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Abstract: This paper describes the method developed using the Extreme Gradient Boosting (Xgboost)
algorithm that allows high-resolution imaging using the ultrasound tomography (UST) signal. More
precisely, we can locate, isolate, and use the reflective peaks from the UST signal to achieve high-
resolution images with low noise, which are far more useful for the location of points where the
reflection occurred inside the experimental tank. Each reconstruction is divided into two parts,
estimation of starting points of wave packets of raw signal (SAT—starting arrival time) and image
reconstruction via XGBoost algorithm based on SAT matrix. This technology is the basis of a project
to design non-invasive monitoring and diagnostics of technological processes. In this paper, we
present a method of the complete solution for monitoring industrial processes. The measurements
used in the study were obtained with the author’s solution of ultrasound tomography.

Keywords: ultrasound imagining; machine learning; extreme gradient boosting

1. Introduction

Industrial tomography (also known as process tomography) allows the following
process to happen inside the industrial tank or pipes without direct contact with the process
itself. The tomographic problem is part of a family of problems known as inverse problems.
The main goal of tomography is to find a solution to the tomography problem, which gives
the image of the examined object given the measurements collected at the edge. Thus,
tomography enables monitoring and a better understanding of industrial processes and
facilitates real-time process control. Thanks to developed, non-invasive techniques, it is
possible to study the flow of fluids and the density of substances in each area in two or three
dimensions. In tomographic systems, spatial resolution is the ability of the instrument to
distinguish various objects of different shapes and sizes. In tomography, a better resolution
is achieved with the right combination of several sensors, reconstruction method, and
model geometry [1].

Typical applications of process tomography in the industry include monitoring vari-
ous concentration profiles in mixing and separation vessels in single-phase and multiphase
processes. Process tomography allows to control and understand processes in real-time.
In addition, tomography provides current feedback on processes, their effectiveness, and
response progress. As a result, it can reduce the amount of waste and improve the com-
pany’s overall energy efficiency. The model of analysis and control of industrial processes
is shown in Figure 1.
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Figure 1. Schematic diagram of industrial process control with the use of ultrasound tomography.

In the crystallisation processes, changing the reaction conditions can lead to a signif-
icant increase in production capacity but requires a significant change in many aspects
of process design and consideration of unforeseen difficulties or benefits. An important
aspect is to characterise the individual stages of the process. Process tomography sensors
can provide quantitative and qualitative measurements of the dynamics and volume of un-
derlying processes. Data can be used as basic information about the process. Tomographic
sensors can also help in determining the mixing efficiency and other performance charac-
teristics. Tomography can be used to continuously monitor process reliability by providing
information as to when reaction conditions change. The installation of a two-phase flow
identification system can be extremely useful in controlling the presence of air bubbles in
liquids that are intermediates, in which air is undesirable.

In many cases, the presence of air bubbles in production processes can cause irre-
versible losses. Additionally, the air in liquid intermediates with higher viscosities in the
pharmaceutical, chemical, and food industries can be very unfavourable in some cases.
Real-time control to detect the presence of air bubbles is therefore necessary. Industrial
tomography is used in processes such as crystallisation and fermentation, which are key
chemical reactions in the pharmaceutical, food, and chemical sectors [2]. Tomographic
sensors can explore the entire reactor area and provide information on reaction kinetics
and concentrations. It can help indicate the endpoints of the reaction more accurately
and provide information on how to ensure the proper chemical conditions for the proper
conduct of the process. Tomographic measurements can also be used in various process
ranges to confirm scale characteristics.

Currently, a standard for industrial production processes is to monitor the process
using sensors that only provide local measurements, which can be insufficient for precise
control. Therefore, there is a need for measurements with a high spatial solution. Such
processes are designed in block models with the energy and mass exchange elements.

Many parameter codes result in a loss of spatial prediction capability and the status of
the current process conditions. Additionally, the accuracy of the reconstruction decreases
due to natural physical complexity in phenomena such as fluid dynamics, crystallisation,
or fermentation processes. Nevertheless, liquid concentration distribution, phases, and
chemicals can be studied. Furthermore, the data obtained can monitor process reactions
and improve quality, efficiency, and flow rate [3].

The automation of industrial processes increases the level of control over their im-
plementation. It guarantees stable, automated, and flexible work. Furthermore, with the
technology shown in the paper, one can monitor and obtain measurements at any given mo-
ment. Thus, it allows automation and better control of the quality of production processes.

The most popular monitored values for such processes are temperature, pressure, or
fluid flow speed. However, the most valuable information obtained is what is happening
inside the reaction tanks in chemical industrial processes. This information is needed to
control technological processes more efficiently. The only way to achieve this information is
with the use of the tomography method. Thus, there is room for the ultrasound tomography
method, where a limited number of inexpensive ultrasound transducers are used. The
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biggest challenge in ultrasound tomography is the reconstruction with the use of the
obtained time-dependent data.

Obtaining proper image reconstruction requires that ultrasonic tomography must
meet two primary conditions. First, a sufficiently significant difference between the acoustic
impedance of different substances has to be obtained to measure an incomplete reflection
(a complete reflection will block the possibility to obtain imaging from deeper layers).
Second, the wave speed distribution in the measurement area under study should have
linear changes since it would be impossible to obtain the depth of these reflections from
wave time data with the nonlinear changes.

