Rockburst Precursors and the Dynamic Failure Mechanism of the Deep Tunnel: A Review
Abstract
:1. Introduction
2. Stability of the Surrounding Rock of the Deep Tunnel
3. Rockburst Prediction Method
3.1. Theoretical Criteria-Based Rockburst Prediction Method
3.1.1. Stress Criteria
3.1.2. Brittleness Coefficient
3.1.3. Energy Criteria
3.2. Case Analysis-Based Intelligent Method
3.3. Field Monitoring-Based Rockburst Prediction Method
4. Dynamic Failure Characteristics of Surrounding Rock of Deep Tunnels
5. Conclusions and Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xue, Y.G.; Kong, F.M.; Li, S.C.; Zhang, Q.S.; Qiu, D.H.; Su, M.X.; Li, Z.Q. China starts the world’s hardest “Sky-High Road” project: Challenges and countermeasures for Sichuan-Tibet railway. Innovation 2021, 2, 100105. [Google Scholar] [CrossRef]
- Tian, S.; Gong, J. Statistics of railway tunnels in China as of end of 2019. Tunn. Constr. 2020, 40, 292–297. [Google Scholar]
- Tsinidis, G.; de Silva, F.; Anastasopoulos, I.; Bilotta, E.; Bobet, A.; Hashash, Y.M.A.; He, C.; Kampas, G.; Knappett, J.; Madabhushi, G.; et al. Seismic behaviour of tunnels: From experiments to analysis. Tunn. Undergr. Space Technol. 2020, 99, 103334. [Google Scholar] [CrossRef]
- Qian, Q.H. Definition, mechanism, classification and quantitative forecast model for rockburst and pressure bump. Rock Soil Mech. 2014, 35, 1–6. [Google Scholar]
- Lu, C.P.; Dou, L.M.; Wu, X.R.; Wang, H.M.; Qin, Y.H. Frequency spectrum analysis on microseismic monitoring and signal differentiation of rock material. Chin. J. Geotech. Eng. 2005, 27, 772–775. [Google Scholar]
- Li, T.B.; Wang, X.F.; Meng, L.B. Physical simulation study of similar materials for rockburst. Chin. J. Rock Mech. Eng. 2011, 30, 2610–2616. [Google Scholar]
- Liu, B.; Zhao, Y.; Zhang, C.; Zhou, J.; Li, Y.; Sun, Z. Characteristic strength and acoustic emission properties of weakly cemented sandstone at different depths under uniaxial compression. Int. J. Coal Sci. Technol. 2021, 1–14. [Google Scholar] [CrossRef]
- Zuo, J.; Wang, J.; Jiang, Y. Macro/meso failure behavior of surrounding rock in deep roadway and its control technology. Int. J. Coal Sci. Technol. 2019, 6, 301–319. [Google Scholar] [CrossRef] [Green Version]
- Keneti, A.; Sainsbury, B.-A. Review of published rockburst events and their contributing factors. Eng. Geol. 2018, 246, 361–373. [Google Scholar] [CrossRef]
- Kabwe, E.; Wang, Y. Review on Rockburst Theory and Types of Rock Support in Rockburst Prone Mines. Open J. Saf. Sci. Technol. 2015, 5, 104–121. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Xia, H.; Jia, X.; Gong, W.; Zhao, F.; Liang, K. Studies on classification, criteria and control of rockbursts. J. Rock Mech. Geotech. Eng. 2012, 4, 97–114. [Google Scholar] [CrossRef] [Green Version]
- Martin, C.D.; Christiansson, R. Estimating the potential for spalling around a deep nuclear waste repository in crystalline rock. Int. J. Rock Mech. Min. Sci. 2009, 46, 219–228. [Google Scholar] [CrossRef]
- Cai, W.; Dou, L.; Si, G.; Cao, A.; He, J.; Liu, S. A principal component analysis/fuzzy comprehensive evaluation model for coal burst liability assessment. Int. J. Rock Mech. Min. Sci. 2016, 81, 62–69. [Google Scholar] [CrossRef]
- Mark, C. Coal bursts in the deep longwall mines of the United States. Int. J. Coal Sci. Technol. 2016, 3, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.P.; Zhou, C.L. Viscoelastic Mechanical Analysis of Stability in Circular Underground Tunnels. J. Tongji Univ. 1994, 22, 329–333. [Google Scholar]
- Goodman, R.E.; Shi, G. Block Theory and Its Application to Rock Engineering; Prentice-Hall: Englewood Cliffs, NJ, USA, 1985. [Google Scholar]
- Zhang, Y.; Xiao, M.; Chen, J. A new methodology for block identification and its application in a large scale underground cavern complex. Tunn. Undergr. Space Technol. 2010, 25, 168–180. [Google Scholar] [CrossRef]
- Read, R. 20 years of excavation response studies at AECL’s Underground Research Laboratory. Int. J. Rock Mech. Min. Sci. 2004, 41, 1251–1275. [Google Scholar] [CrossRef]
- Martino, J.; Chandler, N. Excavation-induced damage studies at the Underground Research Laboratory. Int. J. Rock Mech. Min. Sci. 2004, 41, 1413–1426. [Google Scholar] [CrossRef]
- Chandler, N. Developing tools for excavation design at Canada’s Underground Research Laboratory. Int. J. Rock Mech. Min. Sci. 2004, 41, 1229–1249. [Google Scholar] [CrossRef]
