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Abstract: Electric vehicles may reduce greenhouse gas emissions from individual mobility. Due
to the long charging times, accurate planning is necessary, for which the availability of charging
infrastructure must be known. In this paper, we show how the occupation status of charging
infrastructure can be predicted for the next day using machine learning models— Gradient Boosting
Classifier and Random Forest Classifier. Since both are ensemble models, binary training data
(occupied vs. available) can be used to provide a certainty measure for predictions. The prediction
may be used to adapt prices in a high-load scenario, predict grid stress, or forecast available power
for smart or bidirectional charging. The models were chosen based on an evaluation of 13 different,
typically used machine learning models. We show that it is necessary to know past charging station
usage in order to predict future usage. Other features such as traffic density or weather have a
limited effect. We show that a Gradient Boosting Classifier achieves 94.8% accuracy and a Matthews
correlation coefficient of 0.838, making ensemble models a suitable tool. We further demonstrate
how a model trained on binary data can perform non-binary predictions to give predictions in the
categories “low likelihood” to “high likelihood”.

Keywords: machine learning; electric vehicles; charging infrastructure; ensemble learning; road transport

1. Introduction

Electric vehicles (EVs) are generally seen as a viable path towards reducing CO2
emissions from mobility. In the context of this paper, we focus on battery electric or plug-in
cars. These vehicles store (some of) the energy required for propulsion and auxiliary in
an internal traction battery that is recharged through an electricity grid connection. While
the share of EVs in car sales might have been considered negligible in the past several
years, this cannot be considered true anymore—globally and in Germany. Globally, China
had been market leader for several years in terms of absolute numbers, with annual sales
exceeding one million vehicles for the first time in 2018 [1]. Likely due to a reduction in
subsidy, the local market lost some of its dynamic growth recently. European governments
such as Germany, France, Italy, and some others in turn have increased subsidies and other
regulatory measures significantly [2]. In combination with the stricter EU fleet emission
targets, Europe is now the globally leading market for EV sales, with 747,000 battery electric
vehicles and 625,000 plug-in hybrid electric vehicles sold in 2021 alone [1]. Germany has
been spearheading this development, with up to EUR 9000 in subsidies for new EVs, the
worldwide fourth-highest share of battery and plug-in electric vehicles worldwide, and
the highest absolute numbers in Europe [1]. The governmental goal of a cumulative sale
of one million vehicles was reached, with a slight delay of 8 months, in August 2021 [3].
These trends and developments clearly show that the market is picking up pace. Using
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the typically used diffusion of innovation curve, one can state that the market is moving
away from early innovators and is entering the early adopters or even early majority stage
instead [4].

To achieve the widespread adoption of EVs, it is essential to have sufficient public
charging infrastructure (CI) available such that users are able to comfortably and quickly
recharge their EVs [5–7]. Currently, EV drivers in Germany are billed for CI usage at a
fixed price per kWh and sometimes additionally for parking time. The situation may be
different elsewhere, but generally does not vary significantly. Fixed price mechanisms lead
to the highly inhomogeneous usage of CI, with occupation rates differing widely between
day and night as well as between weekdays [8]. This is clearly not ideal as it leads to
potentially avoidable charging hotspots where little to no CI is available. Some EVs may,
however, already have a high state of charge and only recharge because the opportunity
arises, while others urgently require recharging. During these shortages, drivers with a
relatively high battery state of charge should be incentivised to give up their recharging
opportunity for somebody with a more urgent recharging need. Implementing a system
that globally optimises CI allocation is, however, not feasible for public CI as these devices
should be easily accessible.

An alternative solution to the aforementioned problem is to vary prices. With current
vehicle batteries covering 300 km and more of range [9], recharging has to happen only
occasionally if persons drive 39 km/day on average in Germany [10,11]. If such persons
were price-sensitive, it would be possible to incentivise them to charge when sufficient
CI is available and, hence, indirectly support the grid load or capacity, respectively. This
is the goal of the project BeNutz LaSA [12], in which the authors together with partner
organisations implement such a price-based incentive mechanism in Germany.

