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Abstract: Photovoltaic (PV) generation is potentially uncertain. Probabilistic PV generation fore-
casting methods have been proposed with prediction intervals (PIs) to evaluate the uncertainty
quantitively. However, few studies have applied PIs to geographically distributed PVs in a specific
area. In this study, a two-step probabilistic forecast scheme is proposed for geographically distributed
PV generation forecasting. Each step of the proposed scheme adopts ensemble forecasting based
on three different machine-learning methods. When individual PV generation is forecasted, the
proposed scheme utilizes surrounding PVs’ past data to train the ensemble forecasting model. In this
case study, the proposed scheme was compared with conventional non-multistep forecasting. The
proposed scheme improved the reliability of the PIs and deterministic PV forecasting results through
30 days of continuous operation with real data in Japan.

Keywords: photovoltaic generation forecast; probabilistic forecast; prediction interval; ensemble
forecast; day ahead forecasting; multiple PV forecasting

1. Introduction

Photovoltaic (PV) generation in a distribution network plays a key role in promoting
clean energy production. One of the well-recognized problems of the PV generation is the
increased power flow at the substation and in the distribution line under the substation [1].
The peak time and the amount of power flow depend on the demand and PV generation in
the network. The peak is mitigated by energy storage systems (ESSs) operations, such as
fixed batteries reported in [2,3]. The peak time and energy generated from the PVs must be
forecasted to operate the ESS with the best efficiency. In [3], the proposed peak-shaving
algorithm is performed based on prediction intervals (PIs) and indicates the probability
of peak demand at the substation. The PIs are evaluated using two fundamental but
contradictory ideas: the coverage rate and the width of the intervals [4]. If the PIs cover all
observations, the coverage rate is the best at 100%. By contrast, the PI widths are preferred
to be narrower. As the PIs have a high coverage rate of observations and become narrower,
the performance of the peak mitigation improves [3].

PVs are distributed within a specific area connected to the same distribution network.
Thus, a spatiotemporal model is required to extract and use spatial and temporal data
from multiple PVs to improve PI reliability [5–7]. The authors of [5] proposed a deep
learning framework that can generate PV forecasts for multiple regions and horizons with
56 locations in the US, while [6] proposed a model to forecast six hours based on 136 PV
installations in France. Irradiance forecasting for 11 PVs distributed in a specific region is
performed as accumulated generations [8]. The cloud motion vector-based method [9,10]
is an established approach for covering distributed PVs in a specific area. Numerical
weather predictions are used for forecasting hours to days ahead [11]. Satellite images,
ground measurements, and sky imaging were combined to improve deterministic and
probabilistic forecast reliability [12]. In [13], optical flow deals with nonuniform cloud
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motion and is originally a technique for image processing [14]. The optical flow is a
distribution of the apparent velocities of the movement of brightness patterns in an image.
An optical flow that tracks the amount of distributed PV generation was developed in our
laboratory [15]. Consequently, the mean absolute percentage error is 4.23% in the case of
forecasting 30 min [15]. However, the error increases when the prediction time is extended.

Another promising approach for forecasting PV generation is the historical data-driven
approach. Data-driven approaches require a large amount of measured past-generation
data for deep learning [16]. However, once the correct dataset with a small number of
missing records is arranged, the forecasting ability is excellent, especially in day-ahead
forecasting [17]. Developing PIs with data-driven approaches for various objectives, not
including PV forecasting, is proposed based on Delta [18,19], Bayesian [20], mean-variance
estimation [21], and bootstrap techniques [22], which are comprehensively compared
in [23]. Quantile regression was adopted in [7]. The bootstrap technique was proposed
in [17] to quantify the uncertainty with PIs for PV forecasting. In addition, the performance
of the bootstrap technique has been proven for wind farm power generation forecasts [24].

As aforementioned, sky or cloud image-based methods and data-driven approaches
have been developed; however, according to the intensive reviews of PV forecasting
reported in [11], studies on regional models for multiple PVs are limited. Most studies
have focused on forecasting at single locations, while little work has been done on regional
models. The few PV forecasting studies for distributed PVs did not focus on the individual
PV generation forecast but accumulated total PV generation in the region. In addition,
the existing forecast models are too specific to circumscribe to a particular region [25].
The model and the methodology to individually forecast the distributed PV generation is
required, not limited to the specific circumstances to a particular region.