- Meng, F.; Zhou, H.; Wang, Z.; Zhang, L.; Kong, L.; Li, S.; Zhang, C. Experimental study on the prediction of rockburst hazards induced by dynamic structural plane shearing in deeply buried hard rock tunnels. Int. J. Rock Mech. Min. Sci. 2016, 86, 210–223. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Liu, X.X.; Liang, Z.Z.; Li, Z.J. Analysis of Precursors Prior to Rock Burst in Granite Tunnel Using Acoustic Emission and Far Infrared Monitoring. Math. Probl. Eng. 2013, 2013, 214340. [Google Scholar]
- Gong, F.Q.; Luo, Y.; Si, X.F.; Li, X.B. Experimental modelling on rockburst in deep hard rock circular tunnels. Chin. J. Rock Mech. Eng. 2017, 36, 1634–1648. [Google Scholar]
- Liu, J.P.; Xu, S.D.; Li, Y.H.; Dong, L.B.; Wei, J. Studies of ae time-space evolution characteristics during failure process of rock specimens with prefabricated holes. Chin. J. Rock Mech. Eng. 2012, 31, 2538–2547. [Google Scholar]
- Verma, A.K.; Singh, T. Assessment of tunnel instability—A numerical approach. Arab. J. Geosci. 2010, 3, 181–192. [Google Scholar] [CrossRef]
- Saiang, D. Stability analysis of the blast-induced damage zone by continuum and coupled continuum—Discontinuum methods. Eng. Geol. 2010, 116, 1–11. [Google Scholar] [CrossRef]
- Shreedharan, S.; Kulatilake, P.H.S.W. Discontinuum–Equivalent Continuum Analysis of the Stability of Tunnels in a Deep Coal Mine Using the Distinct Element Method. Rock Mech. Rock Eng. 2016, 49, 1903–1922. [Google Scholar] [CrossRef]
- Cai, M.; Kaiser, P.; Morioka, H.; Minami, M.; Maejima, T.; Tasaka, Y.; Kurose, H. FLAC/PFC coupled numerical simulation of AE in large-scale underground excavations. Int. J. Rock Mech. Min. Sci. 2007, 44, 550–564. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Q. A hierarchical analysis for rock engineering using artificial neural networks. Rock Mech. Rock Eng. 1997, 30, 207–222. [Google Scholar] [CrossRef]
- Feng, X.T.; Ma, P.B. Identifying stability of underground openings based on data mining. Chin. J. Rock Mech. Eng. 2001, 20, 306–309. [Google Scholar]
- Sakurai, S.; Takeuchi, K. Back analysis of measured displacements of tunnels. Rock Mech. Rock Eng. 1983, 16, 173–180. [Google Scholar] [CrossRef]
- Wu, Q.J.; Wang, M.N.; Liu, D.G. Research on stability of tunnel surrounding rocks based on statistical analysis of on-site displacement monitoring data. Rock Soil Mech. 2012, 33, 359–364. [Google Scholar]
- Li, S.; Yu, H.; Liu, Y.; Wu, F. Results from in-situ monitoring of displacement, bolt load, and disturbed zone of a powerhouse cavern during excavation process. Int. J. Rock Mech. Min. Sci. 2008, 45, 1519–1525. [Google Scholar] [CrossRef]
- Gao, W.; Ge, M. Back analysis of rock mass parameters and initial stress for the Longtan tunnel in China. Eng. Comput. 2016, 32, 497–515. [Google Scholar] [CrossRef]
- Zhou, H.; Qu, C.K.; Hu, D.W.; Zhang, C.Q. Insitu monitoring of tunnel deformation evolutions from auxiliary tunnel in deep mine. Eng. Geol. 2017, 221, 10–15. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; Chen, B.; Li, S.; Zhang, C.; Xiao, Y.; Feng, G.; Zhou, H.; Qiu, S.; Zhao, Z.; Yu, Y.; et al. Studies on the evolution process of rockbursts in deep tunnels. J. Rock Mech. Geotech. Eng. 2012, 4, 289–295. [Google Scholar] [CrossRef]
- Dai, F.; Li, B.; Xu, N.; Fan, Y.; Zhang, C. Deformation forecasting and stability analysis of large-scale underground powerhouse caverns from microseismic monitoring. Int. J. Rock Mech. Min. Sci. 2016, 86, 269–281. [Google Scholar] [CrossRef]
- Hirata, A.; Kameoka, Y.; Hirano, T. Safety Management Based on Detection of Possible Rock Bursts by AE Monitoring during Tunnel Excavation. Rock Mech. Rock Eng. 2007, 40, 563–576. [Google Scholar] [CrossRef]
- Feng, G.L.; Feng, X.T.; -Chen, B.R.; Xiao, Y.X.; Zhao, Z.N. Effects of structural planes on the microseismicity associated with rockburst development processes in deep tunnels of the Jinping-II Hydropower Station, China. Tunn. Undergr. Space Technol. 2019, 84, 273–280. [Google Scholar] [CrossRef]
- Feng, X.-T.; Yu, Y.; Feng, G.-L.; Xiao, Y.-X.; Chen, B.-R.; Jiang, Q. Fractal behaviour of the microseismic energy associated with immediate rockbursts in deep, hard rock tunnels. Tunn. Undergr. Space Technol. 2016, 51, 98–107. [Google Scholar] [CrossRef]
- Hong, J.S.; Lee, H.S.; Lee, D.H.; Kim, H.Y.; Choi, Y.T.; Par, Y.J. Microseismic event monitoring of highly stressed rock mass around underground oil storage caverns. Tunn. Undergr. Space Technol. 2006, 21, 292. [Google Scholar] [CrossRef]
- Feng, G.-L.; Feng, X.-T.; Chen, B.-R.; Xiao, Y.-X. Microseismic sequences associated with rockbursts in the tunnels of the Jinping II hydropower station. Int. J. Rock Mech. Min. Sci. 2015, 80, 89–100. [Google Scholar] [CrossRef]
