Influence of the Hydrophilic Surface of Nanofiber Support on the Performance of Hybrid Supercapacitors
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Conway, B.E. Electrochemical Supercapacitors; Plenum Publishing Co.: New York, NY, USA, 1999; pp. 1–698. [Google Scholar]
- Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. In Nanoscience and Technology: A Collection of Reviews from Nature Journals; Nature: London, UK, 2010; pp. 320–329. [Google Scholar]
- Yan, J.; Wang, Q.; Wei, T.; Fan, Z. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 2014, 4, 1300816. [Google Scholar] [CrossRef]
- Shao, Y.; El−Kady, M.F.; Wang, L.J.; Zhang, Q.; Li, Y.; Wang, H.; Mousavi, M.F.; Kaner, R.B. Graphene−based materials for flexible supercapacitors. Chem. Soc. Rev. 2015, 44, 3639–3665. [Google Scholar] [CrossRef]
- Arunachalam, S.; Kirubasankar, B.; Pan, D.; Liu, H.; Yan, C.; Guo, Z.; Angaiah, S. Research progress in rare earths and their composites based electrode materials for supercapacitors. Green Energy Environ. 2020, 5, 259–273. [Google Scholar] [CrossRef]
- Arunachalam, S.; Kirubasankar, B.; Murugadoss, V.; Vellasamy, D.; Angaiah, S. Facile synthesis of electrostatically anchored Nd (OH)3 nanorods onto graphene nanosheets as a high capacitance electrode material for supercapacitors. New J. Chem. 2018, 42, 2923–2932. [Google Scholar] [CrossRef]
- Arunachalam, S.; Kirubasankar, B.; Rajagounder Nagarajan, E.; Vellasamy, D.; Angaiah, S. A facile chemical precipitation method for the synthesis of Nd (OH)3 and La (OH)3 nanopowders and their supercapacitor performances. Chem. Sel. 2018, 3, 12719–12724. [Google Scholar] [CrossRef]
- Balakrishnan, K.; Kumar, M.; Angaiah, S. Synthesis of Polythiophene and Its Carbonaceous Nanofibers as Electrode Materials for Asymmetric Supercapacitors. In Advanced Materials Research; Scientific: Basel, Switzerland, 2014; pp. 151–157. [Google Scholar]
- Kirubasankar, B.; Balan, B.; Yan, C.; Angaiah, S. Recent Progress in Graphene-Based Microsupercapacitors. Energy Technol. 2021, 9, 2000844. [Google Scholar] [CrossRef]
- Halper, M.S.; Ellenbogen, J.C. Supercapacitors: A Brief Overview; MITRE Corp.: Bedford, MA, USA, 2006; Volume 1, p. 34. [Google Scholar]
- Zhao, X.; Johnston, C.; Grant, P.S. A novel hybrid supercapacitor with a carbon nanotube cathode and an iron oxide/carbon nanotube composite anode. J. Mater. Chem. 2009, 19, 8755–8760. [Google Scholar] [CrossRef]
- Ishimoto, S.; Asakawa, Y.; Shinya, M.; Naoi, K. Degradation responses of activated−carbon−based EDLCs for higher voltage operation and their factors. J. Electrochem. Soc. 2009, 156, A563. [Google Scholar] [CrossRef]
- Signorelli, R.; Ku, D.C.; Kassakian, J.G.; Schindall, J.E. Electrochemical double−layer capacitors using carbon nanotube electrode structures. Proc. IEEE 2009, 97, 1837–1847. [Google Scholar] [CrossRef]
- Kim, B.-H.; Yang, K.S.; Ferraris, J.P. Highly conductive, mesoporous carbon nanofiber web as electrode material for high−performance supercapacitors. Electrochim. Acta 2012, 75, 325–331. [Google Scholar] [CrossRef]
- Miller, J.R.; Outlaw, R.; Holloway, B. Graphene electric double layer capacitor with ultra−high−power performance. Electrochim. Acta 2011, 56, 10443–10449. [Google Scholar] [CrossRef]
- Kakaei, K.; Esrafili, M.D.; Ehsani, A. Alcohol oxidation and hydrogen evolution. Interface Sci. Technol. 2019, 27, 253–301. [Google Scholar]
- Lee, J.Y.; Liang, K.; An, K.H.; Lee, Y.H. Nickel oxide/carbon nanotubes nanocomposite for electrochemical capacitance. Synth. Met. 2005, 150, 153–157. [Google Scholar] [CrossRef]
- Yuan, C.; Zhang, X.; Wu, Q.; Gao, B. Effect of temperature on the hybrid supercapacitor based on NiO and activated carbon with alkaline polymer gel electrolyte. Solid State Ion. 2006, 177, 1237–1242. [Google Scholar] [CrossRef]
- Meher, S.K.; Rao, G.R. Ultralayered Co3O4 for high−performance supercapacitor applications. J. Phys. Chem. C 2011, 115, 15646–15654. [Google Scholar] [CrossRef]