This study developed and verified a two-step probabilistic forecast scheme for geo-
graphically distributed PV generation forecasting. We introduce the idea of optical flow to
data-driven methods, such as machine-learning-based methods, to improve existing proba-
bilistic PV generation forecasting methods. Existing machine learning utilizes past data,
including generations, temperature, humidity, and precipitation, and the most important
predictor is radiation. The forecasting model was mainly developed for each PV system.
Conversely, the original idea of PV generation forecasting, with the optical flow developed
in our laboratory, is that the generation of geographically distributed PVs moves as the sun
and clouds move [15].

Herein, we propose a PV forecasting method for geographically distributed PVs in a
specific area. The PVs are geographically close. Therefore, the past-generation data of one
PV can be a meaningful predictor of another PV generation forecasting, which is proven
in Section 3 as a case study. Ensemble forecasting comprising three machine-learning
methods is proposed in this study as an example of probabilistic forecasting. The proposed
ultimate forecasting scheme comprises a single PV forecast model and multiple PV forecast
models. The ensemble forecast was adopted for both single and multiple PV forecast
models. The proposed ensemble method is enhanced by utilizing the past-generation data
of multiple PVs. The simulation shows that the reliability of the forecasting is improved
by both deterministic and probabilistic forecasting. The contributions of this study are
as follows:

(1) We propose a method to develop boundaries for PIs based on past forecast errors.
The case study shows that the boundaries are stable and functional for multiple PVs
based on actual PV generation data.

(2) A multi-step PV forecasting scheme for geographically distributed PVs in a specific
area is proposed. The case study shows that the proposed scheme improves the
forecasting reliability with real PV generation data.

(3) The performance of the proposed multi-step PV forecasting scheme was evaluated
with a long-term simulation case as continuous 30 days. The statistical analysis
indicates that the proposed scheme improves the root mean square error (RMSE) and
mean average percentage error (MAPE) for deterministic forecasting. In addition,
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the PI cover rate and the width of the PI for probabilistic forecasting are improved
compared to conventional single PV forecast methods.

The rest of the paper is organized as follows: Section 2 introduces the methodology of
the ensemble forecasting model and the way to generate the PIs. Section 3 introduces the
case study to prove that the proposed forecasting algorithms can improve the reliability
of probabilistic forecasting in terms of the PI cover rate and PI width. Finally, Section 4
concludes the study.

2. Forecast Methodology

The proposed forecast model comprises two steps: a single-forecast model and a
multiple forecast model, as shown in Figure 1. The single-forecast model is composed for
each PV, indicated as PV1, PV2, . . . PVi in Figure 1. Past-generation data and weather data
are inputs for the ensemble forecast model, as explained in Section 2.1. The forecasted PV
generation by the single-forecast model for each PV was utilized as inputs to the multiple
forecast model. In Figure 1, PVi+1 is forecasted based on the forecasted generation from
PV1 to PVi, which were chosen based on the Euclidean distance calculated by the latitude
and longitude of each PV location. In the case study, the five nearest PVs were chosen to
compose the multiple forecast models. The multiple forecast model is performed based on
the past data of the target PV, weather data, and the results of other PV forecasts by the
single-forecast models.

Figure 1. Configuration of the single and multiple PV forecast model.

2.1. Ensemble Forecasting with Prediction Intervals

Both the single and multiple PV forecast models were designed for ensemble fore-
casting. Three data-driven regressions, naive Bayes classifier, neural network (NN), and
long short-term memory (LSTM), are utilized for ensemble forecasting. In this study, we
handle multiple PVs that are geographically distributed in a specific area. The ensemble
model is arranged for each PV in the proposed method. If we need to forecast five PVs
at once, we need to build five individual models for each PV based on different training
data. The configuration of the ensemble model is shown in Figure 2. Each data-driven
regression model was individually trained to configure the best parameters based on past
data. All individual models were added with different weights and one ensemble model.
The weight optimizer in Figure 2 calculates the optimal weight for addition based on the
past performance of each model. The naive Bayes classifier-based prediction was reported
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in [26]. The NN model was designed using the function-fitting neural network available in
MATLAB [27]. LSTM was also implemented using the function in MATLAB [28].

Figure 2. Configuration of an ensemble forecasting model.

