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Abstract: Turbine as a key power unit is vital to the novel supercritical carbon dioxide cycle
(sCO2-BC). At the same time, the turbine design and optimization process for the sCO2-BC is
complicated, and its relevant investigations are still absent in the literature due to the behavior
of supercritical fluid in the vicinity of the critical point. In this regard, the current study entails a
multifaceted approach for designing and optimizing a radial turbine system for an 8 MW sCO2

power cycle. Initially, a base design of the turbine is calculated utilizing an in-house radial turbine
design and analysis code (RTDC), where sharp variations in the properties of CO2 are implemented
by coupling the code with NIST’s Refprop. Later, 600 variants of the base geometry of the turbine are
constructed by changing the selected turbine design geometric parameters, i.e., shroud ratio ( rs4

r3
),

hub ratio ( rs4
r3
), speed ratio (νs) and inlet flow angle (α3) and are investigated numerically through

3D-RANS simulations. The generated CFD data is then used to train a deep neural network (DNN).
Finally, the trained DNN model is employed as a fitting function in the multi-objective genetic
algorithm (MOGA) to explore the optimized design parameters for the turbine’s rotor geometry.
Moreover, the off-design performance of the optimized turbine geometry is computed and reported
in the current study. Results suggest that the employed multifaceted approach reduces computational
time and resources significantly and is required to completely understand the effects of various
turbine design parameters on its performance and sizing. It is found that sCO2-turbine performance
parameters are most sensitive to the design parameter speed ratio (νs), followed by inlet flow angle
(α3), and are least receptive to shroud ratio ( rs4

r3
). The proposed turbine design methodology based

on the machine learning algorithm is effective and substantially reduces the computational cost of
the design and optimization phase and can be beneficial to achieve realistic and efficient design to
the turbine for sCO2-BC.

Keywords: turbine design; supercritical CO2; artificial neural network; optimization; multi-objective
genetic algorithm; machine learning

1. Introduction

In response to global warming caused in part by the presence of excessive greenhouse
gases in the environment, the world community decided to reduce greenhouse gas emis-
sions and contain the rise in global average temperatures within 2 oC (Paris Agreement
COP21) [1]. At the same time, 85% of the global energy production is based on thermal
power generation [2] that is considered a large contributor to greenhouse gas emissions.
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Consequently, since then, the last two-decade emphasis of the research in power generation
has shifted toward the assessment of highly efficient and greener power cycles. In this ref-
erence, the supercritical carbon dioxide Brayton cycle (sCO2 − BC) outstrips other formally
well-known power cycles (Brayton & Rankine cycles) by merging the benefits of both (it
can operate at high turbine inlet temperature and required compressor work is small) in a
single cycle [3]. The cycle utilizes swift variation in the thermos-physical properties of CO2
near the critical point to enhance the cycle’s thermal efficiency significantly. Apart from
its higher efficiency, the sCO2-BC is favorable when environmental factors, such as global
warming potential (GWP) and climate change, and economic factors are taken into consid-
eration. Furthermore, (sCO2) Brayton cycle has a simpler and compact cycle layout with no
requirement of the condenser and almost ten-times smaller turbomachinery in comparison
to the Rankine cycle [4]. The critical temperature (Tc = 31.10) of CO2 is nearly ambient that
allows its pairing with a wide range of heat sources. Moreover, it’s near-ambient critical
temperature comes with the luxury of heat rejection to near-ambient sinks.

The turbine is the crucial component in the sCO2 − BC, where supercritical carbon
dioxide expands to generate power output. Radial and axial turbines are both designed for
the supercritical carbon dioxide Brayton cycle; however, selecting the appropriate type is
usually established on the values of h and

.
m of the working fluid. Large axial turbines

demonstrate superior operation at high values of
.

m and lower h [5]. At the same time,
radial turbines are well fitted to accomplish high output over a broader range of off-design
circumstances. With reference to this, a study conducted by Sienicki et al. [6] provides a
guideline to selection type criteria for the sCO2 − BC. They recommended a radial type of
turbomachinery for power systems of ≤10 MW.

Turbine designs create a strong response to the overall performance. It is reported in
the literature [5] that a 2% rise of the performance of turbine results in a 1% increase in the
cycle’s overall performance. Similarly, Dostal [7] demonstrated that the overall efficiency
of sCO2 − BC can be enhanced by 2% through improved designs of its turbomachinery. At
the same time, only limited literature is on the turbine’s design of sCO2 − BC as a working
fluid owing to the design complexities brought by the swift variation in the properties
above the critical point.

Zhang et al. [8] studied sCO2 turbine systems computationally for a power out ranging
from 1.5 and 15 MW. Odabaee et al. [9] evaluated the validity of results for sCO2 turbine
by inserting properties of sCO2 through the equation of state and real gas property tables
(RGP). A 10 MW centrifugal turbine design and analysis process are described by Luo
et al. [10]. Kalra et al. [11] described the design approach for a sCO2 turbine rotor.

