Photovoltaic Energy All-Day and Intra-Day Forecasting Using Node by Node Developed Polynomial Networks Forming PDE Models Based on the L-Transformation
Abstract
:1. Introduction
2. State of the Art in PVP Forecasting
3. General PDE Partition, L-Transformation and Inverse L-Substitution
3.1. L-Transformation of PDE Derivatives and OC Iverse L-Substitution for the Rational Converts
3.2. Composite Production of PDE Model CT Components in the Progressively Extending PNN Binary Node Tree
4. Multi-Step Hourly and One-Step All-Day CSI/PVP Forecasting—Methodology
5. 1–9 h and 24 h CSI/PVP Forecasting—Data and Experiments
- Linear Regression—robust, interaction and stepwise;
- Regression Trees—fine, coarse, medium;
- Support Vector Machine (SVM)—using linear, cubic, quadratic, combined or RBF (Radial Basis Function) kernel;
- Gaussian Process Regression (GPR)—rational, quadratic, exponential, squared, matern;
- Ensemble Bagged or Boosted Tree (EBT) using the probabilistic approach
6. 1–9 h and All-Day CSI/PVP Forecasting—Experiments Evaluation
7. Discussion
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sobri, S.; Koohi-Kamali, S.; Rahim, N.A. Solar photovoltaic generation forecasting methods: A review. Energy Convers. Manag. 2018, 156, 459–497. [Google Scholar] [CrossRef]
- Vannitsem, S. Dynamical Properties of MOS Forecasts: Analysis of the ECMWF Operational Forecasting System. Weather Forecast. 2008, 23, 1032–1043. [Google Scholar] [CrossRef]
- Giorgi, M.G.D.; Congedo, P.M.; Malvoni, M.; Laforgia, D. Error analysis of hybrid photovoltaic power forecasting models: A case study of mediterranean climate. Energy Convers. Manag. 2015, 100, 117–130. [Google Scholar] [CrossRef]
- Leva, S.; Dolara, A.; Grimaccia, F.; Mussetta, M.; Ogliari, E. Analysis and validation of 24 hours ahead neural network forecasting of photovoltaic output power. Math. Comput. Simul. 2017, 131, 88–100. [Google Scholar] [CrossRef] [Green Version]
- Shamim, M.A.; Remesan, R.; Bray, M.; Han, D. An improved technique for global solar radiation estimation using numerical weather prediction. J. Atmos. Sol.-Terr. Phys. 2015, 129, 13–22. [Google Scholar] [CrossRef]
- Zjavka, L.; Krömer, P.; Mišák, S.; Snášel, V. Modeling the Photovoltaic Output Power using the Differential Polynomial Network and Evolutional Fuzzy Rules. Math. Model. Anal. 2017, 22, 78–94. [Google Scholar] [CrossRef] [Green Version]
- Wan, C.; Zhao, J.; Song, Y.; Xu, Z.; Lin, J.; Hu, Z. Photovoltaic and Solar Power Forecasting for Smart Grid Energy Management. CSEE J. Power Eenergy Syst. 2015, 1, 38–46. [Google Scholar] [CrossRef]
- Nikolaev, N.Y.; Iba, H. Adaptive Learning of Polynomial Networks. Genetic and Evolutionary Computation; Springer: New York, NY, USA, 2006. [Google Scholar]
- Akhter, M.N.; Mekhilef, S.; Mokhlis, H.; Shah, N.M. Review on forecasting of photovoltaic power generation based on machine learning and metaheuristic techniques. IET Renew. Power Gener. 2019, 13, 1009–1023. [Google Scholar] [CrossRef] [Green Version]
- Agoua, X.G.; Girard, R.; Kariniotakis, G. Photovoltaic Power Forecasting: Assessment of the Impact of Multiple Sources of Spatio-Temporal Data on Forecast Accuracy. Energies 2021, 14, 1432. [Google Scholar] [CrossRef]
- Rana, M.; Rahman, A. Multiple steps ahead solar photovoltaic power forecasting based on univariate machine learning models and data re-sampling. Sustain. Energy Grids Netw. 2020, 21, 100286. [Google Scholar] [CrossRef]
- Liu, Z.F.; Luo, S.F.; Tseng, M.L.; Liu, H.M.; Li, L. Short-term photovoltaic power prediction on modal reconstruction: A novel hybrid model approach. Sustain. Energy Technol. Assess. 2021, 45, 101048. [Google Scholar] [CrossRef]
- Das, U.K.; Teya, K.S.; Seyedmahmoudiana, M.; Mekhilef, S. Forecasting of photovoltaic power generation and model optimization: A review. Renew. Sustain. Energy Rev. 2018, 81, 912–928. [Google Scholar] [CrossRef]
- Yin, W.; Han, Y.; Zhou, H.; Ma, M.; Li, L.; Zhu, H. A novel non-iterative correction method for short-term photovoltaic power forecasting. Renew. Energy 2020, 159, 23–32. [Google Scholar] [CrossRef]
