirect stator quantity control [12], etc. The DTC has advantages such as rapidness
and robustness under operating conditions, but large torque/power ripples and current-
waveform distortions will degrade the quality of the output power [13]. While in the
VC system, the current harmonic spectra are better than those under the DTC. However,
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the common controllers are sensitive to inner parameter perturbation and external dis-
turbances. The controller design for the BDFIG-based microgrid is somewhat difficult to
develop for the following two main reasons: (1) the mathematical model of the BDFIG is
a class of highly nonlinear multi-input-multi-output (MIMO) systems with unavoidable
uncertainties and lots of degrees of freedom; (2) the parameters of the PW, the CW, and
the rotor vary with current frequency, motor temperature, and magnetic saturation ef-
fect. The existing controller design algorithms are generally heavy parameter-dependence,
meanwhile common and practical proportional-integral (PI) control cannot meet the re-
quirements of control objectives well in the precision and dynamic performance [14,15].
Therefore, it is necessary to design advanced nonlinear controllers to compensate for the
influence of parameter variations in the system, so that the BDFIG-based microgrid can
obtain a good operating performance in various environments and conditions.
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Figure 1. The structure of the BDFIG in the ship power mircogrid, where the SCS means the CW-side
converter and the AFE means the active front end.

With the development of control theory, lots of control methods for DFIG systems
have been proposed to implement high-performance control for the BDFIG, such as back-
stepping control [16], adaptive control [17], H∞ control [18], fuzzy control [19], model
reference adaptive control (MRAC) [20], model predictive control (MPC) [21], active distur-
bance rejection control (ADRC) [22–24], neural network control [25], sliding-mode control
(SMC) [26], etc.

Due to the low sensitivity to parameter perturbations and the strong robustness to
external disturbance, the sliding mode control (SMC) is proposed for the IM [27,28], the
DFIG [29], and the BDFIGs [30]. An integral sliding-mode-based DTC scheme is proposed
for DFIG-based wind-energy conversion systems in [31], and the advantages against pa-
rameter variations is illustrated. However, the convergence is not finite and undesired
chattering exists. To deal with the chattering problem, an adaptive internal SMC is devel-
oped to optimize the efficiency of variable-speed wind turbines and to meet the control
requirements of wind energy conversion systems under model uncertainties, which gener-
ates smoothed active power with minimized ripple [32]. However, a discrete control output
with a high switching frequency is needed when applying this method. Alternatively, the
second-order SMC can eliminate chattering without a discrete output [33,34]. However,
the mathematical calculations of this method are complex and the implementation becomes
difficult in the case of the increasing states [35]. A saturation function-based integral SMC
with feed-forward terms is proposed for the BDFIG, but a quasi-sliding mode controller
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utilizing the boundary layer would decrease the control accuracy [36]. In [34], a super twist-
ing sliding mode direct power control scheme for the BDFIGs is implemented. Although
the super twisting SMC is an effective way to suppress the chattering with continuous
signals, it is non-monotonically convergent to the sliding manifold and may cause a large
overshoot [37].

The mathematical model of the BDFIG is a class of second-order nonlinear systems
with matched and mismatched uncertainties. However, the SMC in general is regarded as
an excellent method for nonlinear systems, while until now, most SMC methods depended
on the so-called matched conditions [31]. The reference of d- and q- currents designed by the
traditional SMC contains high-frequency switching signals, and its derivative existing in
the signals of space vector pulse width modulation (SVPWM) would lead to the singularity
problem. In existing works, little attention has been paid to this issue. Therefore, to improve
the accuracy rapidness and robustness to the uncertainties, advanced control methods for
the BDFIGs are demanded to have a strong disturbance rejection capability for mismatched
uncertainties.

The full-order terminal sliding-mode (FOTSM) is one of the most recent proposed
SMC theory, which is proven to be efficient for mismatched nonlinear systems [38]. By
introducing the ideal of both the full-order terminal sliding-mode (FOTSM) control al-
gorithm and the virtual control technique, this paper proposes a novel FOTSM-based
control method to stabilize the amplitude and frequency of terminal voltage under the
parameter perturbation and electrical load vary. The main contributions in this article can
be summarized as follows:

(1) Compared with the conventional controllers, the control precision and transient
response of the amplitude and frequency of terminal voltage improved by adopting the
proposed FOTSM controllers without using low pass filters or the boundary layer method.

(2) On the premise that the excellent anti-disturbance of the SMC is kept in case of
uncertainties, the chattering in the conventional SMC is mitigated by the integral control
law and continuous pulse width modulation (PWM) output signals can be generated.

(3) The matched and mismatched uncertainties in the BDFIG system are adequately
considered and thoroughly compensated. The adaptive gain is utilized to avoid overesti-
mating the upper bound of the uncertainties and to improve the adaptation of the BDFIG
system to the uncertainties.

This paper is organized as follows: Section 2 introduces the mathematical model
of the BDFIG with uncertainties. In Section 3, the voltage amplitude- and current-loop
controllers based on FOTSM are designed. Section 4 gives the simulation results. Finally,
the conclusions are summarized in Section 5.