With the advancement of computer technology, CFD is still widely used, and hence
the data it generates can be used to train a data-based model, also known as a surrogate
model. Recent research has shown that machine learning algorithms can be used for
analysis of components [12–15]. For example, the artificial neural network can be utilized
for calculating off-design performance of various power cycle components, which is based
on the Levenberg–Marquardt algorithm was proposed and implemented in [13]. In another
study, Zang A. [16] used machined learning to optimize the centrifugal compressor. While
in another study, Omidi et al. optimized the centrifugal compressor by combining CFD
calculations with a genetic algorithm [17]. Neural network surrogate models were also
used in [18] to optimize the main design parameters of a radial turbine and showed high
accuracy in learning the nonlinear physical model objects. However, these models that learn
from data alone can be prone to errors in some predictions that require the knowledge of the
physics involved. To that end, in the current time frame, some researchers have remodeled
heat and mass transfer calculations utilizing machine learning techniques, with the aim of
obtaining a model that involves the physical mechanism. This is called physics-informed
machine learning [16]. Other surrogate models widely used in turbomachinery applications
are the response surface model (RSM), Support Vector Machine (SVM), and Kriging model.
However, in turbomachinery, these models are normally used for applications not related
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to off-design performance prediction, e.g., for equipment fault detection or diagnosis in the
case of SVM [19].

The review presented above suggests that literature lacks studies involving the de-
sign and optimization of the turbomachinery components for the sCO2-BC. At the same
time, the improvement in the turbomachinery design can substantially enhance the overall
performance of the sCO2-BC. The limited studies available in the literature [20] utilized
optimization techniques that involve gradient-free optimization methods. However, in-
stead of derivative-free optimization techniques, utilization of gradient-based optimization
methods permits considerably accurate results in an amount of time that is one order of
magnitude smaller than that of derivative-free optimization algorithms [21]. Concerning
this, neural networks are managed to develop surrogate models and surmount the draw-
back of derivative-free optimization techniques. Deep neural networks (DNNs) permit
approximated mathematical models of the nonlinear systems established on sample data.
The subsequent models can be appropriately utilized for optimizing problems offering
an inherently continuous and differentiable correlation function that makes available the
usage of analytical gradient methods for its optimization [22]. In this context, the current
study involves a deep neural network (DNN) in designing and optimizing the radial tur-
bine system for the sCO2-BC for the first time, to the author’s best knowledge. The adopted
approach is multifaceted and combines in-house turbine design and analysis code (TDAC),
computational fluid dynamics, deep neural network (DNN), and multi-objective genetic
algorithm. A base design for an 8 MWe, the turbine is constructed using in-house design
and an analysis code (TDAC). Later, 600 design combinations of the turbine were generated
and analyzed using 3D-RANS simulations by varying hub ratio, shroud ratio, specific
speed, and absolute inlet flow angle. The generated CFD data trains a machine learning
(ML) model based on the deep neural network (DNN). Later, the trained DNN is coupled
with the multi-objective genetic algorithm to optimize the selected design parameters.
Finally, the off-design performance of the optimized model is computed.

2. Methodology

The present study involves optimization of the radial turbine for an 8 MW sCO2-BC
turbine. The section gives a complete layout of the methodology adopted. A base design of
the turbine is computed using in-house radial turbine design and analysis code (RTDC), and
later geometry of the turbine is varied by changing the selected turbine design geometric
parameters, i.e., rs4

r3
, rs4

r3
, νs and α3 (Section 1). The range of these design parameters

is shown in Figure 1. Six hundred sets of turbine geometries are calculated using RDTC
(Section 3) and analyzed numerically through 3D-RANS simulations (Section 4). A machine
learning model based on the deep neural network (DNN) is trained using 600 data sets
(Supplementary Table S1). The trained DNN model is used as a fitting function in the
multi-objective genetic algorithm (MOGA) to explore the optimized design parameters for
the rotor geometry. Finally, the off-design performance of the optimized turbine geometry
is computed and reported. A flow chart of the methodology followed in the current study
is shown in Figure 1.
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3. Meanline Design Procedure

The Radial turbine system comprises three sub-modules as shown in Figure 2:

1. Volute (0–1): dispenses the flow evenly to each blade passage and converts pressure
head to velocity head to some extent.

2. Nozzle (1–2): converts pressure head to velocity head and aligns the flow with the
rotor at the required angle.

3. Rotor (3–4): the kinetic energy of the working fluid is transformed into mechani-
cal work.
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Figure 2. (a) Dimensions of the turbine, (b) velocity diagram at inlet, (c) velocity diagram at rotor
exist, and (d) h-s diagram.

3.1. Radial Turinbe Rotor Desing Code (RTRDC)

The current section explains the one-dimensional mean line design model on which
radial turbine rotor design code (RTRDC) is developed.

The base design for the turbine rotor is calculated applying a 1-D mean line design
approach [23,24] for the design conditions listed in Table 1. Mass flow rate of CO2 (

.
m),

exhaust gases temperature and pressure that will be used as inlet temperature (To1), and
inlet pressure of the turbine (Po1), using exit condition as the ambient condition, can be
calculated from the information in Table 1. With the above given known information,
the specific speed (NT

s ) of the turbine can be approximated using Equation (1). NT
s . The

thermophysical properties of CO2 [25,26] at all other points (1,2,3,4) are calculated using
REFPROP [27] by coupling it with the RTDC.

NT
s =

ω
√

Q4

(∆Hid)
0.75 (1)
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Table 1. Given and required conditions for the design of the Expander system.

