A Rapid Compression Machine Study of 2-Phenylethanol Autoignition at Low-To-Intermediate Temperatures
Abstract
:1. Introduction
2. Experimental and Computational Methodologies
2.1. Experimental Specifications
2.2. Computational Specifications
2.2.1. Ignition Delay Time Simulations and TC Determination
2.2.2. Sensitivity Analyses
3. Results and Discussion
3.1. Comparison with Literature Data
3.2. Reaction Pathway Analyses
3.3. RCM Ignition Delay Times of 2-PE/Air Mixtures
3.4. Chemical Kinetic Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
2-PE | 2-phenylethanol |
CA50 | crank angle at 50% burn |
CONV | constant volume |
EOC | end of compression |
IDT | ignition delay time |
reaction rate coefficient | |
PC | pressure at the end of compression |
P0 | initial pressure |
RCM | rapid compression machine |
RON | research octane number |
S | octane sensitivity |
SI | spark ignition |
ST | shock tube |
sensitivity coefficient for total ignition delay time | |
TC | temperature at the end of compression |
T0 | initial temperature |
ϕ | equivalence ratio |
γ | specific heat ratio |
τ | total ignition delay time |
References
- Wang, Z.; Liu, H.; Reitz, R.D. Knocking combustion in spark-ignition engines. Prog. Energy Combust. Sci. 2017, 61, 78–112. [Google Scholar] [CrossRef]
- Zhou, L.; Boot, M.D.; De Goey, L.P.H. The effect of the position of oxygen group to the aromatic ring to emission performance in a heavy-duty diesel engine. SAE Int. J. Fuels Lubr. 2012, 5, 1216–1239. [Google Scholar] [CrossRef]
- Szybist, J.P.; Splitter, D.A. Pressure and temperature effects on fuels with varying octane sensitivity at high load in SI engines. Combust. Flame 2017, 177, 49–66. [Google Scholar] [CrossRef]
- Emel’yanenko, V.N.; Dabrowska, A.; Verevkin, S.P.; Hertel, M.O.; Scheuren, H.; Sommer, K. Vapor pressures, enthalpies of vaporization, and limiting activity coefficients in water at 100 °C of 2-furanaldehyde, benzaldehyde, phenylethanal, and 2-phenylethanol. J. Chem. Eng. Data 2007, 52, 468–471. [Google Scholar] [CrossRef]
- McCormick, R.L.; Ratcliff, M.A.; Christensen, E.; Fouts, L.; Luecke, J.; Chupka, G.M.; Yanowitz, J.; Tian, M.; Boot, M. Properties of oxygenates found in upgraded biomass pyrolysis oil as components of spark and compression ignition engine fuels. Energy Fuels 2015, 29, 2453–2461. [Google Scholar] [CrossRef] [Green Version]
- Atsumi, S.; Hanai, T.; Liao, J.C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 2008, 451, 86–89. [Google Scholar] [CrossRef] [PubMed]
- Ratcliff, M.A.; Burton, J.; Sindler, P.; Christensen, E.; Fouts, L.; Chupka, G.M.; McCormick, R.L. Knock resistance and fine particle emissions for several biomass-derived oxygenates in a direct-injection spark-ignition engine. SAE Int. J. Fuels Lubr. 2016, 9, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Pan, M.; Wei, H.; Feng, D.; Pan, J.; Huang, R.; Liao, J. Experimental study on combustion characteristics and emission performance of 2-phenylethanol addition in a downsized gasoline engine. Energy 2018, 163, 894–904. [Google Scholar] [CrossRef]
- Sakai, Y.; Ando, H.; Oguchi, T.; Murakami, Y. Thermal decomposition of 2-phenylethanol: A computational study on mechanism. Chem. Phys. Lett. 2013, 556, 29–34. [Google Scholar] [CrossRef]
- Shankar, V.S.B.; Al-Abbad, M.; El-Rachidi, M.; Mohamed, S.Y.; Singh, E.; Wang, Z.; Farooq, A.; Sarathy, S.M. Antiknock quality and ignition kinetics of 2-phenylethanol, a novel lignocellulosic octane booster. Proc. Combust. Inst. 2017, 36, 3515–3522. [Google Scholar] [CrossRef]
- Otten, A.; Wooten, M.; Medrano, A.; Fathi, Y.; Meloni, G. Investigation of oxidation reaction products of 2-phenylethanol using synchrotron photoionization. J. Phys. Chem. A 2018, 122, 6789–6798. [Google Scholar] [CrossRef] [PubMed]
- Mittal, G.; Sung, C.J. A rapid compression machine for chemical kinetics studies at elevated pressures and temperatures. Combust. Sci. Technol. 2007, 179, 497–530. [Google Scholar] [CrossRef]
- Das, A.K.; Sung, C.J.; Zhang, Y.; Mittal, G. Ignition delay study of moist hydrogen/oxidizer mixtures using a rapid compression machine. Int. J. Hydrog. Energy 2012, 37, 6901–6911. [Google Scholar] [CrossRef]
- Weber, B.W.; Sung, C.J. UConnRCMPy: Python-Based Data Analysis for Rapid Compression Machines. In Proceedings of the 15th Python in Science Conference, Austin, TX, USA, 10–16 July 2016; pp. 36–44. [Google Scholar]
- Lee, D.; Hochgreb, S. Rapid compression machines: Heat transfer and suppression of corner vortex. Combust. Flame 1998, 114, 531–545. [Google Scholar] [CrossRef]
- Goodwin, D.; Moffat, H.K.; Speth, R.L. Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes; Version 2.3.0; Zenodo: Geneva, Switzerland, 2017; Available online: https://cantera.org/ (accessed on 18 January 2017).