Charging typically takes hours, especially at slower AC stations, and it is not feasible
to force users to stop their charging spontaneously. If a shortage of CI occurs, we therefore
cannot simply reduce the current occupation. For this reason, the authors attempt to
predict CI usage with the goal of adapting prices already before a hotspot materialises. In
this context, a good prediction is one that accurately predicts the occupation for as many
stations as possible. The methodologies presented to achieve such a prediction can be used
worldwide and are evaluated with real-world charging data in the use case of Germany.

The main aim of this paper is consequently to derive and evaluate methods to predict
the status of many stations as accurately as possible and to give a measure of certainty on a
station-by-station level. The paper is structured as follows: in the next Sections 1.1 and 1.2,
the current literature on the issue is summarised. The following section, “Materials”,
contains all data sources used in this work. Section 3, “Methods”, outlines all methods
applied on the data. The results are presented in Section 4, “Results”. The discussion and
conclusions are provided in Sections 5 and 6, respectively. The back matter contains, in
order of appearance, the acknowledgements, funding information, author contributions,
data availability, software availability, the ethics statement, and lists of tables and figures.

1.1. Literature Review

Predicting the usage of CI is a much-discussed topic in the literature. One strand of
literature focuses on which locations are sensible ones for the construction of CI [13–16],
some with a focus on when future stations are likely to be used [17]. These models tend to
have a longer-term focus and are not very relevant to the work done in this paper, where
the goal is to predict short-term charging hotspots for the next day(s).

In the field of predicting the usage of individual stations for the short-term future,
much less work has been published [18–21]. These authors attempt to generate a time series
prediction for specific charging stations. The works, however, focus on very specific sites,
such as a university campus [18], workplace charging [19], or EV taxis in the metropolitan
area of Shenzhen [20], and therefore cannot serve as a model for a national scope, as done
in this paper. Given the small geographic area, employing the used models may not be
suitable for our purposes, as a risk of overfitting exists. A key reason for this is that models
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sometimes require specific conditions to be true to be applicable. Simple time series models
focusing on a few points, such as done by Majidpur [18], fail if the patterns become highly
irregular and cannot absorb the depth of information that our dataset contains. The models
and methods, however, do provide a starting point for this work as they are a mix of
classical statistical methods and machine-learning-based ideas.

Almaghrebi et al. [22] focus on a slightly different challenge. They attempt to predict
energy requirements once a charging session has started given past CI usage data. They
employ four models, namely a linear model, a gradient booster, a random forest, and a
support vector machine. These concepts are also looked at in this paper. Frendo et al. [23]
take this process one step further and examine the behaviour of an entire fleet and addi-
tionally provide an extensive literature review in their particular field. The complimentary
challenge of trying to predict energy consumption while the vehicle is on the road is also
being tackled using very similar methods [24,25].

An analogous problem that has received much more attention in the past is the
prediction of the availability of bicycles at public bicycle sharing stations [26–35]. The
problems are comparable since there are a number of spots that can either be occupied
or not and it is relevant to determine when stations are out of bicycles to rent. The
employed tools are quite similar to the ones used for CSs and include statistical models or
machine learning models. Examples for the former are a generalised extreme value count
model [28], dynamic linear models [29], generalised additive models [30], autoregressive,
or autoregressive, integrating, moving average models (ARIMA) [26]. These models can
typically be employed when usage patterns are fairly regular, particularly for the latter
two. This requires the observed number of stations to be sufficiently aggregated such
that random fluctuations do not have a major impact. In the context of this paper, the
aggregation unit is the individual CS, with the corresponding high noise making such
tools unsuitable. A selection of employed machine learning models includes random forest
models [26], deep learning models [27], k-means clustering [31,32], or, less frequently,
models such as the averaged one dependence estimators with subsumption resolution
model [33]. Most of these models are in fact quite useful for our purpose as well and have
been investigated. Deep learning, such as done by Yoshida et al. [27], however, requires
that more input variables are available per decision than is possible in this paper. In other
words, a CS history is not relevant for future events apart from the average weekly usage.
We therefore do not consider deep learning models. Next to these time series models, it is
also possible to use more holistic models, such as multi-agent systems [34] or flow-based
models [35].