2. Preliminary
2.1. Dynamic Model of the BDFIG

The dynamic mathematical model of the BDFIG in the d-q coordinate with the angle
frequency ω2 of the rotating can be expressed as{

u1d = R1i1d + sφ1d −ω2φ1q

u1q = R1i1q + sφ1q + ω2φ1d
(1)

{
u2d = R2i2d + sφ2d − [ω2 − (p1 + p2)ωr]φ2q

u2q = R2i2q + sφ2q + [ω2 − (p1 + p2)ωr]φ2d
(2)

{
urd = Rrird + sφrd − (ω2 − p1ωr)φrq

urq = Rrirq + sφrq + (ω2 − p1ωr)φrd
(3)

{
φ1d = L1i1d + L1rird

φ1q = L1i1q + L1rirq
(4)
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{
φ2d = L2i2d + L2rird

φ2q = L2i2q + L2rirq
(5)

{
φrd = Lrird + L1ri1d + L2ri2d

φrq = Lrirq + L1ri1q + L2ri2q
(6)

and the rotor speed of the BDFIG can be expressed as

ω1 + ω2=̃(p1 + p2)ωr. (7)

Setting the rotor voltages to zero urd = urq = 0, the voltage equation of rotor (3) can
be rewritten as {

0 = Rrird + sφrd − [ω2 − p1ωr]φrq

0 = Rrirq + sφrq + [ω2 − p1ωr]φrd
. (8)

Substituting (6) and (7) into (8) yields

ird =− [Lrs2 + Rrs + Lr(ω1 − p2ω2)
2](L1ri1d + L2ri2d)

(Rr + Lrs)2 + L2
r (ω1 − p2ωr)2

−
Rr(ω1 − p2ωr)(L1ri1q + L2ri2q)

(Rr + Lrs)2 + L2
r (ω1 − P2ωr)2

(9)

irq =
ω1 − p2ωr

Rr + Lrs
[1− L2

r s2 + LrRrs + L2
r (ω1 − p2ωr)2

(Rr + Lrs)2 + L2
r (ω1 − p2ωr)2 ](L1ri1d + L2ri2d)

− 1
Rr + Lrs

(L1ri1q + L2ri2q)[s +
LrRr(ω1 − p2ωr)2

(Rr + Lrs)2 + L2
r (ω1 − p2ωr)2 ].

(10)

In general, the values of Rr are close to Lr. According to (7), the rotor speed range is
limited. Hence, the ω2 is generally limited to 30% of ω1. Therefore, the first term of (9) can
be rewritten as

ird = − [s2 + (Rr/Lr)s + (ω1 − p2ω2)
2](L1ri1d + L2ri2d)

Lr[s2 + 2(Rr/Lr)s + (ω1 − p2ωr)2]
. (11)

Considering that the zeroes and poles of this term can cancel each other, the Equation (11)
can be simplified as

ird = − L1ri1d + L2rird
Lr

−
Rr(L1ri1q + L2ri2q)

L2
r (ω1 − p2ωr)

. (12)

Similarly, Equation (10) can be simplified as

irq = −
L1ri1q + L2ri2q

Lr
. (13)

According to (12) and (13), the voltage function of the CW (2) can be rewritten as

di2d
dt

= σ2L2(u2d − R2i2d + D2d) (14)

di2q

dt
= σ2L2(u2q − R2i2q + D2q) (15)
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where D2d = α1i2q + α2i1d + α3i1q, D2q = α4i2d + α5i1d + α6i1q, σ2 = 1− L2
2r/(L2Lr),

α1 = −
ω1(ω1 − p2ωr)(L2

r L2 + L2
2rLr)− L2

2rRrs
L2

r (ω1 − p2ωr)
, α2 =

L1rL2rs
Lr

,

α3 = − L1rL2r[Rrs + Lrω1(ω1 − p2ωr)]

L2
r (ω1 − p2ωr)

, α4 =
σ2L2Lrω1

L1
,

α5 = −ω1L1rL2r

Lr
, α6 = − L1rL2r[ω1Rr − Lr(ω1 − p2ωrs)]

L2
r (ω1 − p2ωr)

.

The currents of CW are assumed as i2q = 0, i2d = I2. Substituing (14) and (15) into (1),
the voltage of the PW can be expressed as

u1d = R1i1d +
ω2(L2

1r − L1Lr)

Lr
i1q (16)

u1q = R1i1q −
ω2(L2

1r − L1Lr)

Lr
i1d −

ω2L1rL2r

Lr
I2. (17)

The PW voltage can be calculated by

U1 =
√

u2
1d + u2

1q

= {(ω2
L1rL2r

Lr
)2 I2

2 −
2ω2L1rL2r

Lr
[(ω2L1 −

ω2L2
1r

Lr
)i1d + R1i1q]I2

+ R2
1(i

2
1d + i21q) + (ω2L1 −

ω2L2
1r

Lr
)(i21d + i21q)}1/2.

(18)

For a small perturbation in the control output ∆I2, Equation (18) can be described by

U1(I2E + ∆I2) = U1(I2E) + ∆I2
d∆U1

dt
|I2=I2E (19)

where I2E is the amplitude of a steady-state value of the CW current. Then, considering
(18) and (19) yields

∆U1 = U1(I2E + ∆I2)−U(I2E)

= U1(I2E + ∆I2)−U1re f

= Ku∆I2E

(20)

where Ku = ω2L1rL2r[ω2L1rL2r I2E + ω2(L2
1r − L1Lr)i1d − R1L1ri1q] is a constant in the

steady-state. According to (19), the amplitude of the steady-state value of CW current can
be calculated as

I2E = [(β1i1d + R1i1q) + (2β1R1i1di1q − R2
1i21d − β2

1i21q + Ure f )
1/2]/β2 (21)

where β1 = ω2(L1 − L2
1r/Lr), β2 = ω2L1rL2r/Lr.

2.2. Outer Loop Subsystem

The outer-loop subsystem is the PW-voltage loop. The tracking error can be defined as
eU = U1re f −U1. According to the mathematical model of the BDFIG, the voltage tracking
error dynamics can be expressed by

ėU = U̇re f − U̇1 = −Ku∆ İ2. (22)
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Considering the change in temperature and frequency, the variation of resistance and
inductance can be represented by{

Ri = Ri0 + ∆Ri i = 1, 2, r

Lj = Lj0 + ∆Lj j = 1, 2, r, 1r, 2r
(23)

Furthermore, 

σ2 = σ20 + ∆σ2

βk = βk0 + ∆βk k = 1, 2

αm = αm0 + ∆αm m = 1, . . . , 9

T1 = R2σ2L2 = T10 + ∆T1

T2 = σ2L2 = T20 + ∆T2

. (24)

