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Abstract: A large-scale power system breakdown in the United Kingdom caused blackouts in several
important cities, losing about 3.2 percent of the load and affecting nearly 1 million power users on
9 August 2019. On the basis of the accident investigation report provided by the UK National Grid,
the specific reasons for the sub-synchronous oscillation of Hornsea wind farm were analyzed. The
Hornsea wind power system model was established by MATLAB simulation software to reproduce
the accident. To solve this problem, based on the positive and negative sequence decomposition,
the control strategy of grid-side converter of doubly-fed induction generator is improved to control
the positive sequence voltage of the generator terminal, which can quickly recover the voltage
by compensating the reactive power at the grid side. Consequently, the influence of the fault is
weakened on the Hornsea wind farm system, and the sub-synchronous oscillation of the system
is suppressed. The simulation results verify the effectiveness of the proposed control strategy in
suppressing the sub-synchronous oscillation of weak AC wind power system after being applied to
doubly-fed induction generator, which serves as a reference for studying similar problems of offshore
wind power.

Keywords: sub-synchronous oscillations; Hornsea wind farm; grid-side converter; asymmetric fault;
positive sequence voltage

1. Introduction

On 9 August 2019, a large-scale blackout occurred in the UK, in which many high-
power units were disconnected at the same time. This blackout affected nearly 1 million
people. On 6 September 2019, the UK official issued the final investigation reports, sorted
out the development process of the accident, analyzed and reflected on the causes of the
accident [1–3].

Literature [4] proposes to improve the rapidity of load cutting control in view of the in-
dependent and concurrent multiple events in the British blackout accident. Literature [5–7]
points out that a large number of new energy units replace the synchronous machines,
which reduces the immunity of the system, worsens the frequency response characteristics
of the system, and induces the Hornsea wind farm accident. Sub-synchronous oscillation ac-
cident is likely to cause large-scale off-grid of wind turbines and equipment damage, which
will have a bad impact on the system stability. Considering that similar lightning strikes
frequently occur at the same time of year, and there are many grid-connected points similar
to the Hornsea wind farm, therefore, the reasons for the unexpected sub-synchronous
oscillation in Hornsea wind farm deserves further study. Literature [8] discusses and
considers its oscillation process and analyzes the remaining problems of this oscillation
event. However, due to the lack of real-time data, especially the insufficient recordings
before and after the oscillation, the subsequent analysis of the oscillation is more difficult.
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Previous studies on the accident were based on the reports given by the UK National
Grid, and did not put forward effective and feasible solutions. Thus, the Hornsea wind
power system model simulation is built in MATLAB/Simulink software, reproducing the
whole sub-synchronous oscillation accident in this paper. It provides a research basis for
improving its control strategy to suppress the sub-synchronous oscillation accident.

At present, the methods to suppress sub-synchronous oscillation of the Hornsea wind
power system are mainly divided into three categories: optimizing system parameters,
adding sub-synchronous suppression equipment, and installing additional damper con-
troller [9–11]. The optimization of system parameters can be realized by changing the
system operation state and optimizing the control of the rotor side converter and grid-side
converter. In this way, the logic is simple and easy to operate. As the mainstream model
in wind farms [12,13], the ability of DFIG to suppress the sub-synchronous oscillation is
concerned by many experts and scholars at home and abroad [14–19]. In reference [20], the
reactive power output capability of the DFIG stator side is deeply excavated and utilized,
which improves the flexibility of the reactive power and voltage regulation, but sacrifices
its maximum wind energy tracking capability, and reduces the utilization rate of wind
energy. Previous studies have shown that the suppression of sub-synchronous oscillation
can be achieved by controlling the output of reactive power from the grid-side converter
to the power grid, which is easier and more reliable than controlling the motor to output
reactive power [21]. Therefore, this paper makes full use of the reactive power adjustment
ability of the grid-side converter to quickly recover the grid voltage, weaken the influence
of system failure on the Hornsea wind farm, and suppress the sub-synchronous oscillation
phenomenon.