Looking at the three outlined categories, we can try to understand the applicability
of the used methods for the purpose of CS availability prediction. In general, there are
no models that are being used much more frequently than others, but, rather, models are
selected to fulfil a specific purpose in each publication. The only important trend that
we saw in researching the literature was that the easier-to-implement, standard models
are more popular than their more complicated counterparts are. This can presumably be
linked to the fact that most researchers come from the technical domain and not so much
from the data science domain and therefore rely on existing libraries.

The statistical models can only be used on a large scale when trying to understand
and predict trends involving hundreds of CSs. The reason for this is that the usage patterns
at individual CSs are highly inhomogeneous and often do not follow a regular pattern
consistently, as the standard deviations calculated in our previous work show [8]. An
ARIMA model, for instance, would see far too irregular usage in the weeks before the
predicted hour to provide any useful prediction.

The machine learning models used are very similar to the ones used in the prediction
of CS availability. A more detailed analysis of which of these models is suitable follows
later in the paper.

The last category of more holistic models is very challenging to create for cars. The
reason for this is that cars move much further and for much more diverse reasons. Bicycle
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rides are typically limited to a few kilometres and there is no option to transport heavy
goods on bikes. These two effects automatically limit the diversity of possible trip purposes
and therefore make it much easier to develop models of the vehicles’ movement. In contrast,
the movement of EVs is far more diverse. An additional challenge is that public bicycle
operators are able to track where the bikes are going, but no such data are available for
(private) cars to protect the privacy of drivers.

1.2. Improvements of This Paper in the Context of the Literature

This paper uses similar machine learning and statistical tools as some previous work
has already done [18–21] and thereby verifies the applicability of these tools. Our key
contribution and thereby advancement compared to the current state of the art is that
we are able to include a much broader geographic scope for our time series prediction as
compared to previous publications. This Germany-wide approach allows us to ensure
that overfitting is limited given the diverse geographies and characteristics, ranging from
small villages all the way to larger metropolitan areas such as Munich, Berlin, or Hamburg.
This wide geographical scope further ensures that the results are representative at least
for European countries and possibly even for other geographies. We further advance the
literature by clearly showing which models were used, why they were used, and how
they were tuned. This will help fellow researchers in deciding which model to use in their
own applications.

2. Materials

In this paper, several data sources are used. These are explained in the following
subsections. All datasets are geographically referenced time series datasets that need to
be merged into one single input table. Merging is done based on geographical reference
and time.

While outlining the data used, it is also important to state which data were not used
and why. This paper intentionally does not employ datasets that describe the static en-
vironment of the CS. Examples of such sets could be OpenStreetMaps points of interest,
population density, number of registered cars, etc. While these factors are certainly impor-
tant in understanding why and how CSs are used, this was not of relevance in this paper.
The reason is that the past CS usage data provide a much better picture of usage patterns
than environmental factors. Given that we assume there to be a usage history for each
station, it is consequently superfluous to describe the environment and we focus solely on
features changing quickly with time.

2.1. 2019 vs. 2021 Dataset

In this work, we define two datasets, one starting in 2019 and one starting in 2021. The
reason for this difference is that traffic data are available only from 2021 onwards, while CS
occupation was available from 2019 onwards. A benefit of this split is that we can observe
whether longer or shorter training data are preferable. The split between the two datasets
was performed across all datasets listed in the following.

2.2. CS Usage Data

In the context of the project BeNutz LaSA [12], the ISEA institute has received the
CS occupation from the industry partners SMART/LAB and Hubject. The dataset can be
converted into CS hours, where each data point describes the status of a CS for a given
hour. This hourly status was defined by dividing the occupied time by one hour and the
number of EVSEs at a specific CS, as shown in the below equation.

occupation =
Toccupied

1h · #EVSEs
(1)

where Toccupied is the sum of all time that vehicles spent at the CS in the given hour. Multiple
vehicles can result in Toccupied becoming larger than 1. The variable #EVSEs is the number of
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EVSEs at the CS. A typical station with two EVSEs would consequently have an occupation
of 50% if one of the two EVSEs were fully occupied during the hour while the other one
remained available for customers, both were occupied for half an hour, or any possibility
in between these two options.