The above uncertainties can be assumed to be bounded; therefore,{
|∆Ri| ≤ MRi i = 1, 2, r∣∣∆Lj

∣∣ ≤ MLj j = 1, 2, r, 1r, 2r
(25)

Furthermore, 
|∆σ2| ≤ Mσ2

|∆βk| ≤ Mβk k = 1, 2

|∆αm| ≤ Mαm m = 1, ..., 9

|∆Tn| ≤ MTn n = 1, 2

(26)

where MRj , MLk , Mσ2 , Mβ1 , and Mβ2 are known to be positive constants.
Therefore, considering the parameter perturbation, the error dynamics in the outer-

loop can be described by

ėU = −Ku∆ İ2

= −ω2(L1r0 + ∆L1r)(L2r0 + ∆L2r)


ω2(L1r0 + ∆L1r)(L2r0 + ∆L2r)I2E

+ ω2(L1r0 + ∆L1r)
2i1d

−ω2(L1r0 + ∆L1r)(Lr0 + ∆Lr)i1d

− (R10 + ∆R1)(L10 + ∆L1)i1q

∆ İ2.
(27)

The virtual control law is defined by

i2dre f = ∆I2re f + I2E. (28)

The current tracking error of id is defined as

eid = idre f − id. (29)

Thus, the tracking error dynamics (22) can be expressed as

ėU = −Ku0∆ İ2re f − ∆Ku∆ İ2re f + Ku0 ėid (30)

where Ku0 = ω2L1r0L2r0[ω2L1r0L2r0 I2E + ω2(L2
1r0 − L10Lr0)i1d − R10L1r0i1q] and ∆Ku∆ İ2re f

is defined as the coefficient of uncertain control gain in the control system of the BDFIG.
For analyzing the lumped unmatched uncertainty ρ0, the following uncertainties are

defined as
δU =

∆Ku

Ku0
=

Ku − Ku0

Ku0
(31)

which is upper-bounded by
|δU | ≤ Mδ < 1. (32)
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2.3. Inner Loop Subsystem

According to (14) and (15), the inner-loop current subsystem can be obtained by

di2dq

dt
= F0i2dq + G(u2dq + F1i2dq + F2i1dq) (33)

where i2dq = [i2d, i2q]
T , u2dq = [u2d, u2q]

T , F0 = F00 + ∆F0, G = G0 + ∆G, F1 = F10 + ∆F1,
F20 = F20 + ∆F2,

F00 = −
[

T10 0
0 T10

]
, G0 =

[
T20 0
0 T20

]
, F10 =

[
0 α10

α40 0

]
, F20 =

[
α20 α50
α30 α60

]
,

∆F0 = −
[

∆T1 0
0 ∆T1

]
, ∆G =

[
∆T2 0

0 ∆T2

]
, ∆F1 =

[
0 ∆α1

∆α4 0

]
, ∆F2 =

[
∆α2 ∆α5
∆α3 ∆α6

]
,

and the uncertainties above are upper-bounded by

‖∆F0‖ ≤ MF0 , ‖∆G‖ ≤ MG, ‖∆F1‖ ≤ MF1 , ‖∆F2‖ ≤ MF2 (34)∥∥∥∆u2dq

∥∥∥ ≤ √2u2e,
∥∥∥∆i1dq

∥∥∥ ≤ √2i1e,
∥∥∥∆i2dq

∥∥∥ ≤ √2i2e (35)

where M∆F0 , M∆F0 , M∆F0 , and M∆F0 are known positive constants; u2e is the rated voltage
of the CW; i1e is the rated current of PW; and i2e is the rated current of the CW.

The inner-loop subsystem with the consideration of the influence of parameter varia-
tion can be analysed by

di2dq

dt
= F00i2dq + (G0 + ∆G)(u2dq + F10i2dq + F20i1dq) + ρ1 (36)

where the uncertainty ρ0(t) = ∆F0i2dq + (G0 + ∆G)(∆F1i2dq + ∆F2i1dq).
For dynamic decoupling, a feedforward compensation is introduced:

udq = u2dq + F10i2dq + F20i1dq. (37)

Substituting (37) to (36), the inner-loop subsystem can berewritten as follows:

di2dq

dt
= F00i2dq + G0udq + ∆Gudq + ρ1 (38)

where ρ1(t) = ∆Gudq + ρ0(t). The uncertainty and its derivative are bounded by ‖ρ1(t)‖ ≤ Mρ1
,

‖ρ̇1(t)‖ ≤ Mdρ1
.

3. Full-Order Terminal Sliding-Mode Controller Design

Let Ku0∆ İ2re f = u0. A full-order terminal sliding manifold s0 ∈ R1 is designed as

s0 = ˙eU + c0eq/p
U (39)

where c0 is a constant, q and p are odds, and 0 < q/p < 1.

Theorem 1. Based on the sliding manifold (39) and the virtual control law as follows, the outer-
loop voltage tracking error dynamics can be regulated to reach the presupposed manifold in finite
time tr0 ≤ (|s0(0)|/η0), thereafter remaining on it and converging to equilibrium point in finite
time ts0 ≤ p/[(c0(p− q))|eU(tr0)|1−q/p].

u0 = u0eq + u0n (40)

u0eq = c0eq/p
u (41)
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u0n =
∫

k0sgn(s0)dτ (42)

k0 =
Mδ Mdeq(t) + η0

1−Mδ
(43)

∆I2re f =
∫ 1

Ku0
c0eq/p

U +
1

Ku0

∫∫
k0sgn(s0)dτdτ (44)

where Mδ is defined in (34), Mdeq(t) is the upper bound of u̇0eq, and η0 is a constant.

Proof of Theorem 1. According to (30), Equation (39) can be rewritten as

s0 = ˙eU + c0eq/p
U

= −Ku0∆ İ2re f − ∆Ku∆ İ2re f + Ku0 ëid + c0eq/p
U

= −u0 − δUu0 + Ku0 ëid + c0eq/p
U .