The PV forecast process is assumed to be performed once a day using continuously
updated observed data. The forecast result is provided as day-ahead forecasting; hence,
the forecasted PV generation can be utilized to determine the operations of the ESS charge
and discharge [3]. The process of ensemble forecasting, and the development of the
prediction intervals, are shown in Figure 3. The PV forecasting process comprises two
parts: the training process with past data and the forecasting process with test data. The
implementation codes of MATLAB for the model in Figure 3 are available on GitHub [29].
The steps from (i) to (vi) in Figure 3 are explained as follows.

(i) Check if forecast models need to be updated

In step (i), the ensemble forecast model is inspected to check whether the trained
parameters are the latest. If the trained model with the determined parameters does
not include the latest observed data, the model is re-trained to update the parameters
of every forecasting method. In the training process, the parameters for the ensemble
forecasting methods are determined using past data. Once the training process is completed,
the parameters for the forecasting methods remain fixed until a new training process is
performed. Therefore, the model parameters must be updated periodically to catch up
with the latest observed data. In the case study, the model was updated every 30 days.

(ii) Train each forecast model with training data

In step (ii), the forecasting models naive Bayes classifier, NN, and LSTM are individ-
ually trained. The data configuration is shown in Figure 4. Two groups are arranged for
model building and forecasting: long-term past data (training and validation data) and
forecast data. Long-term data contain predictors (timestamps, temperature, and weather
conditions) and target (PV generation); forecast data contain only predictors. In the forecast
data, weather information is obtained from weather forecasts available to the public via
the web. Training data were utilized as a training dataset to construct the naive Bayes
classifier, NN, and LSTM models. Long-term past data preferably contain at least one year
of collection to capture seasonal features. Validation data in the long-term past data were
selected in sets of arbitrary length from long-term past data. The validation data were
utilized to determine the optimal weight for the ensemble forecast model, as shown in
Figure 2. In addition, the validation data are utilized to compose the error distribution,
leading to PIs. Based on the validation data, the error distribution can reveal bias errors
caused by recent facility changes, such as installing new PV farms [30]. This bias error
can also be reflected in model training with long-term past data, including validation data.
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However, the significance of the error takes more than several weeks to show up because
the biased new data records are significantly smaller than the existing long-term past data.

Figure 3. Configuration of an ensemble forecasting model.

Figure 4. Data configuration; long-term past data for training and error validation. Forecast data for
forecasting unknown PV generations.
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The NN model comprises four hidden layers with 20, 20, 20, and 15 units, respectively.
Scaled conjugate gradient [31] is utilized as a training function. The forecast result in every
time step is obtained by taking the average of three times to mitigate the affection of initial
value randomness.

The LSTM model comprises three hidden layers that have 100, 50, and 25 units,
respectively. The maximum number of epochs is 250, the gradient threshold is 1.2, the
initial learning rate used for training is 0.01, the number of epochs for dropping the learning
rate is 125, and the factor for dropping the learning rate is 0.2.

The k-means method is utilized to classify the training data, and the classified training
data is an input for the naive Bayes classifier. Naive Bayes classifier provides the PV
forecasting. The k-means and naive Bayes classifier combined to forecast the PV generation
as follows:

Step 1. k-means classifies the observed PV generation records with 50 clusters. In this
case, the k = 50 is experimentally chosen. Then, the predictors such as tempera-
ture and weather conditions corresponding with each timestamp are classified in
each cluster.

Step 2. Train naive Bayes classifier model by the classified observed and kernel distribution
function for predictors.

Step 3. The trained naive Bayes classifier classifies the unknown predictors as test data
with each cluster.

Step 4. The centroid of each cluster, which is determined in Step1, is the forecasted PV
generation value.

(iii) Find the best weight for each forecast model

The optimal coefficients for an ensemble model composed of these two trained models
were determined. For the naive Bayes classifier model, an optimal k is determined, which
indicates how many groups need to be generated. The NN model learns the weights of
each neuron. An ensemble prediction model was built by combining these two prediction
models with weights, as shown in Equation (1):

ŷi
t =

N

∑
i=1

ct F̂i
t , i ∈ N, t ∈ T (1)