The total number of data points was around 90 million, out of which 12% had missing
information. The time period analysed was approximately two years and nine months
from 1 January 2019 to 12 September 2021. Reasons for missing information could be
that the station was built during the time analysed and, therefore, historical data were
unavailable earlier, the station was a test station, no matching weather station or area for
traffic analysis could be found, or the station’s given latitude and longitude was outside of
the boundaries of a state. For this paper, the aspects of the data that were used were:

• Status changes of the EVSEs as defined by the Open Charge Point Protocol [36];
• Location of the charging infrastructure;
• Grouping of EVSEs into charging stations.

2.3. Public Holidays and School Holidays

Public holidays were retrieved using the Python library holidays [37]. The library
allows us to check whether a date is a public holiday in countries and in the states of these
countries. In this work, the public holidays on the level of German states are considered.
Public holidays sometimes create long weekends, which are frequently used for short trips.
This increased mobility was assumed to have an impact on charging station usage, which
is why long weekends were also detected by checking whether public holidays were either
directly adjacent to a weekend or with only a single day in between.

School holidays were retrieved from Ferienwiki.de [38]. The website provides iCal files
containing school holidays. The school holidays are defined on a state level in Germany
and can be quite different in terms of when they occur and how long they are. No correction
is made in this paper for cases where stations are near state borders since it is challenging
to define how the effect should be quantified.

2.4. Weather Data

Precipitation and temperature time series were downloaded from the open data portal
of the German weather service, DWD [39,40]. The data comprise time series measured
at 468 weather stations. Temperatures were recorded as the average temperature over
one hour in ◦C and precipitation in mm

h . Stations at an altitude above 1000 m were filtered
out since the weather service operates stations on mountaintops, which would clearly not
be representative for the weather situation where people live.

All weather datasets further contain a measure of accuracy and an indication of the
equipment used to obtain said values. Given that the used data were quite recent, this
information was of no relevance in this project since all stations have been operating with
high-quality equipment over the last few years. Inaccuracies due to imprecise equip-
ment occurred in the beginning of the time series, which, for many stations, was in the
20th century.

2.5. Traffic Data

Traffic data were purchased from ADAC Service GmbH [41] for this project. ADAC
has trackers in over 300,000 vehicles in Germany and receives their position, velocity, and
several other values. The data split Germany into rectangles of approximately 1.8 × 1.8 km
and are available at an hourly resolution. For each such rectangle, the dataset contains the
number of fleet vehicles that were in the rectangle during this hour. An example of the
data can be found in Table 1.
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Table 1. Sample of data obtained from ADAC.

Tile x-Coordinate Tile y-Coordinate Date and Time Number of Vehicles

8653 5276 2021-01-05 06:00 353

8662 5293 2021-01-05 08:00 214

8660 5288 2021-01-08 01:00 166

While the number of vehicles is not the traffic intensity itself, the monitored fleet is
large enough that it can be understood as a proxy for traffic intensity. The recorded data
have been provided from the start of 2021 onwards and predictions are delivered on a daily
basis. In this work, only the recorded past has been used.

3. Methods

This chapter describes the methodology used in this paper. The different data sources
listed in the “Materials” section were matched as outlined in “Data Merging”. The resulting
full datasets were processed as explained in “Data Preprocessing”. The final dataset was
then fed into several prediction models, which are given in “Chosen Prediction Models”.
The evaluation steps relevant for discussion are not outlined in the methodology section
since common metrics were used.

3.1. Data Merging

Data matching was performed based on the location of the charging station. For
weather data, each charging station was matched with the nearest available weather station
using cKDTree from scipy.spatial [42]. Weather stations were marked as usable if data were
recorded for the time period observed in this paper and if they were located at a height
of less than 1 km. The latter criterion was introduced to filter weather stations located on
mountaintops, such as the one on top of the mountain Zugspitze.

For spatial properties such as holidays and vacation periods that relate to entire states,
charging stations were matched to the state that they were in using the Geospatial Data
Abstraction Library in combination with its Python bindings.