- Dai, F.; Li, B.; Xu, N.; Zhu, Y. Microseismic early warning of surrounding rock mass deformation in the underground powerhouse of the Houziyan hydropower station, China. Tunn. Undergr. Space Technol. 2017, 62, 64–74. [Google Scholar] [CrossRef]
- Wang, H.; Ge, M. Acoustic emission/microseismic source location analysis for a limestone mine exhibiting high horizontal stresses. Int. J. Rock Mech. Min. Sci. 2008, 45, 720–728. [Google Scholar] [CrossRef]
- Ge, M. Efficient mine microseismic monitoring. Int. J. Coal Geol. 2005, 64, 44–56. [Google Scholar] [CrossRef]
- Mendecki, A.J.; Lynch, R.A.; Malovichko, D.A. Routine micro-seismic monitoring in mines. In Proceedings of the Australian Earthquake Engineering Society Conference, Perth, Western Australia, Australia, 26–28 November 2010. [Google Scholar]
- Lu, C.-P.; Liu, G.-J.; Liu, Y.; Zhang, N.; Xue, J.-H.; Zhang, L. Microseismic multi-parameter characteristics of rockburst hazard induced by hard roof fall and high stress concentration. Int. J. Rock Mech. Min. Sci. 2015, 76, 18–32. [Google Scholar] [CrossRef]
- Potvin, Y.; Hudyma, M. Keynote address: Seismic monitoring in highly mechanized hardrock mines in Canada and Australia. In Proceedings of the Fifth International Symposium on Rockburst and Seismicity in Mines (Ra Si M 5), Johannesburg, South Africa, 17–19 September 2001; pp. 267–280. [Google Scholar]
- Xu, N.; Dai, F.; Liang, Z.Z.; Zhou, Z.; Sha, C.; Tang, C.A. The Dynamic Evaluation of Rock Slope Stability Considering the Effects of Microseismic Damage. Rock Mech. Rock Eng. 2014, 47, 621–642. [Google Scholar] [CrossRef]
- Occhiena, C.; Pirulli, M.; Scavia, C. A microseismic-based procedure for the detection of rock slope instabilities. Int. J. Rock Mech. Min. Sci. 2014, 69, 67–79. [Google Scholar] [CrossRef]
- Cipolla, C.L.; Maxwell, S.C.; Mack, M.G. Engineering Guide to the Application of Microseismic Interpretations; Society of Petroleum Engineers: The Woodlands, TX, USA, 2012. [Google Scholar]
- Stork, A.L.; Verdon, J.P.; Kendall, J.-M. Assessing the Effect of Velocity Model Accuracy on Microseismic Interpretation at the In Salah Carbon Capture and Storage Site. Energy Procedia 2014, 63, 4385–4393. [Google Scholar] [CrossRef] [Green Version]
- Dai, F.; Li, B.; Xu, N.; Zhu, Y.; Xiao, P. Stability Evaluation on Surrounding Rocks of Underground Powerhouse Based on Microseismic Monitoring. Shock Vib. 2015, 2015, 937181. [Google Scholar] [CrossRef]
- Xu, N.; Li, T.; Dai, F.; Li, B.; Zhu, Y.; Yang, D. Microseismic monitoring and stability evaluation for the large scale underground caverns at the Houziyan hydropower station in Southwest China. Eng. Geol. 2015, 188, 48–67. [Google Scholar] [CrossRef]
- Ma, K.; Tang, C.A.; Liang, Z.H.; Wu, J.; Xu, N.W.; Zhuang, D.Y. Stability analysis of the surrounding rock of underground water-sealed oil storage caverns based on microseismic monitoring during construction. Chin. J. Rock Mech. Eng. 2016, 35, 1353–1365. [Google Scholar]
- Hardy, H.R., Jr. Acoustic Emission/Microseismic Activity: Volume 1, Principles, Techniques and Geotechnical Applications; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Zhang, S.C.; Ma, T.H.; Tang, C.A.; Jia, P.; Wang, Y.C. Microseismic Monitoring and Experimental Study on Mechanism of Delayed Rockburst in Deep-Buried Tunnels. Rock Mech. Rock Eng. 2020, 53, 2771–2788. [Google Scholar] [CrossRef]
- Ortlepp, W.D.; Stacey, T.R. Rock burst mechanisms in tunnels and shafts. Tunn. Undergr. Space Technol. 1994, 59, 59–65. [Google Scholar] [CrossRef]
- Feng, X.T.; Xiao, Y.X.; Feng, G.L.; Yao, Z.B.; Chen, B.R.; Yang, C.X.; Su, G.S. Study on the development process of rockbursts. Chin. J. Rock Mech. Eng. 2019, 38, 1–25. [Google Scholar]
- Wang, J.-A.; Park, H. Comprehensive prediction of rockburst based on analysis of strain energy in rocks. Tunn. Undergr. Space Technol. 2001, 16, 49–57. [Google Scholar] [CrossRef]
- Ortlepp, W. RaSiM Comes of Age—A Review of the Contribution to the Understanding and Control of Mine Rockbursts. In Proceedings of the Sixth International Symposium on Rockburst and Seismicity in Mines Proceedings, Perth, Australian, 9–11 March 2005; pp. 3–20. [Google Scholar]
- Blake, W.; Hedley, D.G. Rockbursts: Case Studies from North American Hard-Rock Mines; Society for Mining, Metallurgy, and Exploration: Englewood, CO, USA, 2003. [Google Scholar]
- Frid, V. Rockburst hazard forecast by electromagnetic radiation excited by rock fracture. Rock Mech. Rock Eng. 1997, 30, 229–236. [Google Scholar] [CrossRef]