Since the sub-synchronous oscillation event of the Hornsea wind farm is caused by the
asymmetric drop fault of power grid voltage, there are many asymmetric components and
sub-synchronous components in the system. Hence, it reduces the system control accuracy,
making it more difficult to suppress the sub-synchronous oscillation and increasing the
dynamic coupling between the equipment and the power grid [22–26]. If DFIG control
systems do not consider the voltage unbalance, the stator currents can become highly
unbalanced even with the small voltage unbalance. The unbalanced currents create unequal
heating on the stator windings and oscillations of torque and output power. Control and
operation of DFIG systems during network unbalance have been studied in [27,28]. They
aim to control the negative sequence current for eliminating the torque and/or power
fluctuations; however, contributing to network support is not considered, which is very
important [29]. Therefore, it is urgent to explore the voltage compensation capability of
the Hornsea wind power system during asymmetric faults to support the recovery of
the grid voltage. In reference [30], the current loop control strategy of the doubly-fed
induction generator is changed based on positive and negative sequence decomposition to
deal with unbalanced network voltage conditions and improve system stability. However,
there are problems in the parameter coordination of positive and negative sequence PI
regulators in practical application. Literature [31] points out that when asymmetric faults
occur, the asymmetric faults can be simplified to symmetric faults by simply compensating
the positive sequence voltage to the required reference voltage value, which simplifies the
control strategy of the system.

Based on the above analysis, combined with the idea of positive and negative sequence
decomposition to solve the sub-synchronous oscillation accident caused by an asymmetric
fault in the Hornsea wind farm, the control of the grid-side converter is improved. While
maintaining the stability of the DC bus voltage, the control of the positive sequence voltage
of the generator terminal is increased, the reactive power on the grid side is compensated to
recover the voltage quickly, the influence of the system fault on the Hornsea wind farm is
weakened, and the sub-synchronous oscillation of the system is suppressed. The simulation
model of the Hornsea wind power system is constructed by using MATLAB software to
reproduce the accident and verify the effectiveness of the proposed strategy.
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2. Introduction of Hornsea Wind Farm Accident
2.1. Hornsea Wind Farm

The geographical location of Hornsea offshore wind farm is shown in Figure 1 [2],
which is about 120 km from the Yorkshire coast.
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Figure 1. The location of the Hornsea wind farm.

As shown in Figure 2 [2], the wind farm is divided into three parts: Hornsea 1A,
Hornsea 1B, and Hornsea 1C. Each section of the wind farm, with a total installed capacity
of about 400 MW, is connected to its own HVAC Collector Substation, and then to a HVAC
Reactive Compensation Station located offshore before connecting into an Onshore HVAC
Substation, and finally to the UK National Grid substation. Before the blackout, the actual
output of Hornsea wind farm was 799 MW; Hornsea 1B is operating at 400 MW (maximum
capacity for that unit).
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Figure 2. The basic layout description of the Hornsea wind farm.

2.2. Development of Accidents

According to the UK official reports, this paper combs the development of the large-
scale disconnection accident at Hornsea wind farm.

The investigation found that about 10 min before the accident, there had been a
similar oscillation phenomenon at the Hornsea wind farm. The voltage of the 400 kV high
bus voltage of the wind farm dropped 2%, but it did not cause the disconnection of the
wind turbines. Figure 3 shows the response of 400 kV bus voltage and reactive power
compensation device at that time [2].

Following the abovementioned, about ten minutes later, lightning caused single-phase
grounding fault on the line, and the Hornsea wind farm oscillated again and caused large-
scale off-grid of wind turbines. Figure 4 depicts the response of Hornsea wind farm during
the accident [2].
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Figure 4. Development of the accident.

On 9 August 2019 at 16:52, an unbalanced voltage dip due to an external event
occurred at the interface point where Hornsea wind farm connects to National Grid’s 400 kV
transmission system. Initially, the offshore wind farm responded as expected by injecting
reactive power into the grid thereby restoring the voltage back to nominal. However, in the
following few hundred milliseconds, as the wind farm’s active power reduced to cope with
the voltage dip and the reactive power balance in the wind farm changed, the majority of
the wind turbines in the wind farm were disconnected by automatic protection systems.
The de-load was caused by an unexpected wind farm control system response, due to an
insufficiently damped electrical resonance in the sub-synchronous frequency range, which
was triggered by the event.

From 16:52:33:490 to 16:52:33:728, the sub-synchronous oscillation of the system lasted
about 238 ms and passed through about two cycles. The duration of a single oscillation
cycle was about 119 ms and the oscillation frequency was about 8.4 Hz.

2.3. Causes of the Accident

For the sub-synchronous oscillation event caused by lightning strike, Hornsea wind
farm operator Orsted pointed out that the reason is insufficient damping in the sub-
synchronous oscillation frequency range. After being struck by lightning, the equivalent
grid strength at the grid-connected point is weak, which causes the oscillation of the
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reactive power control system. As a result, the wind power gathering station voltage drops
sharply, resulting in all wind turbine generators on Hornsea 1B and Hornsea 1C reducing
to 0 MW as a result of overcurrent protection in the generators [2,8].

