Influence of Upstream Disturbances on the Vortex Structure of Francis Turbine Based on the Criteria of Identification of Various Vortexes
Abstract
:1. Introduction
2. Numerical Set Up
2.1. LES Numerical Model
2.2. Vortex Identification Methods
2.3. Numerical Simulation Strategy and Boundary Conditions
3. Results and Discussion
3.1. Flow Patterns under Various Upstream Disturbances
3.2. Vortex Patterns in the Guide Apparatus and Runner Domain under Different Upstream Disturbances
3.3. Identification and Comparison of Vortex Rope in Draft Tube under Various Upstream Disturbances
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Filtered velocity in i direction | |
Filtered pressure | |
Subgrid stress | |
Fluid density | |
Kinematic viscosity | |
Lij | Leonard stress, which stands for the interaction between large scale vortexes |
Cij | Cross stress, standing for the interaction between large-scale vortexes and small-scale vortexes |
Rij | Reynolds stress, standing for the interaction between small-scale vortexes |
Model parameters of WALE subgrid model | |
Filter size | |
Strain rate tensor |
References
- Müller, A.; Favrel, A.; Landry, C.; Avellan, F. Fluid–structure interaction mechanisms leading to dangerous power swings in Francis turbines at full load. J. Fluids Struct. 2017, 69, 56–71. [Google Scholar] [CrossRef]
- Liu, D.; Liu, X.; Zhao, Y. Experimental Investigation of inter-blade vortices in a model Francis turbine. Chin. J. Mech. Eng. 2017, 30, 854–865. [Google Scholar] [CrossRef]
- Ruan, H.; Liao, W.; Gong, H.; Zhao, Y.; Luo, X. Dynamic analysis of high-specific-speed Francis turbine runner in channel vortices condition. J. Hydroelectr. Eng. 2015, 34, 25–31. [Google Scholar]
- Luo, X.W.; Ji, B.; Tsujimoto, Y. A review of cavitation in hydraulic machinery. J. Hydrodyn. 2016, 28, 335–358. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Gui, N. A review of the third-generation vortex identification method and its applications. Chin. J. Hydrodyn. 2019, 34, 413–429. [Google Scholar]
- Guo, T.; Zang, L.X. Numerical study on turbulence characteristics in francis turbine under small opening condition. Eng. Mech. 2015, 32, 222–230. [Google Scholar]
- Guo, T.; Zhang, L.X. Numerical Study of Swirling Flow Fields in Francis Turbine under Small Opening Condition. Trans. Chin. Soc. Agric. Mach. 2014, 45, 112–118. [Google Scholar]
- Zhang, L.X.; Wang, W.Q.; Guo, Y.K. Intrinsic features of turbulent flow in strongly 3-D skew blade passage of a francis turbine 11 Project supported by the National Natural Science Foundation of China (Grant Nos. 50579025, 90210005). J. Hydrodyn. 2007, 19, 92–99. [Google Scholar] [CrossRef]
- Wang, W.Q.; Zhang, L.X.; Yan, Y. Study on Turbulence Features Near an Oscillating Curved Wall. J. Hydrodyn. 2007, 19, 255–263. [Google Scholar] [CrossRef]
- Wang, W.Q.; Zhang, L.X.; Yan, Y.; Guo, Y.K. Large-Eddy Simulation of Turbulent Flow Considering Inflow Wakes in a Francis Turbine Blade Passage. J. Hydrodyn. 2007, 19, 201–209. [Google Scholar] [CrossRef]
- Jafarzadeh, J.H.; Maddahian, R.; Cervantes, M.J. Optimization of axial water injection to mitigate the Rotating Vortex Rope in a Francis turbine. Renew. Energy 2021, 175, 214–231. [Google Scholar] [CrossRef]
- Favrel, A.; Gomes Pereira Junior, J.; Müller, A.; Landry, C.; Yamamoto, K.; Avellan, F. Swirl number based transposition of flow-induced mechanical stresses from reduced scale to full-size Francis turbine runners. J. Fluids Struct. 2020, 94, 102956. [Google Scholar] [CrossRef]
- Tania, M.A.; Waldir, D.O.; Ramiro, G.R. Francis turbine draft tube parameterization and analysis of performance characteristics using CFD techniques. Renew. Energy 2018, 127, 114–124. [Google Scholar]
- Nahale, S.; Reza, M.; Michel, J. Cervantes. Investigation of Rotating Vortex Rope formation during load variation in a Francis turbine draft tube. Renew. Energy 2020, 151, 238–254. [Google Scholar]