- Li, S.; Feng, X.-T.; Li, Z.; Chen, B.; Zhang, C.; Zhou, H. In situ monitoring of rockburst nucleation and evolution in the deeply buried tunnels of Jinping II hydropower station. Eng. Geol. 2012, 137–138, 85–96. [Google Scholar] [CrossRef]
- Lu, C.-P.; Dou, L.-M.; Zhang, N.; Xue, J.-H.; Wang, X.-N.; Liu, H.; Zhang, J.-W. Microseismic frequency-spectrum evolutionary rule of rockburst triggered by roof fall. Int. J. Rock Mech. Min. Sci. 2013, 64, 6–16. [Google Scholar] [CrossRef]
- Hagan, T.O.; Milev, A.M.; Spottiswoode, S.M.; Hildyard, M.W.; Grodner, M.; Rorke, A.J.; Finnie, G.J.; Reddy, N.; Haile, A.T.; Le Bron, K.B.; et al. Simulated rockburst experiment-an overview. J. S. Afr. Inst. Min. Metall. 2001, 101, 217–222. [Google Scholar]
- He, M.C.; Nie, W.; Zhao, Z.; Guo, W. Experimental Investigation of Bedding Plane Orientation on the Rockburst Behavior of Sandstone. Rock Mech. Rock Eng. 2012, 45, 311–326. [Google Scholar] [CrossRef]
- Gong, Q.; Yin, L.; Wu, S.; Zhao, J.; Ting, Y. Rock burst and slabbing failure and its influence on TBM excavation at headrace tunnels in Jinping II hydropower station. Eng. Geol. 2012, 124, 98–108. [Google Scholar] [CrossRef]
- Su, G.; Jiang, J.; Zhai, S.; Zhang, G. Influence of Tunnel Axis Stress on Strainburst: An Experimental Study. Rock Mech. Rock Eng. 2017, 50, 1551–1567. [Google Scholar] [CrossRef]
- Li, T.B.; Pan, H.S.; Chen, G.Q.; Lu, M.B. Physical model tests on thermo-mechanical effects in rockbursts around tunnels. Chin. J. Rock Mech. Eng. 2018, 37, 261–273. [Google Scholar]
- Tao, Z.Y. Support Design of Tunnels Subjected to Rockbursting; ISRM International Symposium: Madrid, Spain, 1988. [Google Scholar]
- Kidybiński, A. Bursting liability indices of coal. Int. J. Rock Mech. Min. Sci. Géoméch. Abstr. 1981, 18, 295–304. [Google Scholar] [CrossRef]
- Chen, B.-R.; Feng, X.-T.; Li, Q.-P.; Luo, R.-Z.; Li, S. Rock Burst Intensity Classification Based on the Radiated Energy with Damage Intensity at Jinping II Hydropower Station, China. Rock Mech. Rock Eng. 2015, 48, 289–303. [Google Scholar] [CrossRef]
- Aubertin, M.; Gill, D.E.; Simon, R. On the use of the brittleness index modified (BIM) to estimate the post-peak behavior of rocks. In Proceedings of the 1st North American Rock Mechanics Symposium: Models and Measurements Challenges from Industry, Austin, TX, USA, 1–3 June 1994; pp. 945–952. [Google Scholar]
- Cook, N.G.W. The failure of rock. Int. J. Rock Mech. Min. Sci. 1965, 2, 389–403. [Google Scholar] [CrossRef]
- Tang, L.-Z.; Xia, K.W. Seismological method for prediction of areal rockbursts in deep mine with seismic source mechanism and unstable failure theory. J. Central South Univ. Technol. 2010, 17, 947–953. [Google Scholar] [CrossRef]
- Linkov, A. Rockbursts and the instability of rock masses. Int. J. Rock Mech. Min. Sci. Géoméch. Abstr. 1996, 33, 727–732. [Google Scholar] [CrossRef]
- Xie, H.; Pariseau, W. Fractal character and mechanism of rock bursts. Int. J. Rock Mech. Min. Sci. Géoméch. Abstr. 1993, 30, 343–350. [Google Scholar] [CrossRef]
- Kaiser, P.K. Canadian Rockburst Support Handbook; Geomechanics Research Centre: Sudbury, CO, Canada, 1996. [Google Scholar]
- Huang, R.Q.; Wang, X.N. Analysis of dynamic disturbance on rock burst. Bull. Int. Assoc. Eng. Geol. 1999, 57, 281–284. [Google Scholar] [CrossRef]
- He, M.; e Sousa, L.R.; Miranda, T.; Zhu, G. Rockburst laboratory tests database—Application of data mining techniques. Eng. Geol. 2015, 185, 116–130. [Google Scholar] [CrossRef]
- Yan, P.; Zhao, Z.; Lu, W.; Fan, Y.; Chen, X.; Shan, Z. Mitigation of rock burst events by blasting techniques during deep-tunnel excavation. Eng. Geol. 2015, 188, 126–136. [Google Scholar] [CrossRef]
- Li, X.; Weng, L. Numerical investigation on fracturing behaviors of deep-buried opening under dynamic disturbance. Tunn. Undergr. Space Technol. 2016, 54, 61–72. [Google Scholar] [CrossRef]
- Li, X.B.; Gong, F.Q.; Wang, S.F.; Li, D.Y.; Tao, M.; Zhou, J.; Huang, L.Q.; Ma, C.D.; Du, K.; Feng, F. Coupled static-dynamic loading mechanical mechanism and dynamic criterion of rockburst in deep hard rock mines. Chin. J. Rock Mech. Eng. 2019, 38, 708–723. [Google Scholar]
- Li, C.L. Rockburst conditions and rockburst support. Chin. J. Rock Mech. Eng. 2019, 38, 674–682. [Google Scholar]
- Cai, M.; Kaiser, P.; Martin, C.D. Quantification of rock mass damage in underground excavations from microseismic event monitoring. Int. J. Rock Mech. Min. Sci. 2001, 38, 1135–1145. [Google Scholar] [CrossRef]