Items Symbols Values

The mass flow rate of exhaust CO2
.

m 50 [kg s−1]
Temperate of exhaust gases To1 983 [K]
Expansion ratio Po1

P3
3

The desired value of total to static efficiency NGts 0.90
Desired turbine output power

.
W 8 [MW]

Rotational speed ω 40,000 [rpm]

The term Q4 =
.

mT
4 /ρT

04 is estimated by computing the ρT
04 based on the turbine

exit conditions. It is to be noted here that the turbine exit conditions in this study will
be ambient conditions. Value of ∆hT

0,idl is calculated through REFPROP by using the
available values, i.e., hT

04, sT
01 and pT

4 . The design process starts by providing the designs
specifications, i.e., static velocity ratio (vT

ts), desired total to static efficiency ( T
ts) and absolute

flow angle at the rotor’s inlet (αT
3 ). These specifications are described using relations given

in Equations (2)–(4), where the limits adopted for these design variables are provided in
Table 2.

vT
s = 0.737 N0.2

ts (2)

T
ts = 0.87− 1.07

(
NT

s − 0.55
)2
− 0.5

(
NT

s − 0.55
)3

(3)

Table 2. Mesh optimization study.
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R
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n

M1 25 35 20 45 25 70 11 45 318 5612 82.32
M2 35 40 25 55 35 80 15 65 672 9653 87.57
M3 40 50 30 70 40 90 19 85 1548 2578 91.31
M4 50 60 35 80 50 100 23 95 2347 3517 91.19

The discharge spouting velocity (CT
0s) is calculated using Equation (4), while the

rotor speed is assessed utilizing Equation (5). Conversely, the stagnation enthalpy (hT
04) is

calculated employing efficiency
CT

0s =
√

2∆Hidl (4)

UT
3 = vT

s CT
0s (5)

hT
04 = hT

01 − ∆hT
0,idl

T
ts (6)

Once the UT
3 is available, Equation (7) can be used to find the inlet rotor radius ( rT

3 ).
The value of PT

03 is calculated using Equation (8) [23]. It is to be noted here that the value
of ρT

01 can be calculated obtained as a function of TT
01 and ρT

01 utilizing REFPROP. Once the
values of CT

θ3, αT
3 , and UT

3 are available, the inlet velocity triangle is completed. Apart from
the number of blades (nT

b ), thickness of blade at inlet tT
b3 and outlet (tT

b4), rT
h4, and rT

s4 cane
be projected applying Equations (11)–(14).

rT
3 = UT

3 /ω (7)
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PT
03 = PT

01 −
ρT

01∆hT
0,idl
(
1− ηT

s
)

4
(8)

CT
θ3 =

UT
3 ηT

s

2vT
s

2 (9)

nT
b =

π

30

(
110− αT

3

)
tan αT

3 (10)

tT
b3 = 0.04 rt

3 (11)

tT
b4 = 0.02 rT

3 (12)

rT
h4 = 0.22 rT

3 (13)

rT
s4 = 0.7 rt

3 (14)

To calculate the inlet value of the passage width (bT
3 ), enthalpy (hT

3 ) is estimated via
already computed values of hT

03 and CT
3 Using Equation (15). Additionally, sT

03 is calculated
using REFPROP from the known values of PT

03 and hT
03. Now considering sT

03 = sT
3 , the

quantities pT
3 , TT

3 , ρT
3 and µT

3 can be calculated through REFPROP using know values of
hT

3 and sT
3 . Now, the value of the bT

3 can be estimated utilizing Equation (15).
At first, the value of ρT

4 is guessed and CT
m4 is estimated applying Equation (16).

considering the fact rt
4 =

(rT
sh4+rT

h4)
2 and bT

4 =
(
rT

sh4 − rT
h4
)
. Now hT

4 can be calculated using
Equation (17). using available values of hT

04 from Equation (6) and ρT
4 is adjusted applying

REFPROP as function of hT
4 and pT

4 adopting an iterative process. With corrected value of
ρT

4 , all remaining quantities can be estimated using REFPROP using know values of ρT
4 and

pT
4 . Once all above quantities are known, nozzle dimension, rT

2 can be calculated utilizing

Equation (18). [28], where the rT
1 is obtained using a ratio rT

1
rT

2
= 1.3 [24].

bT
3 =

.
mT

2 π rT
3 ρT

3 CT
m3

(15)

CT
m4 =

.
mT

2πrT
4 bT

4 ρT
4

(16)

hT
4 = hT

04 −
1
2

CT
m4. (17)

rT
2 = rT

3 + 2bT
3 cos αT

4 . (18)

3.2. Efficiency Correction

The rotor sizing computed in the previous step is built on an imagined value of the T
ts.

The value of T
ts is be corrected through an interactive process displayed in Figure 3, where

the corrected efficiency values ηcorrected,T
ts using estimated values of the total losses ∆hT

loss,
available in Equation (20). ∆hT

loss is the sum of passage losses (∆hT
passage), tip clearance losses

(∆hT
tip clearance), exit losses (∆hT

exit) and nozzle losses ∆hT
nozzle using information available in

Equations (21)–(33). Missing aspects on the loss model are variable in the authors earlier
work [29].