In industrial applications, tomography-based systems are used mainly for quality
control [4,5]. Advanced industrial process control analysis can be applied to internal
fluid distribution, multiphase flows, fermentation, or crystallisation processes using tomo-
graphic sensors. However, industrial tomography applications typically present challenges
obtaining reconstruction images, given the process boundary’s observational data [6].

Ultrasound is a prevalent method used to diagnose and treat patients, mainly in cancer
treatment and antenatal diagnosis [7–12]. The main problem with today’s ultrasound
devices (incredibly portable ones) is the poor quality of the reconstructed image [13,14].
There are three main aspects of diagnostic ultrasound physics: spatial resolution, temporal
resolution, and contrast resolution. Excessive damping is associated with loss of amplitude
for both low and high-frequency transducers used in reflective ultrasonography. Temporal
resolution is constrained by the depth of penetration and size of frames, and contrast
resolution is constrained by image memory. The paper [15] shows the physical aspects
of potential improvement of reconstructed image quality, but we focus on developing
mathematical image reconstruction methods even with cheap transducers.

The existing methods for reflective ultrasound tomography analyse the reflection on
the path typical to the transducer [16]. In contrast, other methods use a convolution-back
projection algorithm for reconstruction [17], or iterative method involving minimisation of
the objective function [18] or use different discretisation model [19]. The only limit here is
the number of transducers used for the ultrasound measurement, and thus it is limited to
the amount of information extracted from the system.

In literature, various numerical methods can solve tomography problems for the 2N
configuration of transducers. In addition, various information from the signal can be used
to solve this problem [5,20,21]. Unfortunately, none of these solutions can give an accurate
solution. Most algorithms depend on the transmitted signal from which the amplitude
and time of flight (ToF) are used. The problem is solved with the given data algorithms
involving the inversion of a non-square matrix, which can only give an approximate
solution to the problem [22,23].

The machine learning approach is widely used in computer tomography, but most
applications are in transmission tomography, such as X-ray or Magnetic Resonance Imaging
(MRI), where various Deep Learning types and procedures are used [24]. Predefined
dictionaries of image samples are used in well-known algorithms, such as Global Dictionary
Learned in the Statistical Iterative Reconstruction (GDSIR) or Adaptive Dictionary Learned
in the Statistical Iterative Reconstruction (ADSIR) and many others [25], where the image
is reconstructed based on low-dose sinogram with different types of Convolutional Neural
Networks (CNN) equipped with various types of decoders and encoders. These methods
are called image domain reconstruction [26], where deep learning techniques are only
used to improve reconstruction quality and remove artefacts from images. Much less
common are data domain methods in which deep imaging is applied to sinograms, and
the reconstructions come directly from raw data. There is also a dual-domain method (or
hybrid domain), combining image and data domain methods. However, all the above
mentioned methods use analytical formulas to recover the image from projection, called
filtered back projection (FBP).

This paper shows deterministic and machine learning methods of image reconstruc-
tion based on ultrasonography signals. We present a new high-resolution and fast method
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for ultrasound reflection tomography that is easy to implement, and it is faster because the
matrix inversion methods are not needed to obtain the transformation matrix. Furthermore,
simultaneously Extreme Gradient Boosting method was applied to image reconstruction
as an alternative method. It allows us to boost the reconstruction quality and use the data
to visualise the object’s shape.

The outcome of the presented work is a complete system based on the cloud and
developed hardware, which allows for constant industrial process monitoring.

The system’s heart is a software platform that integrates elements responsible for the
management and communication with the smart devices. The system consists of:

• Communication layer;
• Tomography libraries;
• process control software;
• Cross-platform clients.

The system is based on cloud architecture and can handle high traffic. Additionally,
due to the nature of cloud architecture, heavily loaded elements can be dynamically and
automatically scaled to meet the requirements. Part of the system is installed on-premise
and communicate and cooperate with part of the platform located in the cloud. The
platform is responsible for proper device management and data processing.

The monitoring process using tomography consists of the data collection, transmission,
validation, and processing using specialised algorithms.

This paper is organised as follows. The first part of Material and Methods contains a
detailed description of the hardware used in the experiments conducted in the laboratory.
This section also presents the experimental setup used in the study. The second part of
Material and Methods describes the image’s reconstruction idea and starts from the raw
signal transformation to the description of two image reconstruction methods based on
the second wave-packet reflection time matrix. Both deterministic and machine learning
methods are described extensively. Finally, the results section presents reconstructions
performed on the same objects by both methods. Any inconveniences and problems associ-
ated with the reconstruction of the images are described in the discussion. In conclusion, a
summary of the achievements presented in the paper has been presented. Potential spaces
for the development of this technology are also indicated.

2. Materials and Methods
2.1. Hardware

The circular tank with the inclusions was measured using the ultrasound tomograph
constructed by Research and Development Centre Netrix S.A., Lublin, Poland (3). Measure-
ments were done with the use of the constructed device that can generate and then measure
ultrasound signals with the use of replaceable transducers. The idea of the constructed
tomograph and the experimental setup is shown in Figures 2–4.
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Figure 4. The experimental setup. The circular tank with 16 transducers and a cylinder phantom
placed in its centre is filled with water during experimentation.