- Zhao, T.-B.; Guo, W.-Y.; Tan, Y.-L.; Yin, Y.-C.; Cai, L.-S.; Pan, J.-F. Case Studies of Rock Bursts Under Complicated Geological Conditions During Multi-seam Mining at a Depth of 800 m. Rock Mech. Rock Eng. 2018, 51, 1539–1564. [Google Scholar] [CrossRef]
- Cai, M. Prediction and prevention of rockburst in metal mines—A case study of Sanshandao gold mine. J. Rock Mech. Geotech. Eng. 2016, 8, 204–211. [Google Scholar] [CrossRef]
- Kaiser, P.K.; Cai, M. Design of rock support system under rockburst condition. J. Rock Mech. Geotech. Eng. 2012, 4, 215–227. [Google Scholar] [CrossRef] [Green Version]
- Martini, C.D.; Read, R.S.; Martino, J.B. Observations of brittle failure around a circular test tunnel. Int. J. Rock Mech. Min. Sci. 1997, 34, 1065–1073. [Google Scholar] [CrossRef]
- Li, T.; Xiao, X.; Shi, Y. Comprehensive integrated methods of rockburst prediction in underground engineering. Adv. Earth Sci. 2008, 23, 533–540. [Google Scholar]
- Ma, T.; Tang, C.; Tang, L.; Zhang, W.; Wang, L. Rockburst characteristics and microseismic monitoring of deep-buried tunnels for Jinping II Hydropower Station. Tunn. Undergr. Space Technol. 2015, 49, 345–368. [Google Scholar] [CrossRef]
- Xu, L.S.; Wang, L.S. Study on the laws of rockburst and its forecasting in the tunnel of Erlang Mountain road. Chin. J. Rock Mech. Eng. 1999, 21, 569–572. [Google Scholar]
- Barton, N.; Lien, R.; Lunde, J. Engineering classification of rock masses for the design of tunnel support. Rock Mech. Rock Eng. 1974, 6, 189–236. [Google Scholar] [CrossRef]
- Russenes, B.F. Analysis of Rock Spalling for Tunnels in Steep Valley Sides (in Norwegian). Master’s Thesis, Norwegian Institute of Technology, Trondheim, Norway, 1974. [Google Scholar]
- Turchaninov, I.; Markov, G. Conditions of changing of extra-hard rock into weak rock under the influence of tectonic stresses of massifs. In Proceedings of the Paper presented at the ISRM International Symposium, Tokyo, Japan, 21–24 September 1981. [Google Scholar]
- Zhang, J.J.; Fu, B.J. Rockburst and its criteria and control. Chin. J. Rock Mech. Eng. 2008, 27, 2034–2042. [Google Scholar]
- Hucka, V.; Das, B. Brittleness determination of rocks by different methods. Int. J. Rock Mech. Min. Sci. Géoméch. Abstr. 1974, 11, 389–392. [Google Scholar] [CrossRef]
- Zhou, H.; Meng, F.Z.; Zhang, C.Q.; Xu, R.C.; Lu, J.J. Quantitative evaluation of rock brittleness based on stress-strain curve. Chin. J. Rock Mech. Eng. 2014, 33, 1114–1122. [Google Scholar]
- Peng, Z.; Wang, Y.H.; Li, T.J. Griffith theory and the criteria of rock burs. Chin. J. Rock Mech. Eng. 1996, 15, 491–495. [Google Scholar]
- Singh, S. The influence of rock properties on the occurrence and control of rockbursts. Min. Sci. Technol. 1987, 5, 11–18. [Google Scholar] [CrossRef]
- Wang, Y.H.; Li, W.D.; Li, G.Q.; Xu, Y.; Tan, G.H. Method of fuzzy comprehensive evaluations for rockburst prediction. Chin. J. Rock Mech. Eng. 1998, 17, 15–23. [Google Scholar]
- Zhang, J.; Fu, B.; Li, Z.; Song, S.; Shang, Y. Criterion and classification for strain mode rockbursts based on five-factor comprehensive method. Harmon. Rock Eng. Environ. 2011, 1435–1440. [Google Scholar] [CrossRef]
- Li, S.L.; Feng, X.T.; Wang, Y.J.; Yang, N.G. Evaluation of Rockburst Proneness in a Deep Hard Rock Mine. J. Northeast. Univ. 2001, 22, 60–63. [Google Scholar]
- Cook, N.G.W. The basic mechanics of rockbursts. J. S. Afr. Inst. Min. Metall. 1963, 64, 71–81. [Google Scholar]
- Neyman, B.; Szecowka, Z.; Zuberek, W. Effective methods for fighting rock burst in Polish collieries. In Proceedings of the 5th International Strata Control Conference, London, UK, 21–25 August 1972; pp. 1–9. [Google Scholar]
- Kwasniewski, M.; Szutkowski, I.; Wang, J. Study of Ability of Coal from Seam 510 for Storing Elastic Energy in the Aspect of Assessment of Hazard in Porabka-Klimontow Colliery; Scientific Report; Silesian Technical University: Gliwice, Poland, 1994. [Google Scholar]
- Zhou, J.; Li, X.; Shi, X. Long-term prediction model of rockburst in underground openings using heuristic algorithms and support vector machines. Saf. Sci. 2012, 50, 629–644. [Google Scholar] [CrossRef]
- Pu, Y.Y.; Apel, D.B.; Wei, C. Applying Machine Learning Approaches to Evaluating Rockburst Liability: A Comparation of Generative and Discriminative Models. Pure Appl. Geophys. 2019, 176, 4503–4517. [Google Scholar] [CrossRef]
- Li, N.; Jimenez, R. A logistic regression classifier for long-term probabilistic prediction of rock burst hazard. Nat. Hazards 2017, 90, 197–215. [Google Scholar] [CrossRef]
- Feng, X.T.; Wang, L.N. Rockburst prediction based on neural networks. Trans. Nonferrous Met. Soc. China 1994, 4, 7–14. [Google Scholar]