ηcorrected,T
ts =

∆hT
loss

∆hT
loss + ∆hT

actual
(19)

∆hT
loss = ∆hT

passage + ∆hT
tip clearance + ∆hT

exit + ∆hT
nozzle (20)

∆hT
passage = Kpassage


(

lT
hyd

dT
hyd

)
+ 0.68

1−
(

rT
4

rT
3

)2
 cosβT

4
bT

4
c

 0.5
(

W2,T
3 + W2,T

4

)
(21)
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where

lT
hyd =

π

4

[(
‡−

bT
3
2

)
+

(
rT

3 − rT
s4 −

bT
4
2

)]
(22)

dT
hyd =

1
2

( 4πrT
4 bT

3

2πrT
3 + nT

b bT
3

)
+

 2π
(

r2,T
s4 − r2,T

h4

)
π
(
rT

s5 − rT
h5

)
+ nT

b bT
4

 (23)

c =
‡

cos β
where tan β =

1
2

(
tan βT

3 + tan βT
4

)
(24)

∆hT
tip clearance =

U3,T
3 nT

b
8π

(
0.4 εT

x CT
x + 0.75εT

r CT
r − 0.3

√
εT

x εT
r CT

x CT
r

)
(25)

where

CT
x =

1−
(

rT
s4

rT
3

)
CT

m3bT
3

, CT
r =

(
rT

s4
rT

3

)
‡− bT

4
CT

m6rT
4 bT

3
(26)

εT
x = εT

r = 0.02
(

rT
s4 − rT

h4

)
(27)

∆hT
exit =

1
2

C2,T
4 (28)

∆hT
nozzle = 4 f T

nozzle C
lT
hyd,nozzle

dT
hyd,nozzle

(29)

where

ReT
nozzle =

UT
1 bT

3 ρT
1

µT
1

+
UT

2 bT
3 ρT

2
µT

1

2
(30)

f T
nozzle = 8


(

8
ReT

nozzle

)12

+


2.457 ln

 1(
7

ReT
nozzle

)0.9
+ 0.27 RR




16

+

[
37530

ReT
nozzle

]16


−1.5

1
12

(31)

lT
hyd,nozzle = rT

1 − rT
2 (32)

dT
hyd,nozzle =

1
2

8πrT
1 bT

3 cos
(
αT

1
)

4πrT
1 +

4πbT
3 rT

1
σ

+
8πrT

2 bT
3 cos

(
αT

2
)

4πr2 +
4πbT

3 rT
2

σ

 (33)

3.3. Nozzle Geometry

Because the flow is not supersonic at the blade trailing edge when the machine is
operating at the design point, the blade angle of the nozzle vane is set to be the same as the
rotor inlet absolute flow angle asa shown in Figure 4.

β1 = β2 = α3 (34)

The blade height at the inlet and outlet of the nozzle is assumed to be equal to the
rotor inlet blade height as given by Equation (35).

b1 = b2 = b3 (35)

Watanabe et al. [28] introduced a correlation to estimate a suitable distance for this
gap, as given by Equation (36)

∆rT = 2. b3 . cos α3 (36)
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Thus, the radius at the nozzle exit can be calculated from Equation (37)

rT
2 = rT

3 + ∆rT (37)

The tangential component of absolute velocity at nozzle outlet is defined by Equation (38)
given below.

Cθ2 = Cθ3
r3

r2
(38)

Meridional component of absolute velocity at nozzle outlet is computed using
Equation (39)

Cm2 =
Cθ2

tan α2
where α2 = α3 (39)

Once all parameters above are established, the absolute velocity at the nozzle outlet
could be computed using the equation below.

C2 =

√
(Cθ2)

2 + (Cm2)
2 (40)

Because the nozzle inlet conditions are unknown, an approximate equation suggested
by Augier [23] is used to estimate the meridional component of absolute velocity at the
nozzle inlet. The inlet absolute flow angle is assumed. Augier suggested that the ratio of
nozzle inlet to outlet radius lies between 1.1 and 1.7. Value is set to 1.2 of this case; thus,
using rT

1 = 1.2rT
2 , Cm1 is finalized using iterative method given by Equation (41).

Cm1 = Cm2 , r3
r2
→ Cθ1 = Cm1 tan α1→ C1 =

√
(Cθ1)

2 + (Cm1)
2

Now, H1 = H01 − 1
2 C2

1
Update meridional component of absolute velocity at nozzle inlet:

Cm1 =
.

m
2πr1b1ρ1

(41)

The updated Cm1 is used iteratively until the results converge.
The blade shape is computed using Equation (42)

x2 +
c− 2a

b
xy +

(c− 2a)2

4b2 y2 − cx− c2 − 4ac
4b

y = 0 (42)

This could be converted to a recursion equation

y =
x(c− x)

(c−2a)2

4b2 y + c−2a
b x− c2−4ac

4b

(43)
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The blade thickness distribution is adapted from a distribution used by Augier [23]
for return channel vanes, as shown in Nomenclature of a typical airfoil geometry, the
maximum blade thickness, tmax, and its location, d, are specified along with the leading
and trailing edge blade thicknesses. A “nose radius” is imposed at each end of the camber
line using Equation (45).

