Advanced Insulation Materials for Facades: Analyzing Detachments Using Numerical Simulations and Infrared Thermography
Abstract
:1. Introduction
2. Theory: Long Pulse Thermography
3. Materials and Methods
3.1. Materials
3.2. Numerical Model (Comsol)
3.3. Experimental Tests
3.4. Data Processing
4. Results and Discussion
4.1. Numerical Model
4.2. Discussion and Experimental Validation
5. Conclusions
- The numerical model allows for investigating the thermal behavior of insulating cork panels in the presence of a defect. The obtained results are in good agreement with the experimental analysis and could be used for investigating different geometries and configurations of building structures.
- The Long Pulse Thermography and more specifically the TSR® and slope algorithms allow for detecting the imposed defect with a Long Pulse duration of about 110 min and a cooling time of 90 min. However, it is important to underline that the porous nature of the cork can affect the LP results and makes it difficult to detect small and deeper defects.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
ρ | Density | kg/m3 |
k | Thermal conductivity | W/mK |
cp | Specific heat at constant pressure | kJ/kgK |
ε | Surface emissivity | (0–1) |
T | Temperature | K |
u | Fluid velocity field | m/s |
θ | Porous fraction | (0–1) |
keff | Effective conductivity tensor | W/mK |
qr | Involves all the thermal phenomena related to the radiative heat transfer | J |
qc | Conductive term | W/m2 |
p | Pressure | Pa |
I | Intensity radiation | W/m2 |
Ib | Intensity radiation of the black body | W/m2 |
Ω | Direction of radiation | rad |
Φ | Phase function | - |
σs | Fractions of radiations attenuated or scattered | (0–1) |
ka | Absorption coefficient | (0–1) |
β | Extinction coefficient | (0–1) |
ke | Emissivity coefficient | (0–1) |
a1 | Probability of scattering in any direction | % |
μ0 | Angle between the direction of the scattered radiation and the osculating plane | rad |
τ | Viscous stress tensor | Pa |
S | Strain tensor | 1/s |
t | Time | s |
ΔT | Temperature difference | K |
an | Coefficients of the polynomial function | - |
R2 | Square of the Pearson correlation coefficient | - |
m | Slope of the least square line (in double ln scale) | Ln(K/s) |
References
- Bozsaky, D. The historical development of thermal insulation materials. Architecture 2010, 41/2, 49–56. [Google Scholar] [CrossRef]
- Bynum, R.T. Insulation Handbook; The McGraw-Hill Companies: New York, NY, USA, 2001. [Google Scholar]
- Morley, M. Building with Structural Insulated Panels (SIPs): Strength and Energy Efficiency Through Structural Panel Construction; The Taunton Press: Newtown, CO, USA, 2000. [Google Scholar]
- Gil, L. Cork Composites: A Review. Materials 2009, 2, 776–789. [Google Scholar] [CrossRef] [Green Version]
- Masri, Y.E.; Rakha, T. A scoping review of non-destructive testing (NDT) techniques in building performance diagnostic inspections. Constr. Build. Mater. 2020, 265, 120542. [Google Scholar] [CrossRef]
- Malanho, S.; Veiga, R.; Farinha, C.B. Global performance of sustainable thermal insulating systems with cork for building facades. Buildings 2021, 11, 83. [Google Scholar] [CrossRef]
- Lagorce-Tachon, A.; Mairesse, F.; Karbowiak, T.; Gougeon, R.D.; Bellat, J.-P.; Sliwa, T.; Simon, J.-M. Contribution of image processing for analyzing the cellular structure of cork. J. Chemom. 2018, 32, e2988. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, Z.; Wang, Y.; Wang, D.; Liu, J. Experimental study of hygro-thermal characteristics of novel cement-cork mortars. Constr. Build. Mater. 2021, 271, 121910. [Google Scholar] [CrossRef]
- Merabti, S.; Kenai, S.; Belarbi, R.; Khatib, J. Thermo-mechanical and physical properties of waste granular cork composite with slag cement. Constr. Build. Mater. 2021, 272, 121923. [Google Scholar] [CrossRef]
- Novais, R.M.; Senff, L.; Carvalheiras, J.; Lacasta, A.M.; Cantalapietra, I.R.; Labrincha, J.A. Simple and effective route to tailor the thermal, acoustic and hygrothermal properties of cork-containing waste derived inorganic polymer composites. J. Build. Eng. 2021, 42, 102501. [Google Scholar] [CrossRef]
- Schabowicz, K. Non-destructive Testing of Materials in civil Engineering. Materials 2019, 12, 3237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chizh, M.; Zhuravlev, A.; Razevig, V.; Ivashov, S.; Farloni, P.; Capineri, L. Defects investigation in thermal insulation coatings with microwave imaging based on a 22 GHz holographic radar. NdtE Int. 2020, 109, 102191. [Google Scholar] [CrossRef]