3.2. Data Preprocessing

Models learning from large datasets can be subject to overfitting, where random noise
in the training set is interpreted as an actual signal that the models interpret as significant.
For the data discussed in this paper, the risk of overfitting is particularly prominent for
weather data. The reason for this is that human behaviour does change with the weather
but is generally agnostic to minor changes. A person would, for instance, drive to a
nearby forest for a hike if it were warm and dry, but would not care about exact values for
precipitation or temperature. To adjust for these somewhat coarser categories, precipitation
was split into three levels of rain, which more or less corresponded to no rain, little rain,
and heavy rain, as shown in Equation (2). These levels were chosen based on the analysis
of the dataset used in our previous publication [8].

prec =


0 i f prec f ull = 0
1 i f 0 < prec f ull < 4
4 i f prec f ull ≤ 4

(2)

where prec f ull are the measured precipitation values obtained from the weather stations in
mm

h on the right-hand side. The variable prec in turn is the categorised precipitation.
To avoid overfitting for temperature, the recorded temperature was rounded to the

nearest multiple of five since this is sufficiently granular to correspond with the human
sensation of temperature but simultaneously coarse enough to avoid overfitting.
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For the traffic data, we calculated how many vehicles were in a square relative to the
square’s average usage to provide a measure of how much the current traffic deviated from
the traffic that the area would normally experience.

All datasets used in this work are time series. The next step of data preprocessing was
consequently to align the various datasets along the time axis. This was done for each CS
separately. An example of such a dataset can be seen in Table 2.

Table 2. Example of the merged dataset.

Occupation Vacation Long
Weekend Temperature Precipitation Number of

Vehicles
Relative #
Vehicles Weekday Hour

[0,1] TRUE/FALSE TRUE/FALSE ◦C mm
h # % [0–6] [0–23]

0.000 1 0 15 1 166 150% 1 14

0.667 1 0 15 0 130 83% 3 0

0.932 0 1 5 0 202 216% 0 12

3.2.1. Feature Categorisation

While the calculated occupation, in theory, is a continuous variable and regression
models could be employed to predict the occupation numerically, this is neither achievable
nor desirable. The non-achievability stems from the fact that the provided features do
not carry sufficient information to explain minor differences such as a vehicle leaving a
few minutes earlier or later, which would in turn change the occupation. It is also not
desirable since the goal of the project is to create a more human-readable output. The
resulting occupation probabilities would likely be very confusing for users, particularly
when compared to the chosen categories “very low” to “very high”.

It was consequently necessary to create a categorisation of the occupation as a feature.
This was done in two ways, which we will refer to as binary and categorised.

The binary classification, as the name already suggests, is a classification into binary
values. We chose to set a boundary at 50%, as shown in Equation (3). The boundary was
chosen since a 50% occupation means that only one EVSE was available on average at a
typical CS with two EVSEs. A newly arriving vehicle would consequently cause the full
usage of the station and no additional customers could be served. Additionally, virtually
all CSs have an even number of EVSEs, leading to a good fit when taking half of 100%.

binary =

{
TRUE i f occupation ≥ 50%
FALSE otherwise

(3)

where occupation has been defined in Equation (1).
The categorised classification is meant for users of CI. The goal is to provide a human-

readable classification in the categories “very low” (vl), “low” (l), “medium” (m), “high”
(h), and “very high” (vh). These five categories are defined by occupation as well, as shown
in Equation (4).

categorised =



vh i f occupation ≥ 40%
h i f 30% ≥ occupation < 40%
m i f 20% ≥ occupation < 30%
l i f 10% ≥ occupation < 20%
vl otherwise

(4)

where occupation has been defined in Equation (1).
This classification was chosen based on an analysis of which categories appear how

frequently while simultaneously using easy-to-remember boundaries. Different categori-
sations are certainly possible and will be explored in our future works. The given one
is arbitrary to an extent. The results of GB and RF cannot be used directly for the cat-
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egorisation since the output probability is defined as the probability that the station is
occupied up to 50%. This was resolved by running many test predictions and creating
a translation function. This function is simply a set of new boundaries that were chosen
such that the size of the predicted groups is equal to the sizes when using AW on a set of
test predictions. The boundaries are given in Equation (5) and the concept is visualised
in Figure 1. As shown, the boundaries of the occupation are translated into group sizes
by checking which x-value corresponds to the given y-values. These x-values were then
kept and the corresponding y-values of the test predictions were chosen. The process was
executed only for GB, but, as will be seen later, the prediction values were very close for
both models and the same categorisation boundaries may be used.

ccategorised =



vh i f prediction ≥ 56.5%
h i f 40.9% ≥ prediction < 56.5%
m i f 25.5% ≥ prediction < 40.9%
l i f 11.2% ≥ prediction < 25.5%
vl otherwise

(5)

where prediction is the output value generated by the machine learning models.
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Figure 1. Boundaries for test predictions using the classification boundaries shown in
Equations (4) and (5). The boundaries were chosen such that the group sizes are identical using
GB and AW.