t = tre f +
[
tmax − tre f

]
ξe

where
tre f = t2 + [t3 − t2]

( x
d
)

ξ = x
d ; x ≤ d

ξ = c−x
c−d ; x > d

e =
√

0.4d
c
[
0.95

(
1− x

c
)
(1− ξ) + 0.05

]
(44)

Now the profiles coordinate of the profile could be computed using the following
equation.

x = xc ± 1
2 t sin χ

y = yc ∓ 1
2 t sin χ

(45)

The normalized airfoil geometry (Figure 5) can be used to define the nozzle blade by
determining the chord and the nozzle setting angle, γ3 given by Equation (46).

x′ = (x− c)sinγ3 + ycosγ3
y′ = r3 − (x− c)sinγ3 + ycosγ3

(46)

While corresponding polar coordinates are

r =
√

x′2 + y′2

tan θ = x′
y′

(47)
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4. CFD Model

The current problem is solved using the RANS equation and the Equations (48)–(50) [24,27]
using the commercial code ANSYS-CFX.

∇.ρV = 0 (48)

∇.(ρV⊗V) = −∇p +∇.τ (49)
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For turbulent flow, the stress tensor (τ) is defined in Equation (50).

τ = (µ + µt)

(
∇V + (∇V)T − 2

3
δ∇.V

)
= µ

(
∇V + (∇V)T − 2

3
δ∇.V

)
+∇.Π (50)

Geometrical Model and Mesh

ANSYS blade modeler is utilized to generate the 3D model of the turbine rotor and
nozzle guide vane (Figure 6). Later, the model is exported to ANSYS Turbo Grid, where
structured mesh of the rotor and nozzle guide vane was generated. The mesh of the
rotor and nozzle guide vane is show in Figure 6. Mesh in the boundary layer region was
generated using the guidelines that can be found in previous work of the authors [30,31].
To find the optimized mesh size and node distribution, four, namely M1, M2, M3, and M4,
generated details on which are listed in Table 2 and shown in Figure 6. The parameters,
i.e., efficiency value of the turbine (ηts), memory consumed, and computational time, were
used in the selection of optimized mesh for the current study. It is evident from the data
listed in Table 2 that Mesh M3 and M4 resulted in the same value of the ηts; however, the
computational time and memory used by the mesh M3 are substantially lower that M4. In
view of the above finding, mesh M4 is selected as an optimized mesh.

Energies 2021, 14, x FOR PEER REVIEW 13 of 28 
 

 

 
Figure 6. Cmputational geometry and mesh. 

5. Machine Learning Model 
In this section, the details of the developed machine learning model (ML) to be 

trained on the radial turbine design data are presented. 

5.1. Training Data Details 
As described in Section 1 (Methodology), data used to train the machine learning 

model is computed using 3D RANS simulations. The ML model opted for the current 
work is deep neural network (DNN) that is trained using data comprises 600 data sets. 
Each dataset consists of four input variables (ೞరయ , ೞరయ , 𝜈௦, 𝛼ଷ), and two output parameters 
(𝜂௧௦ and 𝑟ଷ), as displayed in Table 3. 

5.2. The Deep Neural Network 
A deep neural network (DNN) is developed for training the ML model, as the struc-

ture and hyperparameters of DNN are observed appropriate for problems identical to 
those studied in the current work [32]. 

  

Figure 6. Cmputational geometry and mesh.



Energies 2021, 14, 7807 13 of 27

5. Machine Learning Model

In this section, the details of the developed machine learning model (ML) to be trained
on the radial turbine design data are presented.

5.1. Training Data Details

As described in Section 1 (Methodology), data used to train the machine learning
model is computed using 3D RANS simulations. The ML model opted for the current work
is deep neural network (DNN) that is trained using data comprises 600 data sets. Each
dataset consists of four input variables ( rs4

r3
, rs4

r3
, νs, α3), and two output parameters (ηts

and r3), as displayed in Table 3.

5.2. The Deep Neural Network

A deep neural network (DNN) is developed for training the ML model, as the structure
and hyperparameters of DNN are observed appropriate for problems identical to those
studied in the current work [32].

Table 3. Details of the input and output variables.

Input Parameters Output Parameter
S. No. rs4/r3 rs4/r3 νs α3 ηts r3 [mm]

1 0.6 0.18 0.55 70 0.77 161.71
2 0.6 0.18 0.55 73 0.78 161.71
3 0.6 0.18 0.55 76 0.78 161.71
4 0.6 0.18 0.55 79 0.79 161.71
5 0.6 0.18 0.55 82 0.79 161.71
6 0.6 0.18 0.6 70 0.82 176.41
7 0.6 0.18 0.6 73 0.83 176.41
8 0.6 0.18 0.6 76 0.83 176.41
. . . . . . .
. . . . . . .
. . . . . . .

600 0.8 0.24 0.8 82 0.82 270.49

The composition of the DNN is to push the data back and forth iteratively, where
weights and biases are adjusted through some optimizing function, as shown in Figure 7a.
The figure explicates the construction of the DNN with an input, two hidden, and an
output layer. All the hyperparameters connected with the deep neural network (DNN),
i.e., number of hidden layers, neurons in each layer, activation function, and optimization
function), were finalized to obtain a minimum value of the root mean square (RSM) error.
Further details on the model can be found in the author’s previous work [33–35]. The
current DNN model is finalized with two hidden layers consisting of four and three
neurons in the first and second layers, respectively, with Levenberg–Marquardt (LM), as an
optimizing algorithm; Rectifier Linear Unit (ReLU) as an activation function for the input
and the two hidden layers, and sigmoid as an activation function for the output layer as
displayed in Figure 7.