- Aditya, L.; Mahlia, T.M.I.; Rismanchi, B.; Ng, H.M.; Hasan, M.H.; Metselaar, H.S.C.; Muraza, O.; Aditiya, H.B. A review on insulation materials for energy conservation in buildings. Renew. Sustain. Energy Rev. 2017, 73, 1352–1365. [Google Scholar] [CrossRef]
- Meola, C. Infrared thermography of masonry structures. Infrared Phys. Techn. 2007, 49, 228–233. [Google Scholar] [CrossRef]
- Barreira, E.; Almeida, R.M.S.F.; Delgado, J.M.P.Q. Infrared thermography for assessing moisture related phenomena in building components. Constr. Build. Mater. 2016, 110, 251–269. [Google Scholar] [CrossRef]
- Aversa, P.; Palumbo, D.; Donatelli, A.; Galietti, U.; Tamborrino, R.; Luprano, V.A.M. Infrared thermography for the investigation of dynamic thermal behaviour of opaque building elements: Comparison between empty and filled with hemp fibres prototype walls. Energ. Build. 2017, 152, 264–272. [Google Scholar] [CrossRef]
- Marani, R.; Palumbo, D.; Galietti, U.; Stella, E.; D’Orazio, T. Automatic detection of subsurface defects in composite materials using thermography and unsupervised machine learning. In Proceedings of the 2016 IEEE 8th International Conference on Intelligent Systems (IS), Sofia, Bulgaria, 4–6 September 2016. [Google Scholar] [CrossRef]
- D’Accardi, E.; Palumbo, D.; Tamborrino, R.; Galietti, U. Quantitative analysis of thermographic data through different algorithms. Procedia Struct. Integr. 2018, 8, 354–367. [Google Scholar] [CrossRef]
- Palumbo, D.; Cavallo, P.; Galietti, U. An investigation of the stepped thermography technique for defects evaluation in GFRP materials. NdtE Int. 2019, 98, 254–263. [Google Scholar] [CrossRef]
- Sfarra, S.; Perilli, S.; Guerrini, F.; Bisegna, F.; Chen, T.; Ambrosini, D. On the use of phase change materials applied on cork-coconut-cork panels. A thermophysical point of view concerning the beneficial effect in terms of insulation properties. J. Anal. Calorim. 2018, 132, 4061–4090. [Google Scholar] [CrossRef]
- Perilli, S.; Sfarra, S.; Guerrini, F.; Bisegna, F.; Ambrosini, D. The thermophysical behaviour of cork supports doped with an innovative thermal insulation and protective coating: A numerical analysis based on in situ experimental data. Energ Build. 2018, 159, 508–528. [Google Scholar] [CrossRef]
- Fino, R.; Tadeu, A.; Simões, N. Influence of a period of wet weather on the heat transfer across a wall covered with uncoated medium density expanded cork. Energ. Build. 2018, 165, 118–131. [Google Scholar] [CrossRef]
- Cherki, A.; Remy, B.; Khabbazi, A.; Jannot, Y.; Baillis, D. Experimental thermal properties characterization of insulating cork–gypsum composite. Constr. Build. Mater. 2014, 54, 202–209. [Google Scholar] [CrossRef]
- Şen, A.; Bulcke, J.V.; Defoirdt, N.; Acker, J.V.; Pereira, H. Thermal behaviour of cork and cork components. Thermochim. Acta 2014, 582, 94–100. [Google Scholar] [CrossRef]
- Badghaish, A.A.; Fleming, D.C. Fleming, Non-destructive inspection of composites using step heating thermography. J. Compos. Mat. 2008, 42, 1337–1357. [Google Scholar] [CrossRef]
- Balageas, A.A.; Roche, J.M. Common tools for quantitative time-resolved pulse and step-heating thermography–part I: Theoretical basis. Quant. IR J. 2014, 11, 43–56. [Google Scholar] [CrossRef]
- Jeager, J.; Carslaw, H. Conduction of Heat in Solids; Oxford University Press: London, UK, 1959. [Google Scholar]
- Cengel, Y.A. Introduction to Thermodynamics and Heat Transfer; McGraw-Hill: New York, NY, USA, 1997. [Google Scholar]
- Marani, R.; Palumbo, D.; Galietti, U.; D’Orazio, T. Deep learning for defect characterization in composite laminates inspected by step-heating thermography. Opt. Laser Eng. 2021, 145, 106679. [Google Scholar] [CrossRef]
- Hamdami, N.; Monteau, J.-Y.; Le Bail, A. Effective thermal conductivity of a high porosity model food at above and sub-freezing temperatures. Int. J. Refrig. 2003, 26, 809–816. [Google Scholar] [CrossRef]
- ASTM E1862-14. Standard Practice for Measuring and Compensating for Reflected Temperature Using Infrared Imaging Radiometers; ASTM International: West Conshohocken, PA, USA, 2018; Available online: www.astm.org (accessed on 21 April 2019).