- Dewangan, C.L.; Singh, S.N.; Chakrabarti, S. Combining forecasts of day-ahead solar power. Energy 2020, 202, 117743. [Google Scholar] [CrossRef]
- Wang, K.; Qi, X.; Liu, H. Photovoltaic power forecasting based LSTM-Convolutional Network. Energy 2019, 189, 116225. [Google Scholar] [CrossRef]
- Gao, M.; Li, J.; Hong, F.; Long, D. Day-ahead power forecasting in a large-scale photovoltaic plant based on weather classification using LSTM. Energy 2019, 187, 115838. [Google Scholar] [CrossRef]
- Mayer, M.J.; Grof, G. Extensive comparison of physical models for photovoltaic power forecasting. Appl. Energy 2021, 187, 116239. [Google Scholar] [CrossRef]
- Lin, P.; Peng, Z.; Lai, Y.; Cheng, S.; Chen, Z.; Wu, L. Short-term power prediction for photovoltaic power plants using a hybrid improved Kmeans-GRA-Elman model based on multivariate meteorological factors and historical power datasets. Energy Convers. Manag. 2018, 177, 704–717. [Google Scholar] [CrossRef]
- Mouna Diagne, H.M.; David, M.; Lauret, P.; Boland, J.; Schmutz, N. Review of solar irradiance forecasting methods and a proposition for small-scale insular grids. Renew. Sustain. Energy Rev. 2013, 27, 65–76. [Google Scholar] [CrossRef] [Green Version]
- Pelland, S.; Remund, J.; Kleissl, J.; Oozeki, T.; Brabandere, K.D. Photovoltaic and Solar Forecasting: State of the Art. Photovoltaic Power Systems Programme; IEA International Energy Agency: Paris, France, 2013. [Google Scholar]
- Giorgi, M.G.D.; Malvoni, M.; Congedo, P.M. Comparison of strategies for multi-step ahead photovoltaic power forecasting models based on hybrid group method of data handling networks and least square support vector machine. Energy 2016, 107, 360–373. [Google Scholar] [CrossRef]
- Zjavka, L.; Pedrycz, W. Constructing General Partial Differential Equations using Polynomial and Neural Network. Neural Netw. 2016, 73, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Anastasakis, L.; Mort, N. The Development of Self-Organization Techniques in Modelling: A Review of the Group Method of Data Handling (GMDH); The University of Sheffield: Sheffield, UK, 2001. [Google Scholar]
- Coimbra, C.; Kleissl, J.; Marquez, R. Overview of Solar Forecasting Methods and a Metric for Accuracy Evaluation; Elsevier: Amsterdam, The Netherlands, 2013; pp. 171–194. [Google Scholar]
- Zjavka, L.; Sokol, Z. Local Improvements in Numerical Forecasts of Relative Humidity Using Polynomial Solutions of General Differential Equations. Q. J. R. Meteorol. Soc. 2018, 144, 780–791. [Google Scholar] [CrossRef]
Airport Observations | PVP Output -Mošnov Station | PVP Output -Turany Station |
---|---|---|
Temperature | 0.550192 | 0.531114 |
Relat. humidity | −0.66662 | −0.59942 |
Atm. pressure | 0.165771 | 0.161383 |
Wind speed | 0.453539 | 0.218988 |
Wind azimuth | 0.023447 | −0.03085 |
Sky condition | 0.06894 | 0.07737 |
Method/Error | Intra-Day nRMSE [%] | Intra-Day nMAE [%] | Intra-Day R2 |
---|---|---|---|
D-PNN | 14.5 | 11.6 | 0.70 |
Persistent | 25.4 | 20.4 | 0.61 |
RNN | 26.4 | 22.7 | 0.43 |
SMLT | 20.0 | 16.3 | 0.63 |
Method/Error | Daily nRMSE [%] | Daily nMAE [%] | Daily R2 |
---|---|---|---|
D-PNN | 15.7 | 13.9 | 0.70 |
Persistent | 24.0 | 21.6 | 0.60 |
SMLT | 21.8 | 18.0 | 0.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zjavka, L. Photovoltaic Energy All-Day and Intra-Day Forecasting Using Node by Node Developed Polynomial Networks Forming PDE Models Based on the L-Transformation. Energies 2021, 14, 7581. https://doi.org/10.3390/en14227581
Zjavka L. Photovoltaic Energy All-Day and Intra-Day Forecasting Using Node by Node Developed Polynomial Networks Forming PDE Models Based on the L-Transformation. Energies. 2021; 14(22):7581. https://doi.org/10.3390/en14227581
Chicago/Turabian StyleZjavka, Ladislav. 2021. "Photovoltaic Energy All-Day and Intra-Day Forecasting Using Node by Node Developed Polynomial Networks Forming PDE Models Based on the L-Transformation" Energies 14, no. 22: 7581. https://doi.org/10.3390/en14227581
APA StyleZjavka, L. (2021). Photovoltaic Energy All-Day and Intra-Day Forecasting Using Node by Node Developed Polynomial Networks Forming PDE Models Based on the L-Transformation. Energies, 14(22), 7581. https://doi.org/10.3390/en14227581