Here, ŷi
t is the ultimate deterministic forecasted value of PV generation for time

instance t on the i-th day. T is the time instances in a day, which is 48 times in the case
study. N is defined as the number of days for error validation indicated by N in Figure 4.
F̂i

t is the deterministically forecasted PV generation using the individual forecast methods
at time t. In this case, three methods (N = 3) were adopted: naive Bayes classifier, NN, and
LSTM. The coefficients ct are the weights of each forecasting method. ct is common for all
days N. The weights are time-consistent, as determined by the particle swarm optimization
(PSO) algorithm that minimizes the error between the observed and predicted loads, as
shown in Equation (2):

arg min
ct
‖Yi − Ŷi‖2 (2)

Here,
Yi :=

{
yi

1, yi
2, . . . yi

t . . . yi
T
}

Ŷi :=
{

ŷi
1, ŷi

2, . . . ŷi
t . . . ŷi

T
} (3)

Yi is the set of observed data yi
t corresponding to the predicted PV generation ŷi

t at
time t on the i-th day, and Ŷi is the set of predicted PV generation ŷi

t. For instance, as
shown in Figure 5, if the observed data comprise 30 min-intervals, t comprises 48 instances
a day. The deterministic prediction by the ensemble model is performed for past data for a
specific time duration, such as the period of one year (i = 1, 2, 3, . . . , 365).
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Figure 5. Forecasted and observed PV generation on the i-th day.

(iv) Derive error distribution from the ensemble model

Once the optimal coefficients are obtained, future PV generation is forecasted using
the trained ensemble model. The boundaries of the PIs were subsequently calculated.
The absolute error set Et for a specific time t is derived by comparing the predicted and
observed data throughout the short-term past data. A series of errors are indicated in
Figure 5, and the error set is expressed as follows:

ei
t = yi

t − ŷi
t (4)

Et :=
{

e1
t , e2

t , e3
t . . . ei

t . . . eN
t

}
, i ∈ N, t ∈ T (5)

Here, ei
t is the forecasting error for the i-th day at time t. N indicates the number of

days included in the validation dataset. Each time t has an error record for several days.
The set Et forms the histogram for each time t and is referred to as the error distribution in
this document.

(v) Forecast deterministic PV generation by the ensemble model

After the error distribution is formulated in the model training process, determin-
istic PV generation is forecasted for the next 24 h. The deterministic forecast and error
distribution were added into a set Dt. The set Dt for time t is defined as follows:

Dt :=
{

ŷt + e1
t , ŷt + e2

t , ŷt + e3
t . . . ŷt + eN

t

}
(6)

(vi) Make prediction interval from error distribution and deterministic forecasting

The PIs comprise upper and lower boundaries. In this study, these boundaries are
obtained by taking confidence intervals from set Dt in (6). The set Dt is not guaranteed to
be distributed as a normal distribution; thus, making PIs should be investigated further in
future work. In the following case study, the confidence interval level is 95% as an example,
which can change as the application requires.

2.2. Multiple Forecast Model

The multiple forecast models have the same ensemble model as the single-forecast
models. The operation flow of the multiple forecast model is also similar to that of the
single PV forecast model, as shown in Figure 3. The difference between the multiple and
single-forecast models is the input data into the ensemble models, as shown in Figure 1.
First, the target PV was chosen as the output of the multiple PV forecast model. Second, the
PVs forecasted by the single PV forecast models were selected based on the geographical
distance from the target PV. In the case study, four PVs were selected for the single-forecast
model as an example. The criteria that choose PVs for the single-forecast model are still
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open to discussion and can consider the ground form, the direction of the PV panels,
obstacle conditions (sometimes the building makes shade for PV panels at a specific time),
and others. The correlation coefficient between the generation data from the target PV and
PVs for the single PV forecast model is a promising candidate for choosing PVs for a single
PV forecast model.

3. Case Study
3.1. Given Data Set and Premises

The data were collected around the Kanto region in Japan. The observed points were
distributed as shown in Figure 6. PV generation is forecasted for five PVs named PV (i), (ii),
(iii), (iv), and (v) to validate that the proposed multiple PV forecast model improves the reli-
ability of the forecasting for each PV generation. The rates of power of PVs are: (i) 4.80 kW,
(ii) 2.88 kW, (iii) 3.42 kW, (iv) 20.09 kW, and (v) 3.00 kW, respectively. PV generation was
observed every 30 min from 6:30 a.m. to 5:00 p.m. daily. The observed generation data are
recorded with year, month, day, hour, minutes, temperature, precipitation, and weather
(sunny, cloud, or rain). The location of each PV is also given by latitude and longitude.
These five PVs are chosen to be close to each other in terms of distance. The distances
between each PV are shown in Figure 6. The area PVs are almost flat; therefore, the altitude
is assumed to be the same in the case study.