- Muhirwa, A.; Li, B.; Su, W.T.; Liu, Q.Z.; Binama, M.; Wu, J.; Cai, W.H. Investigation on mutual traveling influences between the draft tube and upstream components of a Francis turbine unit. Renew. Energy 2020, 162, 973–992. [Google Scholar] [CrossRef]
- Chong, M.S.; Perry, A.E.; Cantwell, B.J. A general classification of three-dimensional flow fields. Phys. Fluids A Fluid Dyn. 1990, 2, 765–777. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Wang, X.Y.; Liu, C.Q. Comparisons and analyses of vortex identification between Omega method and Q criterion. J. Hydrodyn. 2019, 31, 224–230. [Google Scholar] [CrossRef]
- Jeong, J.; Hussain, F. On the identification of a vortex. J. Fluid Mech. 1995, 285, 69–94. [Google Scholar] [CrossRef]
- Zhou, J.; Adrian, R.J.; Balachandar, S.; Kendall, T.M. Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 1999, 387, 353–396. [Google Scholar] [CrossRef]
- Dong, X.R. Theoretical and Numerical Study on Identification Method and Mechanism of Vortex Structure. Ph.D. Thesis, Nanjing University of Technology, Nanjing, China, 2019. [Google Scholar]
- Liu, C.Q. Liutex-third generation of vortex definition and identification methods. Acta Aerodyn. Sin. 2020, 38, 413–431+478. [Google Scholar]
- Yu, Y.F.; Shrestha, P.; Alvarez, O.; Nottage, C.; Liu, C.Q. Investigation of correlation between vorticity, Q, λci, λ2, Δ and Liutex. Comput. Fluids 2021, 225, 104977. [Google Scholar] [CrossRef]
- Shrestha, P.; Nottage, C.; Yu, Y.F.; Alvarez, O.; Liu, C.Q. Stretching and shearing contamination analysis for Liutex and other vortex identification methods. Adv. Aerodyn. 2021, 3, 8. [Google Scholar] [CrossRef]
- Charkrit, S.; Shrestha, P.; Liu, C.Q. Liutex core line and POD analysis on hairpin vortex formation in natural flow transition. J. Hydrodyn. 2020, 32, 1109–1121. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Liu, K.H.; Xian, H.Z.; Du, X.Z. A review of methods for vortex identification in hydroturbines. Renew. Sustain. Energy Rev. 2018, 81, 1269–1285. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Qiu, X.; Chen, F.P.; Liu, K.H.; Dong, X.R.; Liu, C.Q. A selected review of vortex identification methods with applications. J. Hydrodyn. 2018, 30, 767–779. [Google Scholar] [CrossRef]
- Chen, T.; Zheng, X.H.; Zhang, Y.N.; Li, S.C. Influence of upstream disturbance on the draft-tube flow of Francis turbine under part-load conditions. J. Hydrodyn. 2018, 30, 131–139. [Google Scholar] [CrossRef]
- Sun, L.G.; Guo, P.C.; Luo, X.Q. Visualization investigation into precessing vortex rope in Francis turbine draft tube based on several vortex identification criterions. Chin. J. Hydrodyn. 2019, 34, 779–787. [Google Scholar]
- Guo, P.C.; Sun, L.G.; Luo, X.Q. Flow characteristic investigation into inter-blade vortex for Francis turbine. Trans. Chin. Soc. Agric. Eng. 2019, 35, 43–51. [Google Scholar]
- Yu, Z.F.; Yan, Y.; Wang, W.Q.; Liu, X.S. Entropy production analysis for vortex rope of a Francis turbine using hybrid RANS/LES method. Int. Commun. Heat Mass Transf. 2021, 127, 105494. [Google Scholar] [CrossRef]
- Li, D.Y.; Wang, H.J.; Qin, Y.L.; Han, L.; Wei, X.Z.; Qin, D.Q. Entropy production analysis of hysteresis characteristic of a pump-turbine model. Energy Convers. Manag. 2017, 149, 175–191. [Google Scholar] [CrossRef]
- Hou, H.C.; Zhang, Y.X.; Li, Z.L.; Jiang, T.; Zhang, J.Y.; Xu, C. Numerical analysis of entropy production on a LNG cryogenic submerged pump. J. Nat. Gas Sci. Eng. 2016, 36, 87–96. [Google Scholar] [CrossRef]
- Laouari, A.; Ghenaiet, A. Investigation of steady and unsteady cavitating flows through a small Francis turbine. Renew. Energy 2021, 172, 841–861. [Google Scholar] [CrossRef]
- Gyanendra, T.; Jitendra, K.; Vishnu, P.; Vivek, K.P. Derivation of cavitation characteristics of a 3MW prototype Francis turbine through numerical hydrodynamic analysis. Mater. Today Proc. 2020, 26, 1439–1448. [Google Scholar]