The accident was fundamentally caused by two reasons. On the one hand, the Hornsea
offshore wind farm is connected to the UK main power grid through a long distance
submarine cable of 120 km. With the increase of the length of high-voltage AC submarine
cable, the equivalent grid strength of the grid-connected point of the offshore wind farm
weakens, so the support effect of the AC grid on the voltage at the grid-connected point of
the Hornsea wind farm decreases. On the other hand, Hornsea wind farm is a long-distance
offshore wind power system. In order to compensate the capacitive current of the cable and
limit the power frequency overvoltage, Hornsea wind farm uses reactive compensation
devices, such as static var compensator (SVC), to improve the transmission capacity of
lines and enhance the transient stability of the system. However, due to its unreasonable
control mode, the response of SVC has hysteresis, the peaks and valleys of the reactive
power output curve are nearly coincident with the over-surge and drop points of the bus
voltage, and the regulation of reactive power is in the same direction as the voltage change.
Under the combined action of these two factors, sub-synchronous oscillation occurred in
Hornsea wind power system.

3. Solutions

When the Hornsea wind power system suffered from asymmetric faults, which
caused sub-synchronous oscillation, there were many asymmetric components and sub-
synchronous components in the system. As a result, the control accuracy of the system
was reduced, which made the SVC unable to provide accurate voltage compensation to
support the rapid recovery of the system to a stable state.

Generally speaking, the control goal of GSC is to maintain the stability of DC bus
voltage by controlling the active component of current, and the reactive component of
current determines the power factor of GSC. In general, the given value of the reactive
power is 0. This paper retains the DC bus voltage control under the traditional control.
On this basis, the control of reactive current is improved based on the idea of positive and
negative sequence decomposition to compensate the reactive power at the grid side, make
the voltage recover quickly, and suppress the sub-synchronous oscillation of the system.

If phase A is the fault phase and its voltage drops to k times of the normal voltage, the
three-phase voltage after the fault is shown in Equation (1):

u′A =
√

2kU cos(ωt)
u′B =

√
2U cos(ωt− 120

◦
)

u′C =
√

2U cos(ωt− 240
◦
)

(1)

The positive and negative sequence voltage components are shown in Equation (2):{
u′+ = k+2

3

√
2U cos(ωt)

u′− = k−1
3

√
2U cos(ωt)

(2)

The amplitude of positive sequence voltage u′+ is (k + 2)/(k − 1) times of negative
sequence voltage u′−. Considering that k value is generally 0.2–1, the amplitude of u′+ is
generally more than 3 times of u′− value.

The compensation degree of positive and negative sequence voltage are defined as:{
∆u+ = u′′+ − u′+
∆u− = u′′− − u′−

(3)

In the formula, u′′+ is the compensated positive sequence voltage; u′′− is the compen-
sated negative sequence voltage.
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From the above analysis, it can be seen that ∆u− is negligible compared with ∆u+, so
this paper only considers the compensation of positive sequence voltage.

It is known that the positive sequence component of fault voltage is shown in
Equation (4): 

u′+A = k+2
3

√
2U cos(ωt)

u′+B = k+2
3

√
2U cos(ωt− 120

◦
)

u′+C = k+2
3

√
2U cos(ωt− 240

◦
)

(4)

The negative sequence component of fault voltage is as follows:
u′−A = k−1

3

√
2U cos(ωt)

u′−B = k−1
3

√
2U cos(ωt + 120

◦
)

u′−C = k−1
3

√
2U cos(ωt + 240

◦
)

(5)

If the positive sequence voltage after compensation is as shown in Equation (6):
u′′+A = p · uA = p

√
2U cos(ωt)

u′′+B = p · uB = p
√

2U cos(ωt− 120
◦
)

u′′+C = p · uC = p
√

2U cos(ωt− 240
◦
)

(6)

In the formula, p is the recovery factor of the positive sequence voltage.
Without changing the negative sequence voltage, the compensated voltage is as shown

in Equation (7): 
u′′A = u′′+A + u′′−A = (p + k−1

3 )uA
u′′B = α2u′′+B + αu′′−B = (α2 p + k−1

3 )uB
u′′C = αu′′+C + α2u′′−C = (αp + k−1

3 )uC

(7)

In the formula, α is 120◦ rotation factor.
The magnitude relationship between the compensated voltage and the normal voltage

can be obtained as shown in Equation (8):
u′′A = 3p+k−1

3 uA

u′′B =

√
27p2+(2k−3p−2)2

6 uB

u′′C =

√
27p2+(2k−3p−2)2

6 uC

(8)

To restore the failure phase to its normal value, the following should be made:

3p + k− 1
3

= 1 (9)

On this basis, the maximum voltage of the non-fault phase is limited to 120% of the
normal value, that is: √

27p2 + (2k− 3p− 2)2

6
= 120% (10)

p1 and p2 are obtained by substituting k into Equations (9) and (10), respectively. The
final value of p is shown in Equation (11):

p = min{p1, p2} (11)

The reference value of the positive sequence component of the terminal voltage, puabc*,
is derived where uabc* is the rated positive sequence component of the terminal voltage.
Subtract the puabc* from the actual positive sequence voltage uabc

+ and obtain the reference
value of the reactive current of the grid-side converter through the PI regulator.