Figure 6. Location of the PV systems to be forecasted in Japan.

The observed data for the case study are from 15 August 2013 to 31 July 2014. The
PV generation for each PV is forecasted using a single PV forecast model and a multiple
PV forecast model. The one-day-ahead forecasting is continuously performed for 30 days
from 2 July 2014 to 31 July 2014. Due to the limited data aquation from the system, the
observed data from 10:30 pm to 6:00 am are not available; therefore, the data from 5:30 p.m.
to 10:00 p.m. are not utilized for model training and forecasting. There are no reasons to
restrict the data in a day from the viewpoint of the proposed algorithm or model. The
data for all the time in a day is the ideal data set for more accurate forecast models. Some
missing records from 10:30 p.m. to 6:00 a.m. were interpolated by linear interpolation. The
PV forecast error increases with interpolated training data than the PV forecast with no
missing records in the training data. In [32], four imputation methods to fill the missing
records are evaluated for the PV generation forecasting. According to [1], the PV generation
forecasting with 10% interpolated records by linear interpolation leads to the 0.17% higher
mean relative error than the forecasting with no missing records. On the other hand, the
ratio of the missing records in all data for each PV unit in this study is shown in Table 1.
Table 1 shows that every PV data contains around 10% or less than 10% missing records.
These missing records are filled by linear interpolation. Therefore, the missing records
affect the forecast accuracy around 0.17%, as [1] shows, which is not significant to the
forecast result in the study.
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Table 1. The ratio of the missing records for each PV in all past data.

PV ID The Number of
Total Records

The Number of
Missing Record Missing Rate [%]

(i) 7722 494 6.4
(ii) 7722 754 9.8
(iii) 7722 410 5.3
(iv) 7722 188 2.4
(v) 7722 864 11.2

3.2. Simulation Results

The simulation result is evaluated based on four criteria: the cover rate of the predic-
tion interval, the width of the prediction interval, MAPE, and RMSE. The forecasted result
is calculated daily with a 30-min interval because the ESSs in distribution networks are
assumed to operate following the predetermined schedule daily.

3.2.1. Forecast Result on the Best and Worst Day

Figure 7 shows the improvement in the forecasted results for PV (iii) on 11 July 2014.
The rated power of PV (iii) is 3.42 kW. Figure 7a presents the day with the worst coverage
rate among the 30 days using the single PV forecast model. Figure 7b was obtained using
the multiple PV forecast model. The cover rate was improved from 72% to 100% using the
multiple PV forecast model. In addition, the RMSE was reduced from 0.517 to 0.117 kW.
However, in some cases, the PI cover rate is deteriorated by the multiple PV forecast
model. Figure 8 shows the deteriorating of the forecasted results for PV (iii) on 15 July
2014. Figure 8a was obtained using the single PV forecast model. Figure 8b presents the
day with the worst coverage rate among the 30 days using the multiple PV forecast model.
Using the multiple PV forecast model, the cover rate deteriorated from 90 to 77%. However,
the RMSE was reduced (improved) from 0.475 kW to 0.347 kW. The reason for the PI cover
rate is that the PI width generated by the multiple PV forecast model is not narrower than
that of the single PV forecast model.

As with the PI cover rate above, the RMSE calculated based on the single PV forecast
model is also improved by the multiple PV forecast model. Figure 9 shows the improvement
in the forecasted results for PV (iii) on 10 July 2014. Figure 9a shows the day with the
worst RMSE of 30 days using the single PV forecast model. Figure 9b is obtained using
the multiple PV forecast model for the same day. The average of the RMSE in a day was
improved from 0.667 to 0.165 kW by the multiple PV forecast model. Figure 10 shows the
deteriorating of the forecasted results for PV (iii) on 25 July 2014. Figure 10a was obtained
using the single PV forecast model. Figure 10b presents the day with the worst RMSE of
30 days using the multiple PV forecast model. The RMSE slightly worsened from 0.372 to
0.382 kW using the multiple PV forecast model.