- Xia, X.-H.; Tu, J.-P.; Mai, Y.-J.; Wang, X.-L.; Gu, C.-D.; Zhao, X.-B. Self−supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high supercapacitor capacitance. J. Mater. Chem. 2011, 21, 9319–9325. [Google Scholar] [CrossRef]
- Chang, J.-K.; Chen, Y.-L.; Tsai, W.-T. Effect of heat treatment on material characteristics and pseudo−capacitive properties of manganese oxide prepared by anodic deposition. J. Power Sources 2004, 135, 344–353. [Google Scholar] [CrossRef]
- Prasad, K.R.; Miura, N. Potentiodynamically deposited nanostructured manganese dioxide as electrode material for electrochemical redox supercapacitors. J. Power Sources 2004, 135, 354–360. [Google Scholar] [CrossRef]
- Hou, Y.; Chen, L.; Zhang, L.; Kang, J.; Fujita, T.; Jiang, J.; Chen, M. Ultrahigh capacitance of nanoporous metal enhanced conductive polymer pseudocapacitors. J. Power Sources 2013, 225, 304–310. [Google Scholar] [CrossRef]
- Yang, S.; Liu, Y.; Hao, Y.; Yang, X.; Goddard, W.A., III; Zhang, X.L.; Cao, B. Oxygen-vacancy abundant ultrafine Co3O4/graphene composites for high-rate supercapacitor electrodes. Adv. Sci. 2018, 5, 1700659. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Hu, Y.; Wang, Z.; Lin, T.; Zhu, X.; Luo, B.; Hu, H.; Xing, W.; Yan, Z.; Wang, L. Lithiation-Induced Vacancy Engineering of Co3O4 with Improved Faradic Reactivity for High-Performance Supercapacitor. Adv. Funct. Mater. 2020, 30, 2004172. [Google Scholar] [CrossRef]
- Rakhi, R.; Alshareef, H.N. Enhancement of the energy storage properties of supercapacitors using graphene nanosheets dispersed with metal oxide−loaded carbon nanotubes. J. Power Sources 2011, 196, 8858–8865. [Google Scholar] [CrossRef]
- Zawadzki, M.; Wrzyszcz, J. Hydrothermal synthesis of nanoporous zinc aluminate with high surface area. Mater. Res. Bull. 2000, 35, 109–114. [Google Scholar] [CrossRef]
- Stein, A.; Keller, S.W.; Mallouk, T.E. Turning down the heat: Design and mechanism in solid−state synthesis. Science 1993, 259, 1558–1564. [Google Scholar] [CrossRef]
- Lu, F.; Wang, J.; Sun, X.; Chang, Z. 3D hierarchical carbon nanofibers/TiO2@ MoS2 core−shell heterostructures by electrospinning, hydrothermal and in−situ growth for flexible electrode materials. Mater. Des. 2020, 189, 108503. [Google Scholar] [CrossRef]
- Mao, K.; Wu, X.; Min, X.; Huang, Z.; Liu, Y.-G.; Fang, M. New efficient visible−light−driven photocatalyst of chitin−modified titanium dioxide/carbon fiber composites for wastewater. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef]
- Laudise, R.; Nielsen, J. Hydrothermal crystal growth. In Solid State Physics; Elsevier: Amsterdam, The Netherlands, 1961; Volume 12, pp. 149–222. [Google Scholar]
- Ju, Y.W.; Yoo, S.; Kim, C.; Kim, S.; Jeon, I.Y.; Shin, J.; Baek, J.B.; Kim, G. Fe@ N-Graphene Nanoplatelet-Embedded Carbon Nanofibers as Efficient Electrocatalysts for Oxygen Reduction Reaction. Adv. Sci. 2016, 3, 1500205. [Google Scholar] [CrossRef]
- Kirubasankar, B.; Narayanasamy, M.; Yang, J.; Han, M.; Zhu, W.; Su, Y.; Angaiah, S.; Yan, C. Construction of heterogeneous 2D layered MoS2/MXene nanohybrid anode material via interstratification process and its synergetic effect for asymmetric supercapacitors. Appl. Surf. Sci. 2020, 534, 147644. [Google Scholar] [CrossRef]
- Kirubasankar, B.; Palanisamy, P.; Arunachalam, S.; Murugadoss, V.; Angaiah, S. 2D MoSe2−Ni (OH)2 nanohybrid as an efficient electrode material with high rate capability for asymmetric supercapacitor applications. Chem. Eng. J. 2019, 355, 881–890. [Google Scholar] [CrossRef]
- Narayanasamy, M.; Kirubasankar, B.; Shi, M.; Velayutham, S.; Wang, B.; Angaiah, S.; Yan, C. Morphology restrained growth of V2O5 by the oxidation of V−MXenes as a fast diffusion controlled cathode material for aqueous zinc ion batteries. Chem. Commun. 2020, 56, 6412–6415. [Google Scholar] [CrossRef]
- Zhou, X.; Yi, H.; Tang, X.; Deng, H.; Liu, H. Thermodynamics for the adsorption of SO2, NO and CO2 from flue gas on activatecarbon fiber. Chem. Eng. J. 2012, 200, 399–404. [Google Scholar] [CrossRef]