(45)

A Lyapunov function is defined as V0 = 0.5s2
0, and the time derivative of V0 is

expressed as

V̇0 = s0 ṡ0 = −s0u̇0n − s0δU u̇0 + s0Ku0 ëid

= −s0u̇0n − s0δU u̇0n − s0δU u̇0eq + s0Ku0 ëid.
(46)

Substituting the integral-type switching law (42) into the above equation gives

V̇0 ≤ −k0|s0|+ k0|s0||δU |+ |s0||δU |
∣∣u̇0eq

∣∣+ s0Ku0 ëid

≤ −k0(1−Mδ) + Mδ|s0|
∣∣u̇0eq

∣∣+ s0Ku0 ëid.
(47)

Thus, V̇0 is satisfied:

V̇0 ≤ −‖s0‖[(1−Mδ)k0 −Mδ Md0eq(t)], (48)

where Mdeq(t) is the upper bound of u̇eq. When s0 6= 0, considering the switching gain (44)
yields

V̇0 = s0 ṡ0 ≤ −η0|s0|+ s0Ku0 ëid. (49)

The inner loop tracking error eid and its derivative converge to zero in finite time and
can be proven in the following Theorem 3. Then, we have

V̇0 ≤ −η0|s0| ≤ −
√

2η0V1/2
0 < 0. (50)

According to the lemma of finite time convergence in [38], the above equation illus-
trates that the outer loop-error tracking error dynamics will reach the ideal sliding manifold
within finite time under the designed virtual control law (40). It is maintained on the sliding
mainfold s0 = 0 thereafter. During the sliding motion, the error dynamics converge to
zero in finite time. It is obvious that the virtual control law overcomes the ummatched
uncertainties completely. This completes the proof.

Let ei = ire f − i = [idre f − id, 0− iq]T and G0u2dq = u1. With the subsystem (38), the
error dynamics can be given as

ėi = i̇re f − F00i2dq − u1 − ∆GG−1
0 u1 − ρ1. (51)

A full-order terminal sliding manifold s1 ∈ R2 is designed as

s1 = ėi + C1eq/p
i (52)

where C1 = diag(c11, c12), c11 > 0, c12 > 0, and q and p are odds and 0 < q/p < 1.
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Theorem 2. Based on the designed sliding surface (52), the virtual control law (40), and the
following actual control law, the inner-loop current tracking error dynamics can be regulated to
reach the sliding surface s1(t) = 0 in finite time tr1 ≤ (‖s1(0)‖/η1). Then, the inner-loop
tracking error ei and its derivative can converge to zero along the ideal sliding surface in finite time
ts1 ≤ max{p/[(c11(p− q))|eid(tr1d)|1−q/p], p/[(c12(p− q))

∣∣eiq(tr1q)
∣∣1−q/p

]}.

u1 = u1eq + u1n (53)

u1eq = −F00i2dq +
1

Ku0

[
c0(−Ku0∆I2re f )

q/p +
∫

k0sgn(s0)dτ

0

]
(54)

u1n =
∫

k1sgn(s0)dτ (55)

k1 =
MGMd1eq(t)/T20 + c0qMδ M(q−p)/p

∆I2re f Md∆I2re f /p + Mdρ1 + η1

1−MG/T20
(56)

u2dq = G−1
0 (−F00i2dq +

∫
k1sgn(s0)dτ

+
1

Ku0

[
c0(−Ku0∆I2re f )

q/p +
∫

k0sgn(s0)dτ

0

]
)

(57)

Proof of Theorem 2. According to (51), the sliding manifold (52) can be rewritten as follows:

s1 = i̇re f − F00i2dq − u1 − ∆GG−1
0 u1 − ρ1 + C1eq/p

i . (58)

Combined with (40), we have the following:

s1 =
1

Ku0

[
c0eq/p

u +
∫

k0sgn(s0)dτ
0

]
− F00i2dq − u1 − ∆GG−1

0 u1 − ρ1 + C1eq/p
i . (59)

Considering (30), the above can be rewritten as follows:

s1 =
1

Ku0

[
c0(−Ku0∆I2re f − ∆Ku∆I2re f )

q/p +
∫

k0sgn(s0)dτ

0

]
− F00i2dq − u1 − ∆GG−1

0 u1 − ρ1 + C1eq/p
i .

(60)

Substitute the actual control law (53) into the above, then we get

s1 =
1

Ku0

[
c0(−∆Ku∆I2re f )

q/p

0

]
− u1n − ∆GG−1

0 u1 − ρ1. (61)

Define a Lyapunov functionis as V1 = 0.5sT
1 s1, and the derivative of V1 is expressed as

V̇1 = sT
1 ṡ1

= −sT
1 ˙u1n − sT

1 ∆GG−1
0 u̇1 − sT

1 ρ̇1 +
1

Ku0

[
c0(q/p)(−∆Ku∆I2re f )

(q−p)/p∆̇I2re f
0

]
.

(62)

Substituting (53) into the above gives

V̇1 =
1

Ku0

[
c0(q/p)(−∆Ku∆I2re f )

(q−p)/p∆ İ2re f
0

]
− sT

1 ˙u1n − sT
1 ∆GG−1

0 u̇1n − sT
1 ∆GG−1

0 u̇1eq − sT
1 ρ̇1.

(63)
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Thus,

V̇1 ≤ ‖s1‖(−k1 + k1‖∆G‖
∥∥∥G−1

0

∥∥∥+ ‖∆G‖
∥∥∥G−1

0

∥∥∥∥∥u̇1eq
∥∥

+
c0q
p
‖δU‖

∥∥∥∆I(q−p)/p
2re f

∥∥∥∥∥∥∆ İ2re f

∥∥∥+ ‖ρ̇1‖).
(64)

From the above, the upper bound of the actual control law can be estimated as

‖u̇1‖ ≤
∥∥u̇1eq

∥∥+ ‖u̇1n‖ ≤
√

2k1 + Md1eq(t). (65)

According to (44), the upper bound of ∆I2re f and its derivative are estimated as

∆I2re f =
∫ 1

Ku0
c0eq/p

u +
1

Ku0

∫∫
k0sgn(s0)dτ ≤ M∆I2re f

∆ İ2re f =
1

Ku0
c0eq/p

u +
1

Ku0

∫
k0sgn(s0)dτ ≤ Md∆I2re f .