Figure 7. Improvement of forecasted PV generation for PV (iii) on 11 July 2014. The day has the worst PI coverage rate by
the single PV forecast model among 30 days. (a) Single PV forecast model for PV (iii) (Cover rate = 72%). (b) Multiple PV
forecast model for PV (iii) (Cover rate = 100%).
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Figure 8. Deteriorating of forecasted PV generation for PV (iii) on 15 July 2014. The day has the worst PI coverage rate by
the multiple PV forecast model among 30 days. (a) Single PV forecast model for PV (iii) (Cover rate = 90%). (b) Multiple PV
forecast model for PV (iii) (Cover rate = 77%).

Figure 9. Improvement of forecasted PV generation for PV (iii) on 10 July 2014; the worst RMSE by the single PV forecast
model among 30 days performances. (a) Single PV forecast model for PV (iii) (RMSE = 0.667 kw). (b) Multiple PV forecast
model for PV (iii) (RMSE = 0.165 kw).

Figure 10. Deteriorating of forecasted PV generation for PV (iii) on 25 July 2014; the worst RMSE by the multiple PV forecast
model among 30 days performances. (a) Single PV forecast model for PV (iii) (RMSE = 0.372 kw). (b) Multiple PV forecast
model for PV (iii) (RMSE = 0.382 kw).
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According to Figures 8 and 10, the multiple PV forecast model is not always superior
to the single PV forecast model for any case. Therefore, in the following subsection, we
statistically analyze the forecast results to verify if the multiple PV forecast model is
superior to the single PV forecast model for most cases.

3.2.2. Statistical Analysis of Forecast Result in the Whole Forecast Duration

Figure 11 shows a box plot of the cover rate of the prediction interval. In each box plot
in Figure 11, the median of 30 days of forecasted result is represented by a red line. The edge
of the box represents the 75th and 25th percentiles. Notches display the variability of the
median between samples as confidence intervals. The width of a notch is computed such
that boxes whose notches do not overlap have different medians at the 5% significance level.
The significance level is based on a standard distribution assumption, but comparisons of
medians are reasonably robust for other distributions [33]. Table 2 shows a summary of the
boxplots from Figures 11–14. In Table 2, the indicators that have improved compared to
the single PV forecast model are highlighted.

Table 2. Summary of the multiple PVs forecast for 30 days.

Cover Rate [%] PI Width [kW] MAPE [%] RMSE [kW]

Single Multi Single Multi Single Multi Single Multi

PV (i)
M + 2σ 89.0 91.6 2.659 1.624 92.7 81.6 0.755 0.566

Median (M) 86.4 86.4 2.578 1.581 67.1 60.9 0.684 0.479
M − 2σ 83.8 81.2 2.497 1.537 41.5 40.3 0.614 0.392

PV (ii)
M + 2σ 87.0 94.8 1.442 0.797 69.5 24.8 0.386 0.196

Median (M) 81.8 90.9 1.403 0.788 44.7 19.4 0.355 0.166
M − 2σ 76.6 87.0 1.364 0.780 20.0 14.1 0.324 0.136

PV (iii)
M + 2σ 94.8 98.1 1.622 0.906 47.7 18.0 0.415 0.192

Median (M) 90.9 95.5 1.574 0.887 36.6 15.1 0.377 0.153
M − 2σ 87.0 92.8 1.525 0.867 25.6 12.1 0.339 0.113

PV (iv)
M + 2σ 90.3 93.5 7.196 4.086 53.1 28.2 1.794 0.939

Median (M) 86.4 90.9 7.073 4.051 42.4 21.3 1.613 0.845
M − 2σ 82.5 88.3 6.950 4.015 31.7 14.4 1.432 0.751

PV (v)
M + 2σ 96.1 90.3 1.232 0.897 63.6 39.3 0.365 0.216

Median (M) 90.9 86.4 1.218 0.894 46.2 33.0 0.335 0.188
M − 2σ 85.7 82.5 1.205 0.890 28.7 26.8 0.304 0.160

Figure 11. Box plot for prediction interval cover rate; Single PV vs. Multiple PV forecast model at
five locations.
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Figure 12. Box plot of prediction interval width; Single PV vs. Multiple PV forecast model at
five locations.

Figure 13. Box plot for mean absolute percentage error (MAPE); Single PV vs. Multiple PV forecast
model at five locations.