Energies 2021, 14, 7685 7 of 13

The improved control strategy of the grid-side converter is shown in Figure 5. The
reference value of the reactive current is controlled to dynamically adjust the reactive
power output to support the recovery of the grid voltage. The compensation problem
in the case of asymmetric fault is simplified as compensation for the positive sequence
component of voltage, which reduces the complexity of the system, improves the system
stability, and suppresses the sub-synchronous oscillation.
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erence value of the reactive current of the grid-side converter through the PI regulator. 
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4. Verification Based on Simulation

In the MATLAB/Simulink simulation platform, the Hornsea wind power system
model is constructed, and the effectiveness of the proposed strategy is verified.

4.1. Simulation Model

MATLAB/Simulink is widely used in complex simulation and design of control theory
and digital signal processing because of its wide adaptability, clear structure and flow, fine
simulation, being close to reality, high efficiency, and flexibility. According to the intro-
duction of Hornsea wind farm given in the reports [1–3], this paper establishes a 1.2 GW
Hornsea wind farm system simulation model on MATLAB/Simulink simulation platform,
as shown in Figure 6. The Wind farm is divided into three parts: Hornsea 1A, Hornsea
1B, and Hornsea 1C, each with a capacity of 400 MW. Each unit contains 267 doubly-fed
induction generators with a rated voltage of 0.69 kV and rated power of 1.5 MW. The wind
farm transmits power to the power grid through 120 km high voltage AC submarine cable,
with cable resistance of 0.0205 (Ω/km) and reactance of 0.0798 (Ω/km). In this simulation
model, the short circuit ratio of the grid-connected point of the wind farm is about 2.8,
which belongs to the weak AC system. The intermediate node of the submarine cable is
equipped with TSC-TCR type SVC, which consists of a 327 Mvar thyristor control reactor
and three 282 Mvar thyristor switched capacitors. It uses constant voltage control and has
a voltage PI controller with kp_svc of 5 and ki_svc of 800.
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The main control parameters of the simulation model are shown in Table 1.

Table 1. Control parameters of wind power system.

System
Components Parameters Value

Double-Fed
Induction Generator

Rated power Pe/(MW) 1.5
Rated voltage Ue/(V) 690

Stator resistance Rs/(pu) 0.001
Stator leakage inductance Lsσ/(pu) 0.8

Rotor resistance Rr/(pu) 0.01
Rotor leakage inductance Lrσ/(pu) 0.1
Magnetizing inductance Lm/(pu) 2.9

DC bus voltage Vdc/(V) 1150

RSC
Proportional coefficient of current regulator Kp_r 0.55
Integration coefficient of current regulator Ki_r 8

GSC

Proportional coefficient of current regulator Kp_g 0.9
Integration coefficient of current regulator Ki_g 5

Proportional coefficient of DC bus voltage regulator Kp_v 5
Integration coefficient of DC bus voltage regulator Ki_v 300

Transformer

Capacity of main transformer/(MVA) 1200
Short circuit impedance of main transformer/(pu) 0.068

Capacity of box-type transformer/(MVA) 400
Short circuit impedance of box-type transformer/(pu) 0.05

4.2. Recurrence of Accident

Based on the Hornsea wind power system model, the accident processes shown in
Figures 3 and 4 are reproduced, and the simulation results are shown in Figures 7 and 8,
respectively.

For comparison, considering that the voltage sag of the Hornsea wind farm that
caused the blackout accident started at 16:52:33:490, a single-phase voltage sag fault was
set at time node A (3.490 s) in the simulation.

It can be found by comparing Figures 4 and 8:

1. During the simulation time of 3.490–3.590 s, within the AB interval, the maximum
drop of the 35 kV bus voltage of the Hornsea wind farm is approximately 4%. This cor-
responds to a 5% drop in the voltage of the 35 kV bus within 16:52:33:490–16:52:33:600.