3.2.2. Train–Test Split

For the evaluation of machine learning models, one typically splits the data into a
training and a test set. This was done in this work as well. Test feature–label combinations
were randomly drawn from the dataset until 30% of the dataset was used. The remaining
70% were used for training. Note that this split consequently does not orient itself along
a time axis and we therefore do not predict the last 30% in terms of time. This was done
since models will be retrained regularly in real-world application and, given the highly
dynamic market development, it is not sensible to use months-old models.

3.3. Model Selection

The proper analysis of the suitability of a model requires significant computational
and time resources. To gain an overview of which model is suitable for the task and how
the different models compare, a comparison was performed using the function classifica-
tion.compare_models() of the library PyCaret [43]. The library wraps other machine learning
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libraries such as sklearn [44] and calls the most frequently used models using their standard
settings. The models are consequently not optimised for their final task and overfitting
might be an issue in certain cases. Results should therefore be understood as indicative
and must be confirmed with properly tuned models, which was performed in the second
part of this paper.

The goal of performing the model comparison was to evaluate whether the models
outlined in the Section 3.4 “Chosen Prediction Models” were comparable in performance
to other models. The choice for the actual implementation was, however, limited to models
providing an uncertainty measure since the goal is not to perform binary prediction as
accurately as possible but rather to later perform categorised prediction. Further, note that
the average week model does not appear in the overview provided by PyCaret. It was
added by us due to its low complexity and since it is easy to understand for end users and
system administrators. Deterministic models were not evaluated since it could be shown
in previous work that these are not sufficiently accurate.

3.4. Chosen Prediction Models

In this work, several prediction methods are tested and compared with each other.
The Random Forest Classifier (RF) and Gradient Boosting Classifier (GB) were selected
as typically used ensemble models and because of their high prediction performance, as
shown in Table 3. Additionally, the average week model (AW) was added as a reference
since, nowadays, many websites use this metric to inform customers about when to expect
how many other customers. The chosen models are described in detail in the respective
subsections. GB and RF were both trained and evaluated with multiple combinations of
feature sets. In all combinations, data about weekday, hour, vacations, and long weekends
were used given that their retrieval can be considered trivial. In prediction applications, the
weather and traffic density input data require sophisticated prediction models themselves
and are therefore not readily available in all applications.

3.4.1. Average Week Model (AW)

The AW is the simplest model analysed and serves as a baseline or reference for the
more advanced models. It is created by averaging the weekly usage of a CS using an hourly
resolution, as defined in Equations (6) and (7).

xd, hwith d ∈ {Mo, Tu, . . . , Su} ∧ h ∈ {0, 1, 2, . . . 23} (6)

Pi(d, h) = ∑ xi(d, h)
count(xi(d, h))

f or each i (7)

where Pi(d, h) is the likelihood of CS i being occupied at a certain weekday and hour of the
day and xd,h,i is the occupation status of a CS at a certain date and time range, found by
summing all occupied EVSEs by the overall number of EVSEs at the station.

3.4.2. Gradient Boosting Classifier Model

A GB builds on similar concepts as used for RF. It combines many simple prediction
models—in this case, decision trees—into a more complex model. The GB is built sequen-
tially and each additional decision tree is fitted to minimise the losses of the previous
ensemble. This can be understood as creating each consecutive tree to correct the errors
made in the previous model. Since this method is a standard method and widely used, we
omit an in depth description for the sake of conciseness. The implementation used in this
paper is the GradientBoostingClassifier as defined in sklearn.ensemble [44].
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Table 3. Result of PyCaret’s model comparison using 10 million randomly sampled rows of the 2021 training set. The
best score per metric is marked in boldface. Accuracy: 94.35%, AUC: 0.9765, Precision 91.46%, F1: 0.8591, Kappa: 0.8239,
MCC: 0.8263.