(66)

Combined with adaptive switching gain (56), when V1 6= 0

V̇1 ≤ ‖s1‖

−k1(1−MG/T20) + MGMd1eq(t)/T20

+c0qMδ M(q−p)/p
∆I2re f Md∆I2re f /p + Mdρ1


≤ −
√

2η1V1/2
1 .

(67)

Similar to the proof of Theorem 1, the above equation means that the error dynamic
approaches the ideal sliding surface s1 = 0 in finite time. Additionally, the tracking errors
of CW current and its derivative converge to the equilibrium point in finite time. From
Theorem 1, eU can converge to zero in finite time. This complete the proof.

According to Theroems 1 and 2, the PW voltage controller is designed for the outer-
loop and the CW current vector controllers are utilized for the inner-loop. The block
diagram of the control scheme of the BDFIG as shown in Figure 2. The phase-locked loop
(PLL) is used to track the amplitude of the output voltage, which is omitted here for space
due to its simplicity.
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Figure 2. Block diagram of the control scheme of the standalone BDFIG.
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4. Simulations

In order to demonstrate the effectiveness of the proposed method, PI controllers, linear
sliding mode (LSM), and FOTSM controllers are designed for performance comparison.
The parameters of the BDFIG are listed in Table 1, and the controllers design parameters in
Table 2.

Table 1. The parameters of the BDFIG.

Symbol Mean Value

Se Capacity 30 kVA
ωe Speed range 600–1200 rpm

p1, p2 PW and CW pole pairs 1, 3
U1e, I1e PW rate voltage and current 380 V, 45 A
U2e, I2e CW rate voltage and current 0–350 V, 0–50 A

R1 PW resistances 0.4034 Ω
R2 CW resistances 0.2608 Ω
Rr Rotor resistances 0.3339 Ω
L1 PW inductances 474.9 mH
L2 CW inductances 32.16 mH
Lr rotor inductances 225.2 mH
L1r Mutual inductance between PW and rotor 306.9 mH
L2r Mutual inductance between CW and rotor 25.84 mH

Table 2. Controller design parameters.

Control Outer Loop Controller Parameters Inner Loop Controller Parameters

PI Kp = 0.07, Ki = 18 Kp = 21.5, Ki = 972
LSM c = 300, k = 1000 Kp = 21.5, Ki = 972

FOTSM c0 = 300, k0 = 4000, q/p = 3/5 c11 = c12 = 1000, k1 = 6000, q/p = 3/5

4.1. Start-Up Response

The BDFIG starts at 0s and runs for 1.0 s in total. The speed of the prime mover is set
as 700 rpm in the simulations. In order to characterize the parameter mismatch caused
by the change in temperature and frequency, the resistances and inductances are set as
105% of the real values in the simulations. The reference frequency and amplitude of the
PW voltage are 50 Hz and 327 V, respectively. The load is a balance three-phase resistive
load with resistances of 25 Ω for each phase. The PI, LSM, and the proposed FOTSM
controllers during the voltage start-up process are shown in Figure 3. It can be seen that
the settling time of the voltage response under PI, LSM, and FOTSM are 0.079 s, 0.074 s,
and 0.028 s, respectively. The BDFIG under the proposed FOTSM controller has a better
dynamic response. It is obvious that the accuracy of the voltage response is enhanced
and that the ripple is reduced. Figure 4 shows that the d-axis current response under the
FOTSM can approach the given current faster than the PI and the LSM. It is evident that
the ripple of q-axis current under the FOTSM is smaller than PI and LSM in Figure 5 owing
to the integral-type control law and the adaptive switching gain. In Figure 6, the frequency
under the PI and the LSM has a larger ripple than that under the FOTSM.
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Figure 3. The PW-voltage amplitude responses under PI, LSM, and FOTSM during the start-up
process.
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Figure 4. The CW d-axis current responses under PI, LSM, and FOTSM during the start-up process.
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Figure 5. The CW q-axis current responses under PI, LSM, and FOTSM during the start-up process.
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Figure 6. The PW voltage frequency responses under PI, LSM, and FOTSM during the start-up
process.

4.2. Load Adding Response

In order to attest to the robustness of the three control methods, another balance
three-phase resistive load with resistances of 120 Ω for each phase is added to the system
in 0.5 s. The condition of the simulations is the same as the start-up response and the
simulation results are shown in Figures 7–10. According to the simulation results shown in
Figure 8 that the voltage amplitude drops under the PI, the LSM and the FOTSM are 21 V,
22 V, and 16 V, respectively. In addition, the settling time of the voltage response under the
PI, the LSM, and the FOTSM are 0.045 s, 0.042 s, and 0.008 s, respectively, which means
that the proposed FOTSM has a faster dynamic response and stronger robustness. It is
obvious that the tracking error of the PW voltage amplitude under FOTSM is still smaller
than the PI and the LSM when the load is added. In Figure 8, the current response under
the FOTSM can converge to the equilibrium point faster than the PI and the LSM when the
load is added. It can be seen from Figure 9 that the ripple of the q-axis current under the
FOTSM is smaller than those under the PI and the LSM. In Figure 10, the fluctuation of
frequency under the PI, the LSM, and the FOTSM is similar when the balance three-phase
resistive load is added. However, the FOTSM has a faster recovery time and smaller ripple
in steady-state than that under the PI and the LSM. These results further verify that the
proposed FOTSM has a better robustness against the uncertainties.
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Figure 7. The PW-voltage amplitude responses under PI, LSM, and FOTSM during the load adding
process.
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Figure 8. The CW d-axis current responses under PI, LSM, and FOTSM during the load adding
process.
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Figure 9. The CW q-axis current responses under PI, LSM, and FOTSM during the load adding
process.
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Figure 10. The PW voltage frequency responses under PI, LSM, and FOTSM during the load adding
process.