- Adoko, A.C.; Gokceoglu, C.; Wu, L.; Zuo, Q.J. Knowledge-based and data-driven fuzzy modeling for rockburst prediction. Int. J. Rock Mech. Min. Sci. 2013, 61, 86–95. [Google Scholar] [CrossRef]
- Afraei, S.; Shahriar, K.; Madani, S.H. Statistical assessment of rock burst potential and contributions of considered predictor variables in the task. Tunn. Undergr. Space Technol. 2018, 72, 250–271. [Google Scholar] [CrossRef]
- Li, N.; Jimenez, R.; Feng, X. The Influence of Bayesian Networks Structure on Rock Burst Hazard Prediction with Incomplete Data. Procedia Eng. 2017, 191, 206–214. [Google Scholar] [CrossRef]
- Gong, F.Q.; Li, X.B. A distance discriminant analysis method for prediction of possibility and classification of rockburst and its application. Chin. J. Rock Mech. Eng. 2007, 26, 1012–1018. [Google Scholar]
- Ge, Q.F.; Feng, X.T. Classification and prediction of rockburst using AdaBoost combination learning method. Rock Soil Mech. 2008, 29, 943–948. [Google Scholar]
- Wang, Y.C.; Shang, Y.Q.; Sun, H.Y.; Yan, X.S. Study of prediction of rockburst intensity based on efficacy coefficient method. Rock Soil Mech. 2010, 31, 529–534. [Google Scholar]
- Zhou, K.P.; Lei, T.; Hu, J.H. Rs-topsis model of rockburst prediction in deep metal mines and its application. Chin. J. Rock Mech. Eng. 2013, 32, 3705–3711. [Google Scholar]
- Dong, L.-J.; Li, X.-B.; Peng, K. Prediction of rockburst classification using Random Forest. Trans. Nonferrous Met. Soc. China 2013, 23, 472–477. [Google Scholar] [CrossRef]
- Zhou, J.; Li, X.; Mitri, H.S. Classification of Rockburst in Underground Projects: Comparison of Ten Supervised Learning Methods. J. Comput. Civ. Eng. 2016, 30, 4016003. [Google Scholar] [CrossRef]
- Afraei, S.; Shahriar, K.; Madani, S.H. Developing intelligent classification models for rock burst prediction after recognizing significant predictor variables, Section 2: Designing classifiers. Tunn. Undergr. Space Technol. 2018, 84, 522–537. [Google Scholar] [CrossRef]
- Afraei, S.; Shahriar, K.; Madani, S.H. Developing intelligent classification models for rock burst prediction after recognizing significant predictor variables, Section 1: Literature review and data preprocessing procedure. Tunn. Undergr. Space Technol. 2019, 83, 324–353. [Google Scholar] [CrossRef]
- Fajklewicz, Z. Application of microgravimetry method to detection of subsurface cavities and prediction of rock bursts. Adv. Coal Geophys. EAG 1988, 1, 1–11. [Google Scholar]
- Li, X.; Wang, E.; Li, Z.; Liu, Z.; Song, D.; Qiu, L. Rock Burst Monitoring by Integrated Microseismic and Electromagnetic Radiation Methods. Rock Mech. Rock Eng. 2016, 49, 4393–4406. [Google Scholar] [CrossRef]
- Jansen, D.P.; Carlson, S.R.; Young, R.P.; Hutchins, D.A. Ultrasonic-Imaging and Acoustic-Emission Monitoring of Thermally-Induced Microcracks in Lac-Du-Bonnet-Granite. J. Geophys. Res.—Solid Earth 1993, 98, 22231–22243. [Google Scholar] [CrossRef]
- Stopiński, W.; Dmowska, R. Rock resistivity in the Lubin (Poland) copper mine and its relation to variations of strain field and occurrence of rockbursts. In Proceedings of the 1st International Congress on Rockbursts and Seismicity in Mines, Johannesburg, South Africa, 11-14 September 1982; pp. 297–307. [Google Scholar]
- Dou, L.; Chen, T.; Gong, S.; He, H.; Zhang, S. Rockburst hazard determination by using computed tomography technology in deep workface. Saf. Sci. 2012, 50, 736–740. [Google Scholar] [CrossRef]
- Xu, N.W.; Li, T.B.; Dai, F.; Zhang, R.; Tang, C.A.; Tang, L.X. Microseismic Monitoring of Strainburst Activities in Deep Tunnels at the Jinping II Hydropower Station, China. Rock Mech. Rock Eng. 2016, 49, 981–1000. [Google Scholar] [CrossRef]
- Young, R.P.; Maxwell, S.C.; Urbancic, T.I.; Feignier, B. Mining-induced microseismicity: Monitoring and applications of imaging and source mechanism techniques. Pure Appl. Geophys. PAGEOPH 1992, 139, 697–719. [Google Scholar] [CrossRef]
- Xiao, Y.-X.; Feng, X.-T.; Hudson, J.A.; Chen, B.-R.; Feng, G.-L.; Liu, J.-P. ISRM Suggested Method for In Situ Microseismic Monitoring of the Fracturing Process in Rock Masses. Rock Mech. Rock Eng. 2015, 49, 343–369. [Google Scholar] [CrossRef]
- Li, T.; Cai, M. A review of mining-induced seismicity in China. Int. J. Rock Mech. Min. Sci. 2007, 44, 1149–1171. [Google Scholar] [CrossRef]
- Feng, G.-L.; Feng, X.-T.; Chen, B.-R.; Xiao, Y.-X.; Yu, Y. A Microseismic Method for Dynamic Warning of Rockburst Development Processes in Tunnels. Rock Mech. Rock Eng. 2015, 48, 2061–2076. [Google Scholar] [CrossRef]