Figure 14. Box plot for root mean square error (RMSE); Single PV vs. Multiple PV forecast model at
five locations.
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Regarding the mean value of the PI cover rate, which is represented by the red line
in Figure 11, the multiple PV forecast model outperforms the single PV forecast model in
cases PV (ii), (iii), and (iv). PV (i) does not show significant differences between single and
multiple PV forecast models. The weather in this season changes from west to east. The
PV (i) does not change the result because the PV (i) is located on the west side among the
five PVs and cannot obtain any information from the other PVs to improve the forecasting
accuracy. PV (v) shows that the median of the PI cover rate decreases from 90.9 to 86.4% in
the multiple PV forecast model, as shown in Table 2. Nevertheless, the minimum cover
rate of the multiple PV forecast model is improved from the single PV forecast model, as
indicated in the edge of the boxplot in Figure 11. PV (v) is located on the west side among
the five PVs; therefore, the information from the far PVs such as PV (i) and PV (ii) is not
variable to improve the forecast accuracy. Figure 12 shows the box plots of the PI width for
the five PVs forecasted by the single PV and multiple PV forecast models. The PI width
generated by multiple PV models was narrower in all PVs than in the single PV forecast
model. As the PI width becomes narrower, the scheduling of the energy management
systems becomes easier, and the scheduled operation can be realized with more probability.
As shown in Figure 11, the PI cover rate was also improved or remained by the multiple PV
forecast model. Regarding PV (ii), PV (iii), and PV (iv), Figures 11 and 12 lead to an ideal
result that the multiple PV forecast model simultaneously improves both the cover rate
and PI width. The PV (ii), PV (iii), and PV (iv) are in the middle of the five PVs; therefore,
they retrieve variable information from the surrounding PVs to improve forecast accuracy.
With respect to PV (i) and PV (v), the PI width was improved. By contrast, the PI cover
rate remained unchanged and valuable for energy management using ESSs or electric
vehicle scheduling.

Figure 13 shows the boxplot of mean MAPE for five PV generations forecasted by the
single and multiple PV forecast models, respectively. In all cases, the multiple PV forecast
model shows a smaller MAPE than the single PV forecast model in terms of the mean.
Figure 14 shows the boxplot of RMSE for five PV generations forecasted by the single and
multiple PV forecast models, respectively. In all cases, the multiple PV forecast model
showed a smaller RMSE than the single PV forecast model with respect to the mean. The
results are shown in Figures 13 and 14. The multiple PV forecast model improved the
deterministic forecast accuracy in both MAPE and RMSE.

4. Conclusions

This study proposed a multiple PV forecast model based on ensemble forecasting
for distributed PV in a specific area. The ensemble forecasting comprises naive Bayes
classifier, NN, and LSTM with optimized weights using the PSO algorithm. In addition,
error-based PI construction has also been proposed to convert deterministic forecasting into
probabilistic forecasting. The proposed multiple PV forecast model utilizes the neighboring
PV forecast result based on the proposed ensemble forecast method. As a result, the
proposed multiple PV forecast model provides more reliable PIs for probabilistic forecasting
and fewer errors for deterministic forecasting. The proposed multiple PV forecasting model
is verified using five real PV generation data and climate data in the case study. As a result
of continuous simulations with 30 days data, the RMSE, MAPE, PI cover rate, and PI
width were improved by the multiple PV forecast model compared with the conventional
single PV forecast model for all five PV cases. The advantage and the disadvantage are
summarized as follows:

• Advantage:

The proposed two-step probabilistic forecast scheme can be applied to any machine
learning algorithm. This study utilizes the ensemble forecasting model, which combines
NN, naive Bayes classifier, and LSTM with optimized weights. The ensemble forecasting
model is just one of the candidates to forecast PV generation on the proposed scheme.

• Disadvantage:
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When we want to forecast a PV generation, the proposed two-step probabilistic
forecast scheme utilized the surrounding PVs’ past data for training the forecasting model.
This idea is based on the premise that these PVs are near, and the land is flat. However,
the land that is not flat, and any obstacles such as trees, can change the tendency of the PV
generations even they are near each other. In such cases, the proposed scheme is inefficient
because the surrounding PVs’ information is not useful or is even noise to forecast the PV.

In future work, the multiple PV forecast model outperforms the single PV forecast model,
but the effective way of selecting neighboring PVs should be investigated theoretically.
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