4.3. Voltage Change Response

In order to demonstrate the dynamic response of the BDFIG using the FOTSM con-
trollers. The reference of output PW-voltage amplitude is changed from 327 V to 360 V
at 0.5 s. The condition of the simulations is the same as the start-up response and the
simulation results are shown in Figures 11–14. It can be concluded from Figure 11 that the
settling time of the voltage response under the PI, the LSM, and the FOTSM are 0.045 s,
0.035 s, and 0.006 s, respectively, when the reference of voltage amplitude is changed from
327 V to 360 V at 0.5 s. Meanwhile, the precision of the output voltage under the FOTSM is
better than those under the PI and the LSM. Figure 12 shows the d-axis current response
under PI-, LSM-, and FOTSM- controllers, which verifies that the proposed method has a
fast dynamic response. It is obvious from Figure 13 that the q-axis current response has
a smaller ripple than those under the PI and the LSM. In Figure 14, the frequency of PW
voltage response under the FOTSM has better precision and smaller fluctuation than the PI
and the LSM in the condition of voltage change. Therefore, it can be concluded that the
proposed FOTSM controllers have advantages in dynamic response and robustness against
the uncertainties caused by parameter perturbation.
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Figure 11. The PW-voltage amplitude responses under PI, LSM, and FOTSM during the voltage
change process.
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Figure 12. The CW d-axis current responses under PI, LSM, and FOTSM during the voltage change
process.
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Figure 13. The CW q-axis current responses under PI, LSM, and FOTSM during the voltage change
process.
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Figure 14. The PW voltage frequency responses under PI, LSM, and FOTSM during the voltage
change process.

5. Discussion

For the implementation of high-performance BDFIG-based islanded microgrids, a
sensorless control method, a harmonic elimination method, an adaptive gain to reduce the
complexity of the control gain design, and an experimental study of the proposed control
method will be our future work.

6. Conclusions

In this paper, a novel FOTSM control method was proposed to enhance the accuracy,
the rapidness, and the robustness of the BDFIG-based islanded microgrids and to improve
the output voltage quality. Different from the existing control methods, all of the matched
and mismatched uncertainties in the BDFIG system are fully considered. With the use of
the virtual control technique-based FOTSM, the tracking errors can be forced to converge
to zero in finite time, and the matched and mismatched uncertainties can be thoroughly
compensated, which improve the disturbance rejection capability of the BDFIG system.
Owing to the integral control law with the adaptive gain, the output signals of the proposed
controllers are smooth. Comprehensive simulation results have proved the effectiveness
and feasibility of the proposed method in this work.
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Abbreviations
The following abbreviations are used in this manuscript:

BDFIG Brushless doubly fed induction generator
LSM Linear sliding-mode
FOTSM Full-order terminal sliding-mode
DFIG Doubly fed induction generator
IM Induction motor
PW Power winding
CW Control winding
VC Vertor control
DTC Direct torque control
MIMO Mutiple-input-mutiple-output
PI Practial proportional-integral
CSC CW side converter
AFT Active front end
MRAC Model reference adaptive control
MPC Model predictive control
ADRC Active disturbance rejection control
SMC Sliding-mode control
SVPWM Signals of space vector pulse width modulationn
PWM Pulse width modulation
Nomenclature
p1, p2 Pole pair numbers of PW and CW.
ω1, ω2 Angular frequencies of PW and CW.
ωr, ωN Actual and natural synchronous rotor speeds.
θ2 Angular position of CW current vectors.
R1, R2, Rr Resistances of PW, CW, and rotor.
L1, L2, Lr Self-inductances of PW, CW, and rotor.
L1r Mutual inductance between PW and rotor.
L2r Mutual inductance between CW and rotor.
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i1, i2, ir Currents of PW, CW, and rotor.
u1, u2, ur Voltages of PW, CW, and rotor.
φ1, φ2, φr Fluxes of PW, CW, and rotor.
s Differential operator, d/dt.
U Voltage amplitude.
u Voltage vector.
i Current vector.
ref Reference value.
a, b, c States in abc-axis.
d, q States in dq-axis.

References
1. Zeng, Y.; Cheng, M.; Wei, X.; Zhang, G. Grid-Connected and Standalone Control for Dual-Stator Brushless Doubly Fed Induction

Generator. IEEE Trans. Ind. Electron. 2021, 10, 9196–9206. [CrossRef]
2. Xu, W.; Hussien, M.; Liu, Y.; Islam, M.; Allam, S. Sensorless Voltage Control Schemes for Brushless Doubly-Fed Induction

Generators in Stand-Alone and Grid-Connected Applications. IEEE Trans. Energy Convers. 2020, 35, 1781–1795. [CrossRef]
3. Sami, I.; Ullah, S.; Ali, Z.; Ullah, N.; Ro, J.-S. A Super Twisting Fractional Order Terminal Sliding Mode Control for DFIG-Based

Wind Energy Conversion System. Energies 2020, 13, 2158. [CrossRef]
4. Min, L.; Chen, Y.; Debin, Z.; Jingyuan, S.; Yong, K. Virtual Synchronous Control Based on Control Winding Orientation for

Brushless Doubly Fed Induction Generator (BDFIG) Wind Turbines Under Symmetrical Grid Faults. Energies 2019, 12, 319.
5. Taluo, T.; Ristić, L.; Jovanović, M. Dynamic Modeling and Control of BDFRG under Unbalanced Grid Conditions. Energies 2021,

14, 4297. [CrossRef]
6. Xu, W.; Elbabo M.; Omer M.; Liu, Y.; Islam, M.R. Negative Sequence Voltage Compensating for Unbalanced Standalone Brushless