2. During the simulation time of 3.590–3.695 s, within the BC interval, the voltage
of the 35 kV bus of the wind farm drops nearly 35%, and the wind turbine enters
the low voltage traversal mode. The active power output of Hornsea 1B drops to
about 200 MW and then recovers. It corresponds to that at 16:52:33:600–16:52:33:728,
when the active power output of the wind turbine was reduced by about half and
then restored.

3. During the simulation time of 3.695–3.715 s, within the CD interval, all wind turbine
generators on Hornsea 1B reduce to 0 MW as a result of overcurrent protection in the
generators. This corresponds to the disconnection of the wind turbines at 16:52:33:728.

In the simulation, before the wind turbines are disconnected from the grid, the system
oscillates roughly for two cycles, the whole duration is about 205 ms, the single oscillation
period is about 102.5 ms, and the oscillation frequency is about 9.8 Hz.

The overall reproduction results are basically consistent with the Hornsea wind farm
accident phenomenon in the UK. Thus, the accuracy of the wind power system simulation
model has been verified.
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4.3. Verify the Effectiveness of the Proposed Strategy

Based on the accident recurrence model of the Hornsea wind farm, the control strategy
proposed in this paper is applied to verify its effectiveness. The simulation results are
shown in Figure 9.
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It can be seen from Figure 9 that after using the strategy proposed in this paper, the
stability of the system is improved and the sub-synchronous oscillation is well suppressed.
Compared with the simulation results represented by Figures 8 and 9, the effectiveness of
the strategy is further analyzed from the following three aspects.

1. Terminal voltage of wind turbines

In the simulation model corresponding to Figure 8, the grid-side converter uses the
original control, that is, only maintains the stability of DC bus voltage of the DFIG. The
terminal voltage of each wind turbine is shown in Figure 10.
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Figure 10. The terminal voltage of each wind turbine.

It can be seen that the terminal voltage of Hornsea 1A has not been stabilized in a
short time after the Hornsea 1B and 1C are disconnected.

Under the control strategy proposed in this paper, the terminal voltage of each wind
turbine is shown in Figure 11.
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Figure 11. The terminal voltage of each wind turbine under the improved control.

Combined with Figures 10 and 11, it can be seen that the improved control strategy
can effectively promote the stabilization of wind turbine terminal voltage. Under the
previous control, the terminal voltage of the wind turbine generator drops to 67.8% of the
initial stable value at its lowest point. Under the improved control strategy, the terminal
voltage drops to 93.7% at its lowest point. The voltage oscillation amplitude is reduced
significantly, which improves the system stability and provides a more stable grid voltage
for wind turbines.

2. Active power output of Hornsea 1B

The active power output curves of Hornsea 1B are shown in Figure 12. In the off-grid
accident of Hornsea wind farm, the active power output of Hornsea 1B dropped from
400 MW (1 pu) to about 200 MW (0.5 pu) and then recovered, but eventually, all wind
turbine generators on Hornsea 1B reduced to 0 MW as a result of overcurrent protection in
the generators.
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After using the strategy proposed in this paper, there is no disconnection of wind
turbines, and the output power curve is stable with a small fluctuation range. The active
power output of Hornsea 1B only drops to 369.6 MW at the lowest point.

3. Reactive power output of Hornsea 1B

It can be seen from Figure 13 that after the grid failure, the DFIG under the previous
control cannot inject suitable reactive power into the grid to stabilize the grid voltage, and
its reactive power output oscillates greatly, affecting the recovery of system voltage.
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5. Conclusions

This study proposed the control strategy to avoid sub-synchronous oscillation accident
by considering a case study of the Hornsea wind power system accidental incident. The
paper concluded that:

1. The accident response of a sub-synchronous oscillation event in the Hornsea wind
power system is mimicked in MATLAB simulation according to the information pro-
vided in British official reports. It is verified that the simulation results are consistent
with the actual accident reaction results. It provides a good basis for analyzing the
causes of the accident and putting forward specific and feasible solutions.

2. The control of the grid-side converter is improved to deal with the sub-synchronous
oscillation event caused by asymmetric voltage drop fault in the Hornsea wind power
system. It was found that while maintaining the stability of the DC bus voltage,
increasing the control of the positive sequence component of terminal voltage and
compensating the reactive power will recover the voltage quickly.

3. The validity of the proposed control strategy to suppress the sub-synchronous os-
cillation of offshore wind power system is verified by simulation. The simulation
results show that the strategy can control the fast and appropriate output of reactive
power from the DFIG to the power grid, reduce the voltage oscillation amplitude of
the power grid, weaken the influence of system failure on the Hornsea wind farm,
smooth the power output of the DFIG, and suppress the sub-synchronous oscillation
of the Hornsea wind power system.
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