- Ouyang, T.; Cheng, K.; Yang, F.; Zhou, L.; Zhu, K.; Ye, K.; Wang, G.; Cao, D. From biomass with irregular structures to 1D carbon nanobelts: A stripping and cutting strategy to fabricate high performance supercapacitor materials. J. Mater. Chem. A 2017, 5, 14551–14561. [Google Scholar] [CrossRef]
- Yang, P.; Chen, Y.; Yu, X.; Qiang, P.; Wang, K.; Cai, X.; Tan, S.; Liu, P.; Song, J.; Mai, W. Reciprocal alternate deposition strategy using metal oxide/carbon nanotube for positive and negative electrodes of high−performance supercapacitors. Nano Energy 2014, 10, 108–116. [Google Scholar] [CrossRef]
- Cheng, W.; Deng, Z.; Tong, X.; Lu, T. Hydrophobic agglomeration of fine pyrite particles induced by flotation reagents. Minerals 2020, 10, 801. [Google Scholar] [CrossRef]
- Lu, S.; Song, S. Hydrophobic interaction in flocculation and flotation 1. Hydrophobic flocculation of fine mineral particles in aqueous solution. Colloids Surf. 1991, 57, 49–60. [Google Scholar] [CrossRef]
- Zhu, Y.; Otsubo, M.; Honda, C. Degradation of polymeric materials exposed to corona discharges. Polym. Test. 2006, 25, 313–317. [Google Scholar] [CrossRef]
- Zhu, Y.; Otsubo, M.; Honda, C.; Tanaka, S. Loss and recovery in hydrophobicity of silicone rubber exposed to corona discharge. Polym. Degrad. Stab. 2006, 91, 1448–1454. [Google Scholar] [CrossRef]
- Oh, G.-Y.; Ju, Y.-W.; Jung, H.-R.; Lee, W.-J. Preparation of the novel manganese−embedded PAN−based activated carbon nanofibers by electrospinning and their toluene adsorption. J. Anal. Appl. Pyrolysis 2008, 81, 211–217. [Google Scholar] [CrossRef]
- Jiang, R.; Huang, T.; Tang, Y.; Liu, J.; Xue, L.; Zhuang, J.; Yu, A. Factors influencing MnO2/multi−walled carbon nanotubes composite’s electrochemical performance as supercapacitor electrode. Electrochim. Acta 2009, 54, 7173–7179. [Google Scholar] [CrossRef]
- Xiang, K.; Xu, Z.; Qu, T.; Tian, Z.; Zhang, Y.; Wang, Y.; Xie, M.; Guo, X.; Ding, W.; Guo, X. Two dimensional oxygen−vacancy−rich Co3O4 nanosheets with excellent supercapacitor performances. Chem. Commun. 2017, 53, 12410–12413. [Google Scholar] [CrossRef] [PubMed]
- Subasri, A.; Balakrishnan, K.; Nagarajan, E.; Devadoss, V.; Subramania, A. Development of 2D La (OH)3/graphene nanohybrid by a facile solvothermal reduction process for high−performance supercapacitors. Electrochim. Acta 2018, 281, 329–337. [Google Scholar] [CrossRef]
- Kirubasankar, B.; Murugadoss, V.; Lin, J.; Ding, T.; Dong, M.; Liu, H.; Zhang, J.; Li, T.; Wang, N.; Guo, Z. In situ grown nickel selenide on graphene nanohybrid electrodes for high energy density asymmetric supercapacitors. Nanoscale 2018, 10, 20414–20425. [Google Scholar] [CrossRef] [PubMed]
- Kirubasankar, B.; Vijayan, S.; Angaiah, S. Sonochemical synthesis of a 2D–2D MoSe2/graphene nanohybrid electrode material for asymmetric supercapacitors. Sustain. Energy Fuels 2019, 3, 467–477. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.-Y.; Lee, S.-Y.; Jeon, I.-Y.; Shin, J.; Ju, Y.-W. Influence of the Hydrophilic Surface of Nanofiber Support on the Performance of Hybrid Supercapacitors. Energies 2021, 14, 7621. https://doi.org/10.3390/en14227621
Kim H-Y, Lee S-Y, Jeon I-Y, Shin J, Ju Y-W. Influence of the Hydrophilic Surface of Nanofiber Support on the Performance of Hybrid Supercapacitors. Energies. 2021; 14(22):7621. https://doi.org/10.3390/en14227621
Chicago/Turabian StyleKim, Hyo-Young, Seon-Yeong Lee, In-Yup Jeon, Jeeyoung Shin, and Young-Wan Ju. 2021. "Influence of the Hydrophilic Surface of Nanofiber Support on the Performance of Hybrid Supercapacitors" Energies 14, no. 22: 7621. https://doi.org/10.3390/en14227621
APA StyleKim, H. -Y., Lee, S. -Y., Jeon, I. -Y., Shin, J., & Ju, Y. -W. (2021). Influence of the Hydrophilic Surface of Nanofiber Support on the Performance of Hybrid Supercapacitors. Energies, 14(22), 7621. https://doi.org/10.3390/en14227621