- Maxwell, S.C.; Rutledge, J.T.; Jones, R.H.; Fehler, M.C. Petroleum reservoir characterization using downhole microseismic monitoring. Geophysics 2010, 75, A129–A137. [Google Scholar] [CrossRef]
- Young, R.; Collins, D.; Reyes-Montes, J.; Baker, C. Quantification and interpretation of seismicity. Int. J. Rock Mech. Min. Sci. 2004, 41, 1317–1327. [Google Scholar] [CrossRef]
- Ma, K.; Tang, C.; Wang, L.; Tang, D.; Zhuang, D.; Zhang, Q.; Zhao, J. Stability analysis of underground oil storage caverns by an integrated numerical and microseismic monitoring approach. Tunn. Undergr. Space Technol. 2016, 54, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Eaton, D.; Dusseault, M. Microseismic Monitoring Developments in Hydraulic Fracture Stimulation. In Proceedings of the Effective and Sustainable Hydraulic Fracturing, Brisbane, Australia, 20–22 May 2013; IntechOpen: Rijeka, Croatia, 2013. [Google Scholar]
- Jiang, F.X.; Luo, X. Application of microseismic monitoring technology of strata fracturing in underground coal mine. Chin. J. Geotech. Eng. 2002, 24, 147–149. [Google Scholar]
- Feng, X.T.; Chen, B.R.; Ming, H.J.; Wu, S.Y.; Xiao, Y.X.; Feng, G.L.; Zhou, H.; Qiu, S.L. Evolution law and mechanism of rockbursts in deep tunnels: Immediate rockburst. Chin. J. Rock Mech. Eng. 2012, 31, 433–444. [Google Scholar]
- Yao, W.; Xu, Y.; Yu, C.; Xia, K. A dynamic punch-through shear method for determining dynamic Mode II fracture toughness of rocks. Eng. Fract. Mech. 2017, 176, 161–177. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Z.; Lok, T.-S.; Hong, L.; Yin, T. Innovative testing technique of rock subjected to coupled static and dynamic loads. Int. J. Rock Mech. Min. Sci. 2008, 45, 739–748. [Google Scholar] [CrossRef]
- Zhang, Q.B.; Zhao, J. A review of dynamic experimental techniques and mechanical behaviour of rock materials. Rock Mech. Rock Eng. 2014, 47, 1411–1478. [Google Scholar] [CrossRef] [Green Version]
- Xia, K.; Yao, W. Dynamic rock tests using split Hopkinson (Kolsky) bar system—A review. J. Rock Mech. Geotech. Eng. 2015, 7, 27–59. [Google Scholar] [CrossRef] [Green Version]
- Yao, W.; He, T.; Xia, K. Dynamic mechanical behaviors of Fangshan marble. J. Rock Mech. Geotech. Eng. 2017, 9, 807–817. [Google Scholar] [CrossRef]
- Manouchehrian, A.; Cai, M. Analysis of rockburst in tunnels subjected to static and dynamic loads. J. Rock Mech. Geotech. Eng. 2017, 9, 1031–1040. [Google Scholar] [CrossRef]
- Zhu, W.; Li, Z.; Zhu, L.; Tang, C. Numerical simulation on rockburst of underground opening triggered by dynamic disturbance. Tunn. Undergr. Space Technol. 2010, 25, 587–599. [Google Scholar] [CrossRef]
- Yilmaz, O.; Unlu, T. Three dimensional numerical rock damage analysis under blasting load. Tunn. Undergr. Space Technol. 2013, 38, 266–278. [Google Scholar] [CrossRef]
- Yan, P.; Li, T.; Lu, W.B.; Chen, M.; Zhou, C.B. Properties of excavation damaged zone under blasting load in deep tunnels. Rock Soil Mech. 2013, 34, 451–457. [Google Scholar]
- Lu, W.B.; Yang, J.H.; Yan, P.; Chen, M.; Zhou, C.B.; Luo, Y.; Jin, L. Dynamic response of rock mass induced by the transient release of in-situ stress. Int. J. Rock Mech. Min. Sci. 2012, 53, 129–141. [Google Scholar] [CrossRef]
- Lu, C.-P.; Liu, G.-J.; Wang, H.-Y.; Xue, J.-H. Numerical Investigation of Rockburst Effect of Shock Wave on Underground Roadway. Shock. Vib. 2015, 2015, 867582. [Google Scholar] [CrossRef]
- Li, Z.K.; Xu, Q.J.; Luo, G.F.; Wang, A.M. 3-D geo-mechanical model test for large scaled underground hydropower station. J. Hydraul. Eng. 2002, 5, 31–36. [Google Scholar]
- Chen, Y.; Zhang, Y.; Li, X. Experimental study on influence of bedding angle on gas permeability in coal. J. Pet. Sci. Eng. 2019, 179, 173–179. [Google Scholar] [CrossRef]
- Chi, X.; Yang, K.; Wei, Z. Breaking and mining-induced stress evolution of overlying strata in the working face of a steeply dipping coal seam. Int. J. Coal Sci. Technol. 2021, 8, 614–625. [Google Scholar] [CrossRef]
- Chen, Y.; Zuo, J.; Liu, D.; Li, Y.; Wang, Z. Experimental and numerical study of coal-rock bimaterial composite bodies under triaxial compression. Int. J. Coal Sci. Technol. 2021, 8, 908–924. [Google Scholar] [CrossRef]
- Chen, Y.L.; Zuo, J.P.; Liu, D.J.; Wang, Z.B. Deformation failure characteristics of coal-rock combined body un-der uniaxial compression: Experimental and numerical investigations. Bull. Eng. Geol. Environ. 2019, 78, 3449–3464. [Google Scholar] [CrossRef]
- Gong, F.-Q.; Si, X.-F.; Li, X.-B.; Wang, S. Experimental Investigation of Strain Rockburst in Circular Caverns Under Deep Three-Dimensional High-Stress Conditions. Rock Mech. Rock Eng. 2019, 52, 1459–1474. [Google Scholar] [CrossRef]