Energies 2021, 14, 7807 14 of 27Energies 2021, 14, x FOR PEER REVIEW 15 of 28 
 

 

 
Figure 7. (a) Back propagation algorithm of DNN, (b) Graphic representation of DNN. 

 
Figure 8. Layout of the Levenberg–Marquardt (LM) optimizing function. 

6. Optimization of the Turbine Geometry 
The geometry of the turbine rotor is optimized by exploiting the trained machine 

learning model (Section 5) as a fitness function of a multi-objective genetic algorithm 
(MOGA). Four variables, i.e., ೞరయ , ೞరయ ,  𝜈௦  and  𝛼ଷ, are used as design parameters in the 

Figure 7. (a) Back propagation algorithm of DNN, (b) Graphic representation of DNN.

The input layer symbolizes the neuron with the normalized data, while the data from
ith layer to i + 1th move as described by Equation (51).

ai→i+1
q = fi

q

(
Ni

∑
p=1

wi
qpLi

p + bi
q

)
(51)

where the term q varies from 1 to Ni+1 The above equation 1 can be expressed in the vector
format as given by Equation (52).

ai+1 = fi
(

wiai − 1 + bi+1
)

(52)

DNN Optimization Methodology

Executing a deep neural network (DNN) learning activity is recognized as an optimizer
or optimization algorithm. Among several optimizers available for deep neural network,
Levenberg–Marquardt (LM) algorithm is utilized for the current work.

The learning process of LM algorithm is explained by Equation (53), and Figure 8.

w(i+1) = w(i) −
(

J(i)T .J(i)T + λiI
)−1

. 2J(i)T .e(i)) (53)

The quantity λ and J are the damping factor and Jacobian matrix in the above term.
The Jacobian matrix is characterized by Equation (54).

Ji,j =
∂ei
∂wj

for i = 1, . . . , m; and j = 1, . . . , n (54)
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6. Optimization of the Turbine Geometry

The geometry of the turbine rotor is optimized by exploiting the trained machine
learning model (Section 5) as a fitness function of a multi-objective genetic algorithm
(MOGA). Four variables, i.e., rs4

r3
, rs4

r3
, νs and α3, are used as design parameters in the

optimization process, while turbine efficiency and rotor radius are used objective function.
The limits of the design variables used for the turbine optimization study are shown in
Table 4, where turbine efficiency is set to maximize, and rotor radius is minimized.

Table 4. Adopted limits of the design variables.

Design Parameters Objective Function
rs4/r3 rs4/r3 νs α3 ηts r3

Lower limit 0.6 0.18 0.55 70
Maximize MinimizeUpper limit 0.8 0.24 0.8 82

The diagram of the approach chosen for the utilized optimization problem is demon-
strated in Figure 9. The process starts with an arbitrary initialization of a specified popu-
lation size of 100 sequences of the input parameters. The engendered population is then
analyzed by the fitness function (trained ML model) for the specified objective function
(rotor size and efficiency). Further aspects of the GA are available in the literature [36–38].
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7. Results

Figure 10 shows the sensitivity analysis of the turbine’s performance parameters to
the turbine’s design parameters. It is to be noted here that the length of the bar will show
the level of sensitivity independent of the negative or positive signs. Negative values only
show the inverse relationship between the performance parameters and design parameters.
Hence, it can be observed from the Figure that all turbine’s performance parameters shown
in Figure 10 (power, efficiency, various types of losses, rotor radius, and impellor length)
are most sensitive to the speed ratio (νs) followed by the inlet flow angle (α3). At the same
time, the turbine’s performance is found least sensitive to the turbine’s hub ratio.

As mentioned above, the data computed using the 3D-RANS simulations are used
to train the deep neural network (DNN). Various combinations of the hyperparameters
are used, and the combination corresponding to the maximum performance is finalized.
The Levenberg–Marquardt (LM) is finalized as an optimizer for DNN with two hidden
layers; the first consists of four neurons, and the second involves three neurons. Seventy
percent of the total data is used for the training, where 15% of data is utilized for testing
and validation purposes. It is to be noted here that 10-fold cross-validation is utilized while
training the deep neural network.
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Figure 10. Sensitivity analysis of turbine’s performance parameters to the design parameters.

Figure 11 illustrates the mean squared error (mse) plotted the number of occurrences
again out of entire data sets, i.e., 600. The data in the Figure reflect that training error is
almost negligible for the selected hyperparameters of DNN. Figure 12 shows R-values
for the validation, testing, and training data sets. It can be observed that R values for all
data are 0.99. This demonstrates that the trained model can predict 99% of the generated
data among all data sets. Simultaneously, the ability of the trained DNN to approximate
individual percentage variability for training, validation, and test data are almost identical,
reflecting the model is not overfitting the data.