Model Accuracy AUC Recall Prec. F1 Kappa MCC

Light Gradient Boosting Machine 0.9435 0.9765 0.8099 0.9146 0.8591 0.8239 0.8263

Gradient Boosting Classifier 0.9432 0.9747 0.811 0.9121 0.8586 0.8232 0.8254

Ada Boost
Classifier 0.9431 0.9697 0.8093 0.9132 0.8581 0.8227 0.825

Ridge Classifier 0.9429 0 0.8181 0.9043 0.8591 0.8234 0.825

Linear Discriminant Analysis 0.9421 0.9688 0.8244 0.8949 0.8582 0.8219 0.823

Logistic Regression 0.9407 0.9682 0.8297 0.8841 0.856 0.8187 0.8194

Random Forest Classifier 0.9404 0.9702 0.81 0.8998 0.8526 0.8154 0.8172

Extra Trees
Classifier 0.9368 0.9634 0.8095 0.8834 0.8448 0.8052 0.8064

SVM—
Linear Kernel 0.9248 0 0.797 0.8482 0.8181 0.771 0.7742

Naive Bayes 0.9218 0.9529 0.843 0.8001 0.821 0.7711 0.7715

Decision Tree
Classifier 0.914 0.8755 0.7952 0.7994 0.7973 0.7428 0.7428

K Neighbours
Classifier 0.8284 0.7782 0.3238 0.712 0.4451 0.3601 0.3993

Quadratic Discriminant Analysis 0.6291 0.4999 0.2752 0.212 0.2047 −0.0001 −0.0003

The benefits of using a GB are similar to those of an RF. The model is able to handle
non-linear data with interactions between features. A disadvantage is that the individual
decision trees can only be generated sequentially, which makes the overall model creation
quite slow.

The model was parametrised as follows:

• max_depth: 5
• min_samples_leaf: 0.01%

where max_depth describes the maximum number of nodes in a tree until a leaf has to be
reached and min_samples_leaf describes the minimum share of the training data needed
in each leaf.

The maximum depth was chosen as 5 since the models typically use the first two to
three levels for the average weekly patterns. The default and typically used setting of
3 would therefore have been insufficiently deep to make use of the full feature set. The
minimum sample share per leaf was chosen as given to avoid overfitting. Otherwise, the
model could be tempted to dedicate leaves for noisy patterns of individual charging stations.
The remainder of the parameters were kept at their default values (e.g., learning_rate =
0.1, n_estimators = 100, . . . ). Listing all would be excessive at this point and the reader is
referred to the documentation of the library for further details [44].

3.4.3. Random Forest Classifier Model

An RF consists of many individual decision trees that collectively estimate a value.
The training data for the model are typically split into smaller sets and each decision tree is
trained using one such set. Since RFs are a standard method in data science, an in-depth
description is omitted. The implementation used in this work is the RandomForestClassifier
as defined in sklearn.ensemble [44].

The model is able to handle data with strong interaction dependencies between the
features, which is beneficial for this project. As an example, temperature or precipitation
might affect CS usage much more during the weekend if people spontaneously make use
of good weather compared to commuters on weekdays, since they have to go to work
independent of the weather. An additional benefit is that the outputs of individual decision
trees relative to the result of the final model can be interpreted as an uncertainty. For a
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real-world application, this is beneficial since the goal is to predict stations and areas with
an overload and a high certainty that this overload will occur.

The model was parametrised as follows:

• max_samples: 0.1%
• min_samples_leaf: 0.1%

where max_samples is the share of samples assigned to each tree and min_samples_leaf
describes the minimum share of the training data needed in each leaf (same as for GB).
This parametrisation was chosen based on visual inspection of sampled decision trees. The
trees showed a reasonable balance between learned abstractions of the problem while still
avoiding overfitting.

4. Results

This section contains the results obtained. We start by comparing the untuned models.
Next, the prediction performance of the selected models is shown. As a last step, the feature
importance in the selected prediction models is shown.