The reflective ultrasound tomography is designed in a modular manner. It creates
the possibility of easier and faster testing of critical system components. With ready-made
modules, we limit the risk of damaging the whole device to its specific modules.

The most important module consists of the main board combined with an analogue
signal conditioning board and a display. The second module consists of a specialised high
voltage driver, and it is also equipped with a 64-channel multiplexer.

Digital buses of the modules are connected using the RJ45 cat. 6a cables. M12 standard
connectors were used, one for every eight channels. The communication with a computer
is performed through the USB HS 2.0 standard. The tomograph can save data on external
storage devices such as micro-SD cards and USB drives.

The boards are shown in Figure 5a,b form a multiplexer module equipped with a
high voltage symmetrical rectangular signal generator (max about 142Vp-p). The board
is controlled by an STM32F103CBT6 micro-controller that is responsible for generating
waveforms with high-voltage MOSFET drivers. The software can adjust frequency, the
number of pulses generated, and time of shorting the signal output to the ground using
the differential CAN 2.0 bus.
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A built-in micro-controller does the described analogue multiplexer keys control
(CAN bus) or directly by an external microprocessor via an SPI bus. Control buses, i.e.,
differential “trigger” signal for initiating keying, CAN bus, or SPI bus, is in standard RJ45
cat. 6a (shielded twisted pair). The driver circuit has a 4-channel MD1822 driver chip
and double TC8220 bridges. The three-state control allows the transducer oscillations to
decay faster after the keying process is complete. The multiplexer module has four basic
16-channel analogue switches for reflection measurements and four additional analogue
switches for transmission measurements. Three cascaded hardware counters operating
in One Pulse mode were used to generate the appropriate waveforms to control the
MOSFET keys.

When the TRIGGER line’s differential input is set to on, the system generates an
interrupt in the microcontroller, the ENABLE line is set high, and TIM1 (OUTA, OUTB)
is set high triggered. After some time, the TIM1 hardware triggers TIM2, which counts
down half the period of the first-timer. Next, the hardware sets low on the OUTA, OUTB
lines and triggers TIM3. The third counter counts down when the TX output is shorted to
ground and then activates a software interrupt that sets the ENABLE line low. It causes the
MD1822 chip to set safe states on the lines controlling the TC8220 high voltage MOSFET
keys. The STM32F103 microcontroller, apart from the possibility of cascading counters
and generating complementary signals in pulse mode, has the function of setting the dead
time—a delay between the opening of the upper and lower key reduces the delay the
losses generated during switching. This time it was selected experimentally, and it is not
adjustable from the user interface. Another proper function, which found its application in
controlling the keys, is the commutation function. Right after starting the counter, it allows
programming how its outputs will be set as a commutation event (in the project, the event
is the Update Event, i.e., the end of counting the set number of impulses).

Due to the system’s characteristics, we found it is essential to use shorting to the
ground method. This way, the generated ultrasound waves have better characteristics, and
the reflected wave’s width is smaller than the signal generated without shorting. In the
process of design, much emphasis was put on the universality of the main module. The
dimensions of the display determined the size of the board as the main module board is
mounted on the display. The board has battery backup for the RTC clock, backup registers,
and FRAM memory. Communication with a computer can be performed in USB High
Speed 2.0 standard. There is also a debugger and serial port connector. CAN, SPI, and
RS485 buses are connected via RJ45 cat. 6a connector. Other I/O ports are located on
popular pinouts.

The analogue signal conditioning module is an additional expansion board mounted
on four spacers. Similarly, a smaller board with a physical layer of ETHERNET communi-
cation can be mounted on a smaller terminal strip. For projects requiring a considerable
number of I/O ports and where communication via ETHERNET is not required, one can
prepare expansion modules clipped onto both terminals. The board can also be used at the
stage of prototyping and preparation of other devices. On the board, there is also a small
audio amplifier that amplifies the sound from the 8-bit synthesiser built into the FT811
display, which was used to play short characteristic beeps when buttons are touched. The
FT811CB display features a 5” diagonal screen size, 800 × 480 resolution, and a capaci-
tive touch layer with multitouch support. The display’s embedded controller from FTDI
features the Embedded Video Engine (EVE2). It allows for efficient display control using
only the SPI bus, engaging a small percentage of the microcontroller’s computing power.
The analogue module is used as a measuring part of the device. Its role is to obtain a
high-resolution signal received by the transducers. The main amplification path was made
using the AD8331 measurement amplifier. Gain control at this stage is done by changing
the voltage at the GAIN input using a DAC built into the STM32F746 chip. The amplified
differential signal is then fed to two separate measurement paths. One of them is a fast
LTC2202 10MSps analogue-to-digital converter with a parallel 16-bit output.
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In the second measurement path, the signal’s envelope is made by the ADL5511 circuit
and is additionally amplified by the AD623 measurement amplifier. The amplification
of this path is performed using adjustable digital potentiometer MCP4017T. The circuit
converting the signal to an envelope requires an appropriate selection of the value of
filtering capacitors FTL1-4. The signal prepared in this way is finally sampled by three
analogue-to-digital converters built-in STM32F746 micro-controller, working in triple
interleaved mode. It allows the sampling rate of the signal to be increased three times. It
results in a sampling rate of up to 7.2MSps (3 × 2.4). However, setting the maximum ADC
clock in the micro-controller would require reducing the timing of the entire processor.
Thus, the maximum timing for this application (envelope measurement) was 5.1 MSps
(3 × 1.7). The timing of both transducers was done using an internal hardware counter.
This solution allows for precise adjustment of the sampling rate.