- ASTM E1933-14. Standard Practice for Measuring and Compensating for Emissivity Using Infrared Imaging Radiometers; ASTM International: West Conshohocken, PA, USA, 2018; Available online: www.astm.org (accessed on 21 April 2019).
- Available online: www.tecnosugheri.it/prodotto/corkpan/ (accessed on 3 May 2019).
- Barreira, E.; Bauer, E.; Mustelier, N.; de Freitas, V.P. Measurement of materials emissivity—Influence of the procedure. In Proceedings of the AITA—13th International Workshop on advanced Infrared Technology & Applications, Pisa, Italy, 29 September–2 October 2015; pp. 242–245. [Google Scholar]
- Paulescu, M.; Paulescu, E.; Gravila, P.; Badescu, V. Weather Modeling and Forecasting of PV Systems Operation; Green Energy and Technology; Springer: London, UK, 2013. [Google Scholar]
- Sfarra, S.; Ibarra-Castanedo, C.; Theodorakeas, P.; Avdelidis, N.P.; Perilli, S.; Zhang, H.; Nardi, I.; Koui, M.; Maldague, X.P.V. Evaluation of the state of conservation of mosaics: Simulations and thermographic signal processing. Int. J. Sci. 2017, 117, 287–315. [Google Scholar] [CrossRef]
- Available online: www.indemar.com/s/Shield-Coat-250-Scheda-tecnica-INDEMAR.pdf (accessed on 3 May 2019).
- Vires Srl Website. Available online: www.vires.it (accessed on 20 April 2017).
- Sieger, R.; Howell, J. Thermal Radiation Heat Transfer, 4th ed.; Taylor & Francis: New York, NY, USA, 2002. [Google Scholar]
- Incropera, F.P.; DeWitt, D.P. Fundamentals of Heat and Mass Transfer, 5th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2002. [Google Scholar]
- Modest, M.F. Radiative Heat Transfer, 2nd ed.; Academic Press: San Diego, CA, USA, 2003. [Google Scholar]
- Fiveland, W.A. The Selection of Discrete Ordinate Quadrature Sets for Anisotropic Scattering. Fundam. Radiat. Transf. 1991, 160, 89–96. [Google Scholar]
- Palumbo, D.; Galietti, U. Damage investigation in composite materials by means of new thermal data processing procedures. Strain 2016, 52, 276–286. [Google Scholar] [CrossRef]
- Shepard, S.M. Advances in pulsed thermography. Proc. SPIE 2001, 511, 4360. [Google Scholar] [CrossRef]
- Ahi, K. A method and system for enhancing the resolution of terahertz imaging. Measurement 2019, 138, 614–619. [Google Scholar] [CrossRef]
- Ahi, K.; Jessurun, N.; Hosseini, M.-P.; Asadizanjani, N. Survey of terahertz photonics and biophotonics. Opt Eng 2020, 59, 061629. [Google Scholar] [CrossRef]
Materials | Dimensions (mm3) | ρ (kg/m3) | k (W/mK) | cp (kJ/kgK) | Surface Emissivity | Volume Fraction |
---|---|---|---|---|---|---|
Cork | 1000 × 500 × 30 | 120 [33] | 0.036 [33] | 1.9 [33] | 0.95 [34] | |
Sponge | 80 × 80 × 3 | 0.27(Dry)/0.75(Wet) [35] | 0.018 [36] | 1.917 [36] | 0.67 [36] | |
COIB250® | 1000 × 500 × 3 | 690 [37] | 0.03 [37] | 1.93 [38] | 0.91 |
Step Heating Duration (min) | Cooling Phase Duration (min) | Frame Rate (Hz) |
---|---|---|
110 | 90 | 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perilli, S.; Palumbo, D.; Sfarra, S.; Galietti, U. Advanced Insulation Materials for Facades: Analyzing Detachments Using Numerical Simulations and Infrared Thermography. Energies 2021, 14, 7546. https://doi.org/10.3390/en14227546
Perilli S, Palumbo D, Sfarra S, Galietti U. Advanced Insulation Materials for Facades: Analyzing Detachments Using Numerical Simulations and Infrared Thermography. Energies. 2021; 14(22):7546. https://doi.org/10.3390/en14227546
Chicago/Turabian StylePerilli, Stefano, Davide Palumbo, Stefano Sfarra, and Umberto Galietti. 2021. "Advanced Insulation Materials for Facades: Analyzing Detachments Using Numerical Simulations and Infrared Thermography" Energies 14, no. 22: 7546. https://doi.org/10.3390/en14227546
APA StylePerilli, S., Palumbo, D., Sfarra, S., & Galietti, U. (2021). Advanced Insulation Materials for Facades: Analyzing Detachments Using Numerical Simulations and Infrared Thermography. Energies, 14(22), 7546. https://doi.org/10.3390/en14227546