Doubly-Fed Induction Generator. IEEE Trans. Power Electron. 2020, 35, 667–680. [CrossRef]
7. Ullah, N.; Sami, I.; Chowdhury, M.; Techato, K.; Alkhammash, H. Artificial Intelligence Integrated Fractional Order Control of

Doubly Fed Induction Generator-Based Wind Energy System. IEEE Access 2021, 9, 5734–5748. [CrossRef]
8. Han, P.; Cheng, M.; Jiang, Y.l.; Chen, Z. Torque/Power Density Optimization of a Dual-Stator Brushless Doubly-Fed Induction

Generator for Wind Power Application. IEEE Trans. Ind. Electron. 2017, 64, 9864–9875. [CrossRef]
9. Barati, F.; McMahon, R.; Shao, S.Y.; Abdi, E.; Oraee, H. Generalized Vector Control for Brushless Doubly Fed Machines with

Nested-Loop Rotor. IEEE Trans. Ind. Electron. 2013, 60, 2477–2485. [CrossRef]
10. Izaskun S.; Javier P.; Miguel A.R.; Gonzalo A. Direct torque control design and experimental evaluation for the brushless doubly

fed machine. Energy Convers. Manag. 2011, 52, 142–149.
11. Shao, S.Y.; Abdi, E.; McMahon, R. Low-Cost Variable Speed Drive Based on a Brushless Doubly-Fed Motor and a Fractional

Unidirectional Converter. IEEE Trans. Ind. Electron. 2008, 59, 317–325. [CrossRef]
12. Zhang, A.; Wang, X.; Jia, W.X.; Ma, Y. Indirect Stator-Quantities Control for the Brushless Doubly Fed Induction Machine. IEEE

Trans. Power Electron. 2014, 29, 1392–1401. [CrossRef]
13. Sebtahmadi, S.S.; Pirasteh, H.; Aghay Kaboli, S.H.; Radan, A.; Mekhilef, S. A 12-Sector Space Vector Switching Scheme for

Performance Improvement of Matrix-Converter-Based DTC of IM Drive. IEEE Trans. Power Electron. 2015, 30, 3804–3817.
[CrossRef]

14. Liu, Y.; Xu, W.; Zhu, J.G.; Blaabjerg, F. Sensorless Control of Standalone Brushless Doubly Fed Induction Generator Feeding
Unbalanced Loads in a Ship Shaft Power Generation System. IEEE Trans. Ind. Electron. 2019, 66, 739–749. [CrossRef]

15. Lu, X.; Lai, J.; Liu, G. Master-Slave Cooperation for Multi-DC-MGs via Variable Cyber Networks. IEEE Trans. Cybern. 2021.
[CrossRef]

16. Vargas, U.; Ramirez, A. Extended Harmonic Domain Model of a Wind Turbine Generator for Harmonic Transient Analysis. IEEE
Trans. Power Deliv. 2016, 31, 1360–1368. [CrossRef]

17. Kim, J.; Seok, J.K.; Muljadi, E.; Kang, Y. Adaptive Q−V Scheme for the Voltage Control of a DFIG-Based Wind Power Plant.
IEEE Trans. Power Electron. 2016, 31, 3586–3599. [CrossRef]

18. Qin, B.; Sun, H.; Ma, J.; Li, W.; Ding, T.; Wang, Z.; Zomaya, A.Y. Robust H∞ Control of Doubly Fed Wind Generator via
State-Dependent Riccati Equation Technique. IEEE Trans. Power Syst. 2021, 34, 2390–2400. [CrossRef]

19. Sharmila, V.; Rakkiyappan, R.; Joo, Y.H. Fuzzy Sampled-Data Control for DFIG-Based Wind Turbine with Stochastic Actuator
Failures. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 2199–2211. [CrossRef]

20. Lu, L.; Avila, N.F.; Chu, C.C.; Yeh, T.W. Model Reference Adaptive Back-Electromotive-Force Estimators for Sensorless Control of
Grid-Connected DFIGs. IEEE Trans. Ind. Appl. 2018, 54, 1701–1711. [CrossRef]

21. Errouissi, R.; Al-Durra, A.; Muyeen, S.M.; Leng, S.Y.; Blaabjerg, F. Offset-Free Direct Power Control of DFIG Under Continuous-
Time Model Predictive Control. IEEE Trans. Power Electron. 2017, 32, 2265–2277. [CrossRef]

22. Tohidi, A.; Hajieghrary, H.; Hsieh, M.A. Adaptive Disturbance Rejection Control Scheme for DFIG-Based Wind Turbine: Theory
and Experiments. IEEE Trans. Ind. Appl. 2016, 52, 2006–2015. [CrossRef]

23. Lu, X.; Lai, J. Communication Constraints for Distributed Secondary Control of Heterogenous Microgrids: A Survey. IEEE Trans.
Ind. Appl. 2021. [CrossRef]

http://doi.org/10.1109/TIE.2020.3028824
http://dx.doi.org/10.1109/TEC.2020.2999629
http://dx.doi.org/10.3390/en13092158
http://dx.doi.org/10.3390/en14144297
http://dx.doi.org/10.1109/TPEL.2019.2912820
http://dx.doi.org/10.1109/ACCESS.2020.3048420
http://dx.doi.org/10.1109/TIE.2017.2726964
http://dx.doi.org/10.1109/TIE.2012.2226415
http://dx.doi.org/10.1109/TIE.2011.2138672
http://dx.doi.org/10.1109/TPEL.2013.2260870
http://dx.doi.org/10.1109/TPEL.2014.2347457
http://dx.doi.org/10.1109/TIE.2018.2835400
http://dx.doi.org/10.1109/TCYB.2020.3035587
http://dx.doi.org/10.1109/TPWRD.2015.2499701
http://dx.doi.org/10.1109/TPEL.2015.2464715
http://dx.doi.org/10.1109/TPWRS.2018.2881687
http://dx.doi.org/10.1109/TSMC.2019.2946873
http://dx.doi.org/10.1109/TIA.2017.2765300
http://dx.doi.org/10.1109/TPEL.2016.2557964
http://dx.doi.org/10.1109/TIA.2016.2521354
http://dx.doi.org/10.1109/TIA.2021.3104792