The device is also capable of doing defectoscopy, which is helpful as a standard
material analysis tool. The defectoscopy mode is shown in Figure 6.
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2.2. Mathematical Models

The classical tomography methods are based on the idea that the measurement can
be translated to the pixels or finite elements via the equation m = Ab where m is the
measurement vector, b is the vector corresponding to the pixels or elements, and A is the
sensitivity matrix that can translate between both. Unfortunately, the size of m and b is not
the same in practical applications. Thus, the resulting A matrix is not square. Finding the
inverse of a non-square matrix is a complex computational task. However, some methods
can reduce the size of b [27,28]. Although these methods make finding the inverse of A
more accessible, they still lack the resolution required to recognise the measured objects’
shape and correct size.

Here we proposed completely different approaches. The deterministic approach uses
analytical image reconstruction methods based on the starting arrival time (SAT) matrix.
The machine learning approach is also based on the SAT matrix to find reconstruction
using the XGBoost algorithm to each finite element of the grid. Machine learning methods
used in later method have nothing to do with image filtering or sharpening, but instead
tell us whether a mesh point should be marked as a part of the reconstructed object.

Figure 7 presents the idea of how the signal generated by a transducer interacts with
the object inside a measurement tank. The path of the first reflection is I→ R1. The path of
the second reflection is I→ T1→ R2→ T2.
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Figure 7. Schematic diagram of first two reflections and transmissions through the object located in
the tank.

Both methods are based on the localisation of wave packets of the raw signal. For each
measurement obtained from the tomograph, the SAT matrix is calculated. The first wave-
packet is the one that travels in the shortest path (a straight line) from Tx to Rx. The third
usually corresponds to the reflection from the inside of the object and should be rejected, as
the physical parameters of an object’s interior are generally time-dependent and unknown.
The most crucial image reconstruction is the second wave packet, which corresponds to
the reflection from the outer boundary of the object, and it is used in the analysis.

On the first stage of the analysis, the raw signal from each probe was transformed into
a smoother version of its own by local variance transformation

Varloc(yk) =
1

|[k− τ1, k + τ2]| − 1 ∑
k∈[k−τ1,k+τ2]

(yk − yk)
2, (1)

where Varloc(yk) denotes the variance in the neighbourhood of k-th observation, b·c denotes
the cardinality of the set, τ1, τ2 mean, respectively, min(k− 1, d) and min(d, n− k), where
d is the neighbourhood radius of the k-th observation, n is the number of analysed time
points. Thus, by yk we mean the signal value at point k, and yk means the arithmetic mean
computed for the neighbourhood of k-th observations.

The local variance defined in this way reproduces very well the local amplitude
variations of the raw signal. The advantage of this solution is that the resulting signal is
smoother than the envelope, which translates into an easier finding of the beginning of the
reflected wave.

Calibration of this representation can be done by manipulating the size of the neigh-
bourhood radius. To ensure that both the raw signals and their local variances are expressed
in the same units, the local standard deviation, the square root of the variance, is used
instead of the local variance. As shown in Figure 8, transforming the raw signal by the
local standard deviation did not change the location of the local extrema. The local extrema
itself was determined numerically because we do not have an explicit form of the function
that determines the local standard deviation. By local maximum ymax we mean the location
where the condition

∀x∈(x−δ,x+δ)S
loc(ymax(x)) ≥ Sloc(y(x)), (2)

where Sloc(·) denotes the local standard deviation, and δ denotes the radius. It should be
mentioned that among all the local maxima existing for a given signal, only those that
satisfy an additional condition were selected

Sloc(ymax) > t·max
y

(
Sloc
)

. (3)
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Figure 8. Comparison of the raw and the transformed signal (radius = 11). Red lines indicate local extremes.

This condition rejects the local maxima of the signal Sloc smaller than a predetermined
percentage of the maximum local standard deviation. The solution adopted in this way
allows for varying the sensitivity of the proposed tool, depending on the threshold level t.
To localise and reconstruct the shape of a phantom, we should find the start of the second
wave as a propagation time of the reflected signal. We choose this point by subtracting the
radius from the second extremum. In this way, the whole matrix of the reflected signal
propagation times is created.

The second stage of the analysis is the reconstruction part, which can be done in two
ways. The first one is called deterministic and consists in finding all points (x, y) inside the
Ω area for which the following inequality occurs

|‖R1‖2 + ‖R2‖2 − cs·SAT| ≤ δ, (4)

where ‖R1‖2 =
√
(x− Tx)

2 +
(
y− Ty

)2, ‖R2‖2 =
√
(x− Rx)

2 +
(
y− Ry

)2 are Euclidean
distance of (x, y) from Tx , Rx , Tx =

[
Tx, Ty

]
, Rx =

[
Rx, Ry

]
are coordinates of transduc-

ers, cs sound speed of the medium, and δ is our tolerance.
The method used in the second stage of our analysis was devoted to reconstructing a

phantom in the cylinder using a machine learning algorithm. The 2D image of it expressed
all experimental setups of phantom localisation and shape. First, we divided our images
into 200 times 200-pixel grid, which gives us 28,228 pixels in the cylinder. Then, pixel-by-
pixel, we fitted the XGBoost model to predict if this pixel should be marked as a part of the
phantom based on the propagation time matrix.