- Yang, J.; Zhou, L.J.; Wang, Z.W. Numerical investigation of the cavitation dynamic parameters in a Francis turbine draft tube with columnar vortex rope. J. Hydrodyn. 2019, 31, 931–939. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, Z.D.; Gao, H.B.; Cheng, N.; Wang, J.X. Research on the cavitation characteristic improvement of impellers of HL220 turbine. Environ. Earth Sci. 2019, 78, 1–9. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, L.J.; Yin, G.J.; Guan, C.N. Research on Unsteady Hydraulic Features of a Francis Turbine and a Novel Method for Identifying Pressure Pulsation Transmission Path. Water 2019, 11, 1216. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Fu, X.; Wang, H.; Zhao, R.; Wei, X. Evolution mechanism of a prototype pump turbine after pump power-off. Phys. Fluids 2021, 33, 106109. [Google Scholar] [CrossRef]
- Li, D.Y.; Yu, L.; Yan, X.Y.; Wang, H.J.; Shi, Q.; Wei, X.Z. Runner cone optimization to reduce vortex rope-induced pressure fluctuations in a Francis turbine. Sci. China Technol. Sci. 2021, 64, 1953–1970. [Google Scholar] [CrossRef]
- Cheng, H.; Zhou, L.J.; Zhao, Y.Z. Very large eddy simulation of the vortex rope in the draft tube of Francis turbine. IOP Conf. Ser. Earth Environ. Sci. 2019, 240, 022001. [Google Scholar] [CrossRef]
- Doussot, F.; Balarac, G.; Brammer, J.; Laurant, Y.; Métais, O. RANS and LES Simulations at Partial Load in Francis Turbines: Three Dimensional Topology and Dynamic Behaviour of Inter Blade Vortices. Int. J. Fluid Mach. Syst. 2020, 13, 12–20. [Google Scholar] [CrossRef]
- Altimemy, M.; Attiya, B.; Daskiran, C.; Liu, I.H.; Oztekin, A. Mitigation of flow-induced pressure fluctuations in a Francis turbine operating at the design and partial load regimes—LES simulations. Int. J. Heat Fluid Flow 2019, 79, 108444. [Google Scholar] [CrossRef]
- Trivedi, C. Time-dependent inception of vortex rings in a Francis turbine during load variation: Large eddy simulation and experimental validation. J. Hydraul. Res. 2020, 58, 790–806. [Google Scholar] [CrossRef]
- Chirag, T.; Igor, I.; Ole, G.D.; Zoran, M.; Fredrik, E.; Henning, L. Investigation of a Francis turbine during speed variation: Inception of cavitation. Renew. Energy 2020, 166, 147–162. [Google Scholar]
Parameter | Value |
---|---|
Number of guide vanes | 16 |
Number of runner blades | 13 |
Inlet diameter of spiral casing | 540 mm |
Outlet length of draft tube | 1410 mm |
Height of guide vanes | 118 mm |
Diameter of runner | 430 mm |
Condition | α/mm | Angle of Attack/° | Q11/(m3/s) | η | Pn% |
---|---|---|---|---|---|
A (small opening condition) | 13.5 | 8 | 0.270 | 0.31 | 8 |
B | 26.17 | 16 | 0.660 | 0.82 | 49 |
C | 38.05 | 24 | 0.975 | 0.91 | 80 |
D (optimal condition) | 48.74 | 32 | 1.197 | 0.93 | 99 |
Key Point | Optimal Condition | Small Opening Condition | |||
---|---|---|---|---|---|
A | B | C | D | E | |
1 | 0.22178 | 0.88712 | 1.99602 | 0.22178 | 0.88712 |
2 | 0.22178 | 1.10890 | |||
3 | 0.44356 | 0.88712 | |||
4 | 0.22178 | 0.88712 | |||
5 | 0.44356 | 0.88712 | |||
6 | 0.44356 | 1.77424 | |||
7 | 0.22178 | 1.99602 | |||
8 | 0.22178 | 1.10890 | |||
9 | 0.22178 | 0.88712 | |||
10 | 0.44356 | 0.88712 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, T.; Xu, L.; Wang, W. Influence of Upstream Disturbances on the Vortex Structure of Francis Turbine Based on the Criteria of Identification of Various Vortexes. Energies 2021, 14, 7626. https://doi.org/10.3390/en14227626
Guo T, Xu L, Wang W. Influence of Upstream Disturbances on the Vortex Structure of Francis Turbine Based on the Criteria of Identification of Various Vortexes. Energies. 2021; 14(22):7626. https://doi.org/10.3390/en14227626
Chicago/Turabian StyleGuo, Tao, Lihui Xu, and Wenquan Wang. 2021. "Influence of Upstream Disturbances on the Vortex Structure of Francis Turbine Based on the Criteria of Identification of Various Vortexes" Energies 14, no. 22: 7626. https://doi.org/10.3390/en14227626
APA StyleGuo, T., Xu, L., & Wang, W. (2021). Influence of Upstream Disturbances on the Vortex Structure of Francis Turbine Based on the Criteria of Identification of Various Vortexes. Energies, 14(22), 7626. https://doi.org/10.3390/en14227626