- Liu, D.; Li, D.; Zhao, F.; Wang, C. Fragmentation characteristics analysis of sandstone fragments based on impact rockburst test. J. Rock Mech. Geotech. Eng. 2014, 6, 251–256. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.Q.; He, M.C.; Wang, C.H.; Wang, J.; Yang, J.; Wang, Y. Experimental study on rock burst induced by dynamic load. J. China Coal Soc. 2016, 41, 1099–1105. [Google Scholar]
- Du, K.; Tao, M.; Li, X.-B.; Zhou, J. Experimental Study of Slabbing and Rockburst Induced by True-Triaxial Unloading and Local Dynamic Disturbance. Rock Mech. Rock Eng. 2016, 49, 3437–3453. [Google Scholar] [CrossRef]
- Su, G.; Feng, X.; Wang, J.; Jiang, J.; Hu, L. Experimental Study of Remotely Triggered Rockburst Induced by a Tunnel Axial Dynamic Disturbance Under True-Triaxial Conditions. Rock Mech. Rock Eng. 2017, 50, 2207–2226. [Google Scholar] [CrossRef]
- Su, G.; Hu, L.; Feng, X.; Yan, L.; Zhang, G.; Yan, S.; Zhao, B.; Yan, Z. True Triaxial Experimental Study of Rockbursts Induced By Ramp and Cyclic Dynamic Disturbances. Rock Mech. Rock Eng. 2018, 51, 1027–1045. [Google Scholar] [CrossRef]
- Yao, W.; Xu, Y.; Wang, W.; Kanopolous, P. Dependence of Dynamic Tensile Strength of Longyou Sandstone on Heat-Treatment Temperature and Loading Rate. Rock Mech. Rock Eng. 2016, 49, 3899–3915. [Google Scholar] [CrossRef]
- Yang, R.; Ding, C.; Yang, L.; Lei, Z.; Zhang, Z.; Wang, Y. Visualizing the blast-induced stress wave and blasting gas action effects using digital image correlation. Int. J. Rock Mech. Min. Sci. 2018, 112, 47–54. [Google Scholar] [CrossRef]
- Wu, B.; Chen, R.; Xia, K. Dynamic tensile failure of rocks under static pre-tension. Int. J. Rock Mech. Min. Sci. 2015, 80, 12–18. [Google Scholar] [CrossRef]
- Wu, B.; Yao, W.; Xia, K. An Experimental Study of Dynamic Tensile Failure of Rocks Subjected to Hydrostatic Confinement. Rock Mech. Rock Eng. 2016, 49, 3855–3864. [Google Scholar] [CrossRef]
- Li, X.B.; Zhou, Z.L.; Ye, Z.Y.; Ma, C.D.; Zhao, F.J.; Zuo, Y.J.; Hong, L. Study of rock mechanical characteristics under coupled static and dynamic loads. Chin. J. Rock Mech. Eng. 2008, 27, 1387–1395. [Google Scholar]
- Gong, F.Q.; Li, X.B.; Liu, X.L. Preliminary experimental study of characteristics of rock subjected to 3D coupled static and dynamic loads. Chin. J. Rock Mech. Eng. 2011, 30, 1179–1190. [Google Scholar]
- Tang, Z.; Yao, W.; Zhang, J.; Xu, Q.; Xia, K. Experimental evaluation of PMMA simulated tunnel stability under dynamic disturbance using digital image correlation. Tunn. Undergr. Space Technol. 2019, 92, 103039. [Google Scholar] [CrossRef]
- Li, C.X.; Guo, D.M.; Zhang, Y.T.; An, C. Compound-mode crack propagation law of PMMA semicircular-arch roadway specimens under impact loading. Int. J. Coal Sci. Technol. 2021. [Google Scholar] [CrossRef]
Rockburst Criteria | Erlangshan Highway Tunnel | Tao Zhenyu Criteria | Hoek | Turchaninov | Russense | Barton |
---|---|---|---|---|---|---|
σθ/Rc | Rc/σmax | σθ/Rc | (σθ + σL)/Rc | σθ/Rc | Rc/σmax | |
No | <0.3 | >14.5 | 0.34 | <0.3 | <0.2 | >5 |
Weak | 0.3–0.5 | 14.5–5.5 | 0.42 | 0.3–0.5 | 0.2–0.3 | 2.5–5 |
Medium | 0.5–0.7 | 5.5–2.5 | 0.56 | 0.5–0.8 | 0.3–0.55 | |
Strong | >0.7 | <2.5 | >0.7 | >0.8 | >0.55 | <2.5 |
Classification Criteria | No | Weak | Medium | Strong |
---|---|---|---|---|
Peng et al. [101], Wang et al. [102] | >40 | 26.7~40 | 14.5~26.7 | <14.5 |
Zhang et al. [97,103] | <15 | 15~18 | 18~22 | >22 |
Li et al. [104] | <10 | 10~18 | >18 |
BIM | Rockburst Proneness |
---|---|
1.0–1.2 | Strong |
1.2–1.5 | Medium |
>1.5 | Weak |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Zhang, J.; Zhang, J.; Xu, B.; Zhang, L.; Li, W. Rockburst Precursors and the Dynamic Failure Mechanism of the Deep Tunnel: A Review. Energies 2021, 14, 7548. https://doi.org/10.3390/en14227548
Chen Y, Zhang J, Zhang J, Xu B, Zhang L, Li W. Rockburst Precursors and the Dynamic Failure Mechanism of the Deep Tunnel: A Review. Energies. 2021; 14(22):7548. https://doi.org/10.3390/en14227548
Chicago/Turabian StyleChen, Yulong, Junwen Zhang, Jiahao Zhang, Bin Xu, Luji Zhang, and Wenxin Li. 2021. "Rockburst Precursors and the Dynamic Failure Mechanism of the Deep Tunnel: A Review" Energies 14, no. 22: 7548. https://doi.org/10.3390/en14227548
APA StyleChen, Y., Zhang, J., Zhang, J., Xu, B., Zhang, L., & Li, W. (2021). Rockburst Precursors and the Dynamic Failure Mechanism of the Deep Tunnel: A Review. Energies, 14(22), 7548. https://doi.org/10.3390/en14227548