Figure 13 shows the effect of the design parameter on the turbine performance param-
eters. Figure 13a shows that variation of turbines efficiency with the design parameters, i.e.,
rs4
r3

, rs4
r3

, νs and α3. Turbine efficiency increases substantially with the increase in the value
of speed ratio (νs) initially, attaining a maximum value and declining with further increases
in the value of νs. Conversely, the value of the turbine’s efficiency increases monotonically
with inlet flow angle and shroud ratio and decreases slightly with hub ratio.

Figure 13b shows the effect of rotor inlet radius with the design parameter used in
the current study. The only parameter that impacts the size of the rotor is the speed ratio.
The rotor inlet radius changes significantly with the speed ratio. At the same time, the
remaining three design parameters, namely, hub ratio, shroud ratio, and interflow angle, do
not impact the rotor’s size noticeably. Figure 13c shows that variation of turbines impeller’s
length with employed design parameter ( rs4

r3
, rs4

r3
, νs and α3). The length of the impeller

decreases markedly with the rise in the value of speed ratio (νs) primarily, achieving a
maximum value and falling with a further increase in the value of νs. Conversely, the value
of the turbine’s efficiency drops monotonically with inlet flow angle and shroud ratio. It
rises marginally with the increase in the value of the hub ratio.

Figure 13d shows that exit losses of the turbine drop noticeably and non-linearly with
speed ratio and hub ratio. However, it is to be noted here that exit losses are most sensitive
to speed ratio. At the same time, exit losses increase slightly with the hub ratio and inlet
flow angle to some extent. Figure 13e shows the effect of the design parameter on passage
losses. Passage losses drop sharply with the speed ratio, but no significant effect of other
design parameters is computed.
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Figure 13f shows the impact of the design parameter on the nozzle losses. The nozzle
losses decrease with the rise in the value of speed ratio (νs) primarily, achieving a minimum
value and then rising markedly with further increase in the value of νs. Conversely, the
value of the turbine’s nozzle losses does not change appreciably with inlet flow angle and
hub ratio, and shroud ratio. The total losses of the turbine are plotted in Figure 13 with
the design parameter ( rs4

r3
, rs4

r3
, νs and α3) used in the current study. Total losses are most

sensitive to the speed ratio. Total turbine losses drop sharply with νs until it reaches a
minimum value and then starts rising at high values of νs.

Figure 14 shows the response of the design parameters on the performance parameters
used for the design optimization of the turbine’s rotor. Figure 14 displays that the value of
the turbine’s efficiency increases with values of velocity ratio (νs) initially and then starts
dropping after reaching a maximum value for all values of inlet flow angle (α3). However,
the value of νs to which the peak value of the efficiency (η) corresponds (referred as νs,m)
changes with the change in the value of the inlet flow angle α3. The value of the νs,m
increases with the increase in the value of the inlet flow angle. Figure 14b shows the trends
of the rotor’s size (rotor’s inlet diameter) increasing significantly with the increase in the
value of the speed ratio but increasing marginally with the increase in the value of the α3.
The results suggest that the value of α3 has no significant effect on the rotor sizing.

Figure 14c shows the response surface of the turbine’s efficiency bounded by the
shroud ratio ( rs4

r3
) and hub ratio ( rh4

r3
). It can be observed that efficiency increases signifi-

cantly with the increase in the value of rh4
r3

for all values of rs4
r3

. Similarly, the value of the
turbine’s efficiency increases with the increase in the value of rs4

r3
for all values of rh4

r3
; how-

ever, the rise is much smaller in comparison with the increase linked with rh4
r3

. Figure 14c
shows the response surface of the turbine’s rotor radius (r3) constrained by the shroud
ratio ( rs4

r3
) and hub ratio ( rh4

r3
). It can be noted that r3 rises appreciably with the growth in

the value of rh4
r3

for all values of rs4
r3

. Likewise, the value of the r3 increase with the surge in
the value of rs4

r3
for all values of rh4

r3
, but the increase is tinier in comparison with the boost

linked with rh4
r3

.
As discussed above, to optimize the rotor’s geometry, the trained DNN was linked

with the multi-objective genetic algorithm (MOGA). The list of the design variables and
their rages are cataloged in Table 4. Figure 15 shows the Pareto front computed for rotor’s
size and rotor’s efficiency using a multi-objective genetic algorithm. It is noted that by
using the trained DNN and MOGA, the optimization process can be completed within
20–30 min. This suggests that the DNN-MOGA methodology is valuable during the
optimization stages of the geometrical aspect for different computational fluid dynamics
applications. Running over this huge range set of different design variables would consume
an unrealistic amount of computational time. Therefore, by combining computational fluid
dynamics with machine learning algorithms, more time and cost-efficient methods for
design optimization can be achieved.