Energies 2021, 14, 7302 20 of 20

24. Lai, J.; Lu, X.; Dong, Z.; Cheng, S. Resilient Distributed Multiagent Control for AC Microgrid Networks Subject to Disturbances.
IEEE Trans. Syst. Man Cybern. Syst. 2021. [CrossRef]

25. Ruiz-Cruz, R.; Sanchez, E.N.; Loukianov, A.G.; Ruz-Hernandez, J.A. Real-Time Neural Inverse Optimal Control for a Wind
Generator. IEEE Trans. Sustain. Energy 2019, 10, 1172–1183. [CrossRef]

26. Hu, J.; He, N.; Hu, B.; He, Y.; Zhu, Z. Direct Active and Reactive Power Regulation of DFIG Using Sliding-Mode Control
Approach. IEEE Trans. Energy Convers. 2010, 25, 1028–1039. [CrossRef]

27. Lascu, C.; Boldea, I.; Blaabjerg, F. Direct torque control of sensorless induction motor drives: A sliding-mode approach. IEEE
Trans. Ind. Appl. 2004, 40, 582–590. [CrossRef]

28. Zhou, M.; Cheng, S.; Feng, Y.; Xu, W.; Wang, L.; Cai, W. Full-Order Terminal Sliding-Mode based Sensorless Control of Induction
Motor with Gain Adaptation. IEEE J. Emerg. Sel. Top. Power Electron. 2021. [CrossRef]

29. Sun, D.; Wang, X.; Nian, H.; Zhu, Z. A Sliding-Mode Direct Power Control Strategy for DFIG Under Both Balanced and
Unbalanced Grid Conditions Using Extended Active Power. IEEE Trans. Power Electron. 2018, 33, 1313–1322. [CrossRef]

30. Sadeghi, R.; Madani, S.M.; Ataei, M.; Agha Kashkooli, M.R.; Ademi, S. Super-Twisting Sliding Mode Direct Power Control of a
Brushless Doubly Fed Induction Generator. IEEE Trans. Ind. Electron. 2018, 65, 9147–9156. [CrossRef]

31. Amin, I.K.; Uddin, M.N. Nonlinear Control Operation of DFIG-Based WECS Incorporated With Machine Loss Reduction Scheme.
IEEE Trans. Power Electron. 2020, 35, 7031–7044. [CrossRef]

32. Chen, S.; Cheung, N.C.; Wong, K.C.; Wu, J. Integral Sliding-Mode Direct Torque Control of Doubly-Fed Induction Generators
Under Unbalanced Grid Voltage. IEEE Trans. Energy Convers. 2010, 25, 356–368. [CrossRef]

33. Evangelista, C.; Valenciaga, F.; Puleston, P. Active and Reactive Power Control for Wind Turbine Based on a MIMO 2-Sliding
Mode Algorithm with Variable Gains. IEEE Trans. Energy Convers. 2013, 28, 682–689. [CrossRef]

34. Evangelista, C.A.; Pisano, A.; Puleston, P.; Usai, E. Receding Horizon Adaptive Second-Order Sliding Mode Control for Doubly-
Fed Induction Generator Based Wind Turbine. IEEE Trans. Control Syst. Technol. 2016, 25, 73–84. [CrossRef]

35. Yan, X.; Cheng, M.; Xu, L.; Zeng, Y. Dual-Objective Control Using an SMC-Based CW Current Controller for Cascaded Brushless
Doubly Fed Induction Generator. IEEE Trans. Ind. Appl. 2020, 56, 7109–7120. [CrossRef]

36. Zhang, G.; Yang, J.; Sun, Y.; Su, M.; Tang, W.; Zhu, Q.; Wang, H. A Robust Control Scheme Based on ISMC for the Brushless
Doubly Fed Induction Machine. IEEE Trans. Power Electron. 2018, 33, 3129–3140. [CrossRef]

37. Yu, X.; Feng, Y.; Man, Z. Terminal Sliding Mode Control—An Overview. IEEE Open J. Ind. Electron. Soc. 2021, 2, 36–52. [CrossRef]
38. Feng, Y.; Zhou, M.; Zheng, X.; Han, F.; Yu, X. Full-order terminal sliding-mode control of MIMO systems with unmatched

uncertainties. J. Frankl. Inst. 2017, 1, 1–22. [CrossRef]

http://dx.doi.org/10.1109/TSMC.2021.3056559
http://dx.doi.org/10.1109/TSTE.2018.2862628
http://dx.doi.org/10.1109/TEC.2010.2048754
http://dx.doi.org/10.1109/TIA.2004.824441
http://dx.doi.org/10.1109/JESTPE.2021.3081863
http://dx.doi.org/10.1109/TPEL.2017.2686980
http://dx.doi.org/10.1109/TIE.2018.2818672
http://dx.doi.org/10.1109/TPEL.2019.2955021
http://dx.doi.org/10.1109/TEC.2009.2036249
http://dx.doi.org/10.1109/TEC.2013.2272244
http://dx.doi.org/10.1109/TCST.2016.2540539
http://dx.doi.org/10.1109/TIA.2020.3021624
http://dx.doi.org/10.1109/TPEL.2017.2708741
http://dx.doi.org/10.1109/OJIES.2020.3040412
http://dx.doi.org/10.1016/j.jfranklin.2017.10.034

	Introduction
	Preliminary
	Dynamic Model of the BDFIG
	Outer Loop Subsystem
	Inner Loop Subsystem

	Full-Order Terminal Sliding-Mode Controller Design
	Simulations
	Start-Up Response
	Load Adding Response
	Voltage Change Response

	Discussion
	Conclusions
	References