The term “Gradient Boosting” in the Extreme Gradient Boosting (XGBoost) originates
from the paper Greedy Function Approximation: A Gradient Boosting Machine [29,30]. Un-
like random forests, where independent decision trees are a prediction tool in classification
and regression tasks, XGBoost models are ensembles of decision trees of a different design.
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XGBoost models are widely used by researchers, especially by data scientists, to
achieve state-of-the-art on different machine learning challenges. This model performs very
well in various prediction and classification tasks, even when the relationships between
the dependent variable and the predictors are nonlinear and complex. The mentioned
flexibility of the models is because all the boosted tree models are based on an appropriate
selection of decision trees and learning them on different data sets. Adding to this, the
regularisation of the loss function ensures that these models can describe almost any
complex relationship, and there is no overfitting. The biggest disadvantage of this type of
model is the lack of explicit form (Black-Box model). However, in the present work, this
disadvantage is not particularly important because the analysis of the model’s sensitivity
to a change in the value of the SAT matrix is not relevant.

In XGBoost models, each successive tree learns to predict the residual value formed in
the previous iterative step. The process of learning the model is based on the minimisation
of the objective (loss) function enriched with a part causing the regularisation of the

l(θ) = L(θ) + Ω(θ), (5)

where L is the loss function, and Ω is a regularisation term. For the classification task, the
most common choice of L function is

L(θ) = ∑i

[
yiln

(
1 + e−ŷi

)
+ (1− yi)

(
1 + eŷi

)]
, (6)

where yi is the observed value of a dependent variable, and ŷi is the predicted value. The
regularisation part takes different forms, depending on the constraints we want to apply to
the model. These can be regularisation in L1 and L2 norms. In most cases, the regularisation
part is as follows

Ω(θ) = γT +
1
2

λ ∑T
j=1 ω2

j , (7)

where θ is the vector of model parameters, ωj is the prediction of j-tree, while γ and λ

are costs of tree depth and model complexity. By setting these parameters appropriately,
individual trees are pruned, and the variance of the model is reduced. The learning
procedure is usually based on the gradient descent method.

The XGBoost models were built using native libraries implemented into the R lan-
guage [31]. All computation and image reconstruction in terms of machine learning was
done in the R environment using the following libraries: xgboost [32], mlr3 [33], doParal-
lel [34], tidyverse [35], plot3D [36], rio [37], and splus2R [38].

3. Results

At the initial stage of analysis, the optimal parameters were determined for the local
variance method. The best radius d in Equation (1) is 21 clock ticks (approximately 10 µs).
The threshold used in inequality (3) was 0.1. Due to the geometry of the cylinder in which
the experiments were performed, it can be assumed that the arrival times of the reflected
wave never exceeded 50 ms. Therefore, the algorithm seeking local extremes rejected those
that occurred after this time. The optimal radius δ used in inequality (2) turned out to be
61 clock ticks (approximately 30 µs). The local extreme was considered as the point of the
domain for which the value of the signal intensity was greater than at other points in the
environment. The SAT matrix contains only the starting points of the second wave-packet,
calculated by the following expression

argminxε[y−1
max−δ,y−1

max ]
Sloc(y(x)), (8)

The entire reconstruction process, regardless of the method used, is shown in Figure 9.
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Figure 9. Two-stage reconstruction based on reflective ultrasonography. The graph on the left shows the signal converted to
local variance. The graph in the middle is a heatmap showing the return times of the second wave packet. The graph on the
right is an image reconstruction based on the SAT matrix.

3.1. Deterministic Approach

The example reconstruction of cylinders with different diameters and different loca-
tions are shown in Figure 10a–c. The measurement was obtained using 16 transducers, and
the reconstruction was performed on a 512 × 512 pixels grid. Because fewer transducers
can effectively measure the object located close to the edge of the tank, the resulting image
will lack some details close to that edge (see a middle graph of Figure 11c). Unfortunately,
this is a result of the lack of information, and the reconstruction quality can be improved
with a larger number of transducers. For objects with sharp edges, the deterministic re-
construction works well. The reconstruction graph adequately represents both object size
and shape (see a middle graph of Figure 12a,b). In the case of multiple inclusions, the
location and the shape of inclusions can be still recognised but are of lower quality due to
the lack of information. The objects effectively shield each other, and the reflection cannot
be measured if the other object is in front of the receiver-transmitter pair (see a middle
graph of Figure 12a,b).
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Figure 10. Each reconstructed object is labelled on the left graph, the filtered reconstruction obtained
by the deterministic method is shown in the middle, and the reconstruction using the XGBoost model
is shown on the right: (a) Cylinder of 10 mm diameter placed in the centre of the tank; (b) cylinder of
30 mm diameter placed in the centre of the tank; (c) cylinder of 30 mm diameter placed in the half
from the centre to the tank bound (rotated through a 45-degree angle).
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Figure 11. Each reconstructed object is labelled on the left graph, the filtered reconstruction obtained
by the deterministic method is shown in the middle, and the reconstruction using the XGBoost model
is shown on the right: (a) A regular cuboid with a base side of length 40 mm placed in the centre of a
tank; (b) a regular cuboid with a base edge of length 30 mm placed the halfway from the centre to the
tank bound (rotated through a 45-degree angle).