Figure 15 shows the Pareto front processed by coupling the trained DNN with a multi-
objective genetic algorithm (MOGA), demonstrating the design parameters corresponding
to the optimal geometries of the turbine rotor. Every point on the Pareto front symbolizes
an optimal solution where the improvement in an objective function can be achieved at
the second’s cost. If a designer intends on minimum rotor size values, region A will suit
the desired condition. However, the values of the turbine’s efficiency (ηts) corresponding
to the design of region A are minimum among all optimized solutions. Simultaneously,
if one is interested in higher values of the turbine’s efficiency with no trouble to higher
values of the rotor’s size, region C would be appropriate under these situations. At the
same time, region B corresponds to a good compromise between the value of the rotor’s
size and its efficiency.
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Despite the above discussion, it is to be noted here for sCO2-BC that the size of the heat
exchanger is much larger than its turbomachinery [4,39,40]. Therefore, the layout size of
sCO2-BC is dominated by PCHEs and marginally affected by the size of its turbomachinery.
Therefore, it is recommended for sCO2-BC to opt for the design of the turbine with higher
efficiency, despite the fact it will increase the size of the turbine. Hence, the highlighted
design in region B that corresponds to maximum efficiency is chosen for further analysis.
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The turbine geometry with the parameters highlighted in region C was modeled
in ANSYS blade modeler and analyzed using CFD for design and off-design conditions.
Figure 16a shows the qualitative results of the pressure distribution on the hub and blades
of the rotor and nozzle guide vane. Figure 16b shows the pressure distribution on the
nozzle guide vane at 50% span, whereas Figure 16c shows the pressure distribution on
the rotor’s blade at various span locations. Figure 17 displays the off-design performance
of the optimized geometry. The off-design performance of the turbine is computed by
changing the flow rates and rotational speed. Each point on the graph can be distinct
by flow rate and rotations speed. It can be observed from the Figure that the off-design
performance of the covers a wide range of the operating conditions. At the same time, both
turbine’s efficiency and pressure ratio stay quite close to the design point performance
with appreciable changes in the mass flow rate.
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Figure 16. (a) Pressure contours on the hub and blades surfaces, (b) pressure profile along the nozzle guide vane at 50%
span, and (c) pressure profiles at various points.
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8. Conclusions

In the present study, a radial turbine design is constructed and optimized using a
multifaceted technique that involves in-house code (RTDC), CFD, deep neural network,
and multi-objective genetic algorithm (MOGA). The following deductions are made from
the current investigation.

• It is noted that the turbine’s performance parameters (power, efficiency, various types
of losses, rotor radius, and impellor length) are most sensitive to the speed ratio (νs)
followed by the inlet flow angle (α3). At the same time, the turbine’s performance is
observed to be least sensitive to the turbine’s hub ratio.

• It is found that the rotor’s efficiency changes considerably by changing the design
parameters, i.e., shroud ratio ( rs4

r3
) hub ratio ( rs4

r3
), speed ratio (νs) and inlet flow angle

(α3). Conversely, the rotor’s size is only affected by the speed ratio (νs), i.e., rotor
inlet radius r3, which rises considerably by increasing the value of the speed ratio,
although, shroud ratio ( rs4

r3
) hub ratio ( rs4

r3
) and inlet flow angle (α3) do not impart

any significant impact on the rotor’s size.
• Optimization results suggest that the dependence of design input parameters on

the performance and sizing of the turbine is quite complex, and it is difficult to
conclude the effect of individual parameters without contemplating their combined
effect. Therefore, the design and analysis of the turbine would require multifaceted
techniques such as the one used in the current study to understand the absolute
behavior of any individual turbine design parameter.

• It is found that the turbine’s minimum size corresponds to the design with the lowest
efficiency; however, the turbine’s efficiency can be improved at the cost of the increased
size of the turbine’s rotor. Heat exchangers are the largest components in the sCO2-
BC [4] and take up most of its layout space; therefore, design of the turbine with higher
efficiency is recommended, despite the fact that it will increase the size of the turbine,
as it will not impact the overall layout size of the sCO2-BC.

• Analysis of a range of design variables consumes a huge amount of computational time
and resources. Therefore, by combining computational fluid dynamics with machine
learning algorithms, efficient and cost-effective methods for design optimization can
be achieved. In this study, the computational cost is reduced substantially by utilizing
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trained DNN and MOGA optimization processes, and this DNN-MOGA methodology
can be extended to other applications of design optimization. However, it is to be
noted here that data used for the training in this work is limited to an 8-Megawatt
turbine system for sCO2-BC and cannot be used for expander systems with different
power outputs.
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Nomenclature

a Mach number
C Absolute velocity

[
m s−1]

cp Specific heat capacity at constant pressure
[

J Kg−1K−1
]

d Diameter
fb Body force [N]
gc Conversion factor
h Specific enthalpy

[
J Kg−1

]
M Mach number
.

m Mass flow rate
Ns Specific speed
N Rotor rpm
nb Number of blades
p Pressure [Pa]
R Gas constant

[
J Kg−1K−1

]
Sw Power ratio
T Temperature [K]
t Time
U Blade velocity
u Velocity

[
m s−1]

.
W Work [W]

w Relative velocity
y+ Y-plus
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Greek symbols
α Flow angle of absolute velocity vector [degree]
β Flow angle of relative velocity vector [degree]
γ Heat capacity ratio
η Efficiency
ρ Density [Kg m−3]
ψ Slip velocity [degree]
ω Angular speed

[
rad s−1

]
Sub and superscript
1 Nozzle inlet
2 Nozzle outlet
3 Rotor inlet
4 Rotor outlet
h hub
min minimum
o Stagnation value
r radial
rel relative
sh shroud
st static
t tangential
ts Total to static
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