- Sung, C.J.; Curran, H.J. Using rapid compression machines for chemical kinetics studies. Prog. Energy Combust. Sci. 2014, 44, 1–18. [Google Scholar] [CrossRef]
- Dames, E.E.; Rosen, A.S.; Weber, B.W.; Gao, C.W.; Sung, C.J.; Green, W.H. A detailed combined experimental and theoretical study on dimethyl ether/propane blended oxidation. Combust. Flame 2016, 168, 310–330. [Google Scholar] [CrossRef]
- Darcy, D.; Nakamura, H.; Tobin, C.J.; Mehl, M.; Metcalfe, W.K.; Pitz, W.J.; Westbrook, C.K.; Curran, H.J. A High-Pressure Rapid Compression Machine Study of n-Propylbenzene Ignition. Combust. Flame 2014, 161, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Fang, R.; Kukkadapu, G.; Wang, M.; Wagnon, S.W.; Zhang, K.; Mehl, M.; Westbrook, C.K.; Pitz, W.J.; Sung, C.J. Fuel molecular structure effect on autoignition of highly branched iso-alkanes at low-to-intermediate temperatures: Iso-octane versus iso-dodecane. Combust. Flame 2020, 214, 152–166. [Google Scholar] [CrossRef]
- Gao, C.W.; Allen, J.W.; Green, W.H.; West, R.H. Reaction Mechanism Generator: Automatic construction of chemical kinetic mechanisms. Comput. Phys. Commun. 2016, 203, 212–225. [Google Scholar] [CrossRef] [Green Version]
ϕ | PC (bar) | TC (K) | Molar Percent (%) | ||
---|---|---|---|---|---|
2-PE | O2 | N2 | |||
0.35 | 20, 30, 40 | 886–992 | 0.7299 | 20.8551 | 78.4150 |
0.5 | 20, 30, 40 | 838–970 | 1.0395 | 20.7900 | 78.1705 |
1.0 | 10, 20, 30, 40 | 813–937 | 2.0576 | 20.5761 | 77.3663 |
1.5 | 20, 30 | 829–893 | 3.0550 | 20.3666 | 76.5784 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, R.; Sung, C.-J. A Rapid Compression Machine Study of 2-Phenylethanol Autoignition at Low-To-Intermediate Temperatures. Energies 2021, 14, 7708. https://doi.org/10.3390/en14227708
Fang R, Sung C-J. A Rapid Compression Machine Study of 2-Phenylethanol Autoignition at Low-To-Intermediate Temperatures. Energies. 2021; 14(22):7708. https://doi.org/10.3390/en14227708
Chicago/Turabian StyleFang, Ruozhou, and Chih-Jen Sung. 2021. "A Rapid Compression Machine Study of 2-Phenylethanol Autoignition at Low-To-Intermediate Temperatures" Energies 14, no. 22: 7708. https://doi.org/10.3390/en14227708
APA StyleFang, R., & Sung, C. -J. (2021). A Rapid Compression Machine Study of 2-Phenylethanol Autoignition at Low-To-Intermediate Temperatures. Energies, 14(22), 7708. https://doi.org/10.3390/en14227708