3.2. Machine Learning Approach

Each subtree comprising the whole model had a depth of 10, allowing even complex
relationships to be modelled. The learning rate parameter was set to 0.3, while the gamma
and lambda parameters were set to 1 and 0. It means that we chose L2 regularisation and
did not constrain tree growth. The average accuracy for the test data oscillated around
99%, which means that 28,198 pixels of 28,228 in the whole field of view were correctly
classified on average. The proper graphs of Figures 10–12 show the results obtained with
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the described algorithm. These figures show the reconstruction of the empty acrylic tube
or tubes in a tank filled with water. The acrylic tank is equipped with 16 transducers that
are attached to the outside of the tank. Note that the transducers do not need to contact the
water but only with the outside of the tank. The right graph of Figure 10a shows the case
with the object positioned in the centre of the tank. The reconstructed image shows almost
the perfect reconstruction. The size and the shape of the object are recognised correctly. It is
the best-case scenario, and it is expected for the algorithm to perform well. A cylinder with
a bigger diameter (30 mm) is also well recognised (see Figure 10b). Both size and shape of
the reconstructed object were adequately represented. Figure 10c shows the case where
the tube with a diameter of 30 mm is located halfway from the centre to the border of the
tank. The algorithm shows what is expected, a group of points in the reconstructed image,
but the quality of the image leaves much to be desired. The only location was adequately
represented, but the size and especially shape were reconstructed with some distortion.
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Figure 12. Each reconstructed object is labelled on the left graph, the filtered reconstruction obtained
by the deterministic method is shown in the middle, and the reconstruction using the XGBoost model
is shown on the right: (a) Two regular cuboids with base edge length 30 mm equidistant from the
centre of the tank; (b) two regular cuboids with base edge length 30 mm equidistant from the centre
of the tank (rotated through a 45-degree angle).

The machine learning results for sharp-edged object reconstruction perform very
poorly. Only the position of the objects is correctly represented, while the shape and size do
not match the real ones. Especially the shape of the objects is improperly reconstructed (see
Figure 11). In addition, when reconstructing multiple objects simultaneously located in the
tank, the location of the objects was correctly estimated. Problems, as with the sharp-edged
objects, were the reconstruction of the shape and, to a lesser extent, the size of the objects.

A few articles use different machine learning techniques to reconstruct images based
on the raw data. In [39], Logistic Regression and Elastic Net were used to reconstruct images
on 64 × 64 mesh in which 3228 finite elements were in the view field. A similar approach
was used to image reconstruction in a hybrid model of Electric Impedance Tomography
(EIT) [40] and Ultrasound Tomography (UST) [4]. In this model, multiple Artificial Neural
Networks were used to classify which pixels in the 64 × 64 grid should be marked as a
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part of the reconstructed object. It is hard to compare these two methods to our results for
two reasons. Firstly, we have two different resolutions of reconstructed images. Our model
maps data onto a 512 × 512 pixel grid and two other methods on a 64 × 64 pixel grid.
Secondly, we have pointed out our problems with performance measures calculation. Only
in this way could we compare the mentioned method.

All the outcomes result from implementing the R&D project of tomographic platform
for diagnostics and control of technological processes. It aimed to create a new technology
based on capacitive, resistive, and ultrasound tomography to control and monitor batch
crystallisation and biogas fermentation processes. Figure 13 shows the user control panel
used in the monitoring of crystallisation.
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A crystallisation process was carried out where the process was monitored using an
Ultrasonic Tomograph. The process involved the gradual addition of solution CO2−

3(aq)
to a

tank containing solution CaCl2. The reaction resulted in the formation of product CaCO3(s)
and NaClaq in water. The observed crystallisation of CaCO3(s) was characterised in the
image reconstruction using the reflected wave imaging technique. Figure 14 shows the
steps in the crystallisation process.
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4. Discussion

The presented results show that it is possible to obtain high accuracy with few trans-
ducers and relatively cheap ultrasound tomography. While the deterministic algorithm
can recover most of the details, the machine learning algorithm is an excellent method in
finding the location of reconstructed objects.

However, it is not easy to compare the two methods using objective measures of object
reconstruction, because the reconstruction proceeded slightly differently in both cases.
In the deterministic method, only the edges of the object were reconstructed, whereas in
the method using machine learning, both the edges and the interior of the object were
reconstructed (this can be observed in the reconstruction plots—see Figures 10–12). The
differences mentioned above could significantly affect the results of comparisons using
measures such as Mean Square Error, Relative Image Error, or Image Correlation Coeffi-
cient [41,42].

The authors plan to test the developed solution concerning smooth changes in the
fluid density. However, this problem is much more complex, and the entire measured
waveform will be analysed to perform the reconstruction. It is an exciting topic for further
investigation that is out of the scope of this paper. Nevertheless, a review of the results
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reveals an interesting observation. Regardless of the reconstruction method used in the
second stage, its quality depends most on the accuracy of the SAT matrix.

Table 1 describes the results obtained for different methods, including classical ones
(Gauss-Newton) and machine learning methods. Of course, not the same quality indicator
can be used in all the papers, but we can compare them because they were used in the
context of tomography (electrical impedance, capacitance, and ultrasound tomography)
because the idea behind them all is to solve the inverse problem.

Table 1. Comparison of the results obtained with different methods.

References Method Best Value Quality Indicator Comment

[2]

Gauss–Newton (GN) 79%
Percentage
error (PE)

Low value
is better

Linear Regression with SVM Learner (LR-SVM) 31%
Linear Regression with Least Squares Learner (LR-LS) 34%

Artificial Neural Network (ANN) 14%

[22]
Convolutional Neural Network (CNN) 96.62% Accuracy High value

is betterMultiple convolutional neural networks (MCNNs) 99.32%

[39] Elastic Net + Logistic Regression System (EN-LRS) 13.75% Relative Error Low value
is better

[40]

Artificial Neural Network (ANN) 7.71%
Relative

Image Error
Low value

is better
Elastic Net (EN) 21.2%

LARS 8.71%
Gauss-Newton with Laplace regularization 15.63%

[43]
Artificial Neural Network (ANN) 0.106301 Root Mean

Square Error
(RMSE)

Data taken for
2D samples.
Low value

is better

LARS 0.122599
Elastic Net (EN) 0.282520

This Work XGBoost 99.52% Accuracy Higher
is better

In Table 1, the accuracy is the ratio of correctly reconstructed elements on the mesh
to the total reconstructed elements on the mesh. Similarly, Relative Error and RMSE are
calculated in the context of how close the reconstructed values are to the ground truth. It
means that despite different names, all the quality indicators show the “error” concerning
ground truth values.

Our method achieved 99.52% accuracy, which can be translated to the value of
around 0.48% of Relative Error and 0.0036 RMSE and, as shown, is the best method
of the shown methods.

In addition to the results presented in this paper, the authors also performed test
reconstructions when the SAT matrix contained only reflection time information for trans-
ducers placed close together. Reconstructions based only on information from transducers
with small distances between them give equally good results as reconstructions based on
the full SAT array. By closely spaced transducers, we mean those whose angle between
the transmitting and receiving probes does not exceed 70 degrees. It is most likely because
indicating the front of the second wave packet in these cases is much easier than where
transducers are placed on opposite sides. However, finding the front of the second wave
packet is not easy in that case, and as it is shown that it is not crucial for image recon-
struction. A similar solution is used in rotating the ultrasound tomograph, where the
transmitting and receiving transducers are located in a rotating transducer [26].

5. Conclusions

The presented results show that the quality of reconstruction is quite good, especially
in the deterministic approach. Admittedly, there is room for improvement in the quality
of the reconstructed images, mainly by increasing the number of transducers (e.g., to
32) and focusing on the information obtained from the transducers placed at a small
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distance from each other. Nevertheless, both improvements could enhance the quality of
the reconstruction by increasing the amount of information provided to the model and by
enhancing its quality.

The most important aspect of the reconstruction, regardless of the method used in
the second stage, is the correct determination of the reflection moments of the expensive
wave packet. This task does not appear to be difficult when looking for reflections for
transducers slightly distant from each other. However, for probes on the opposite sides of
the tank, the task becomes much more difficult because the obtained signal is a compilation
of many component signals, and it is difficult to determine which moment is the right
one. Indeed, combining the results obtained from the reflection method with transmission
tomography would give better results in object reconstruction. In this way, the problem
occurring for transducers placed on opposite sides of the tank could be avoided.
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in the Automotive Systems. Przegląd Elektrotechniczny 2008, 84, 227–229.
2. Rymarczyk, T.; Kłosowski, G.; Hoła, A.; Sikora, J.; Wołowiec, T.; Tchórzewski, P.; Skowron, S. Comparison of Machine Learning

Methods in Electrical Tomography for Detecting Moisture in Building Walls. Energies 2021, 4, 2777. [CrossRef]
3. Beck, M.S.; Williams, R.A. Process tomography: A European innovation and its applications. Meas. Sci. Technol. 1996, 7, 215–224.

[CrossRef]
4. Kłosowski, G.; Rymarczyk, T.; Cieplak, T.; Niderla, K.; Skowron, Ł. Quality Assessment of the Neural Algorithms on the Example

of EIT-UST Hybrid Tomography. Sensors 2020, 20, 3324. [CrossRef]
5. Mazurek, M.; Rymarczyk, T.; Kania, K.; Kłosowski, G. Dedicated algorithm based on discrete cosine transform for the analysis of

industrial processes using ultrasound tomography. In Proceedings of the 2020 ACM International Joint Conference on Pervasive
and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers. Association
for Computing Machinery, UbiComp-ISWC’20, Virtual Event Mexico, 12–17 September 2020; pp. 82–85.

6. Wang, M. Industrial Tomography: Systems and Applications; Elsevier: Amsterdam, The Netherlands, 2015.
7. Xu, L.; Wang, X.; Wu, W.; Li, Y. Diagnostic Accuracy of Double Contrast-Enhanced Ultrasonography in Clarifying Tumor Depth

(T Stage) of Gastric Cancer: Meta-analysis. Ultrasound Med. Biol. 2021, 47, 2483–2493. [CrossRef] [PubMed]
8. Habib, J.R.; Zhu, Y.; Yin, L.; Javed, A.A.; Ding, D.; Tenior, J.; Wright, M.; Ali, S.Z.; A Burkhart, R.; Burns, W.; et al. Reliable Detection

of Somatic Mutations for Pancreatic Cancer in Endoscopic Ultrasonography-Guided Fine Needle Aspirates with Next-Generation
Sequencing: Implications from a Prospective Cohort Study. J. Gastrointest. Surg. 2021, 1–11. [CrossRef] [PubMed]

9. Steyerová, P.; Burgetová, A. Possibilities and pitfalls of diagnostics brest cancer in young women. Onkologie 2019, 13, 9–13.
[CrossRef]

10. Bischoff, A.; Guimaraes, C.V.A.; Mirsky, D.M.; Santos-Jasso, K.A.; Zaretsky, M.V.; Ketzer, J.; Hall, J.; Mueller, C.; de La Torre, L.;
Peña, A.; et al. Visualization of the fetal anus by prenatal ultrasound for the diagnosis of anorectal malformations: Is it feasible?
Pediatr. Surg. Int. 2021, 37, 425–430. [CrossRef]

11. Zeng, K.; Li, D.; Zhang, Y.; Cao, C.; Bai, R.; Yang, Z.; Chen, L. Prenatal diagnosis of megaduodenum using ultrasound: A case
report. BMC Pregnancy Childbirth 2021, 21, 370. [CrossRef]

12. Hu, T.; Tian, T.; Zhang, Z.; Wang, J.; Hu, R.; Xiao, L.; Zhu, H.; Lai, Y.; Wang, H.; Liu, S. Prenatal chromosomal microarray analysis
in 2466 fetuses with ultrasonographic soft markers: A prospective cohort study. Am. J. Obstet. Gynecol. 2020, 224, 516.e1–516.e16.
[CrossRef]

13. Shmulewitz, A.; Teefey, S.A.; Robinson, B.S. Factors affecting image quality and diagnostic efficacy in abdominal sonography: A
prospective study of 140 patients. J. Clin. Ultrasound 1993, 21, 623–630. [CrossRef]

http://doi.org/10.3390/en14102777
http://doi.org/10.1088/0957-0233/7/3/002
http://doi.org/10.3390/s20113324
http://doi.org/10.1016/j.ultrasmedbio.2021.05.017
http://www.ncbi.nlm.nih.gov/pubmed/34172338
http://doi.org/10.1007/s11605-021-05078-y
http://www.ncbi.nlm.nih.gov/pubmed/34244950
http://doi.org/10.36290/xon.2019.002
http://doi.org/10.1007/s00383-020-04840-8
http://doi.org/10.1186/s12884-021-03843-0
http://doi.org/10.1016/j.ajog.2020.10.039
http://doi.org/10.1002/jcu.1870210909


Energies 2021, 14, 7549 18 of 19

14. Brahee, D.D.; Ogedegbe, C.; Hassler, C.; Nyirenda, T.; Hazelwood, V.; Morchel, H.; Patel, R.S.; Feldman, J. Body Mass Index and
Abdominal Ultrasound Image Quality. J. Diagn. Med. Sonogr. 2013, 29, 66–72. [CrossRef]

15. Ng, M.C.F.A.; Swanevelder, M.C.F.F.M.J. Resolution in ultrasound imaging. Contin. Educ. Anaesth. Crit. Care Pain 2011, 11,
186–192. [CrossRef]

16. Nebeker, J.; Nelson, T.R. Imaging of Sound Speed Using Reflection Ultrasound Tomography. 31, 1389–1404._eprint. Available
online: https://onlinelibrary.wiley.com/doi/pdf/10.7863/jum.2012.31.9.1389 (accessed on 1 September 2012). [CrossRef]

17. Dines, K.; Goss, S. Computed Ultrasonic Reflection Tomography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 1987, 34, 309–318.
[CrossRef] [PubMed]

18. Huang, L.; Lin, Y.; Zhang, Z.; Labyed, Y.; Tan, S.; Nguyen, N.Q.; Hanson, K.M.; Sandoval, D.; Williamson, M. Breast ultrasound
waveform tomography: Using both transmission and reflection data, and numerical virtual point sources. In Proceedings of
the Medical Imaging 2014: Ultrasonic Imaging and Tomography, SPIE, San Diego, CA, USA, 20 March 2014; Volume 9040,
pp. 187–198. [CrossRef]

19. Rymarczyk, T.; Polakowski, K.; Sikora, J. A New Concept of Discretization Model for Imaging Improving in Ultrasound
Transmission Tomography. Inform. Autom. Pomiary W Gospod. I Ochr. Sr. 2019, 9, 48–51. [CrossRef]

20. Kania, K. Image reconstruction in ultrasound transmission tomography using the Fermat’s Principle. Przeglad Elektrotechniczny
2020, 1, 188–191. [CrossRef]

21. Koulountzios, P.; Rymarczyk, T.; Soleimani, M. A quantitative ultrasonic travel-time tomography system for investigation of
liquid compounds elaborations in industrial processes. Sensors 2019, 19, 5117. [CrossRef] [PubMed]
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