4.1. Model Comparison

Table 3 shows the results of the model comparison. For performance reasons, 10 mil-
lion label–feature combinations were randomly sampled for the model evaluation. The
label in this case was the binary version as outlined in “Feature Categorisation”. Most of
the evaluated models have performance in a similar range, with MCC varying between
74.3% and 82.6% for all models except the K Neighbours Classifier and the Quadratic
Discriminant Analysis. The reason that these models perform poorly is that they were
designed for different classification problems to the one analysed in this paper. The K
Neighbours Classifier relies on the fact that neighbours share similar properties, which
cannot be guaranteed if features influence each other. If the time were 9 a.m. in the morn-
ing, the day of the week matters a lot since this would mean commuters using CI during
the week, but very little traffic on the weekend. The quadratic classifier also requires the
features to be meaningful by themselves and is poor at handling interaction effects.

The remaining models all perform reasonably well, with an MCC between 74.3%
and 82.6%. Boosting algorithms particularly seem to outperform their competitors, but
the differences are minor. The already introduced Gradient Boosting Classifier (GB) and
Random Forest Classifier (RF) are among the well-performing models. A key advantage of
these models is that they provide a probability because they are ensemble learners. In the
application targeted in this work, having this uncertainty measure is valuable as it allows
us to determine stations that are highly likely to be occupied. The Light Gradient Boosting
Machine slightly outperforms GB, but the differences between the models are less than
0.1% on most metrics and therefore almost meaningless. Given that scikit-learn possesses
an easy-to-use implementation of the Gradient Boosting Classifier, but not of the Light
Gradient Boosting Machine, we decided to stick to scikit-learn for better comparability
with the remainder of this work. The case is different for RF, which, although still mostly
within 1%, does not quite match the performance of the boosting methods. The reason
for still using RF can be seen in the fact that parallelised training is possible and that
trees are generated without the implicit history that boosting algorithms possess. This
history is created since new trees are generated to correct for the mistakes of the previous
ensemble and could therefore involuntarily carry information. Given that the probability
of achieving the right result has a central role to play in this work, RF is attractive as all
trees are independent of each other and do not depend on each other in any way.

4.2. Prediction Performance

The key results of this paper are the prediction of the half-occupancy and the prediction
of the categorised values. The results of this prediction are shown in Table 4.
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Table 4. Summarised prediction performance of selected model dataset, sorted by dataset first and then by MCC.

Model Dataset Include Average
Week

Include
Weather

Include
Traffic

Share Correctly Categorised by the Number of
Allowed Neighbour Category Metrics of Binary Classification

0 1 2 3 Accuracy AUC Recall Prec F1 Kappa MCC

GB 2021 TRUE TRUE TRUE 83% 92% 95% 98% 0.948 0.900 0.819 0.924 0.868 0.836 0.838

GB 2021 TRUE FALSE TRUE 84% 92% 95% 98% 0.948 0.901 0.821 0.922 0.868 0.836 0.838

RF 2021 TRUE TRUE TRUE 82% 92% 95% 98% 0.948 0.901 0.820 0.922 0.868 0.835 0.838

RF 2021 TRUE TRUE FALSE 82% 93% 95% 98% 0.948 0.900 0.819 0.923 0.868 0.835 0.838

GB 2021 TRUE FALSE FALSE 84% 92% 95% 98% 0.947 0.900 0.819 0.923 0.868 0.835 0.837

RF 2021 TRUE FALSE FALSE 84% 92% 95% 98% 0.947 0.901 0.820 0.922 0.868 0.835 0.837

RF 2021 TRUE FALSE TRUE 84% 92% 95% 98% 0.947 0.901 0.821 0.921 0.868 0.835 0.837

GB 2021 TRUE TRUE FALSE 82% 92% 95% 98% 0.947 0.899 0.816 0.924 0.867 0.834 0.837

AW 2021 TRUE FALSE FALSE 87% 92% 95% 97% 0.878 0.722 0.451 0.939 0.610 0.548 0.599

GB 2021 FALSE FALSE TRUE 1% 73% 80% 100% 0.790 0.500 0.001 0.609 0.002 0.001 0.019

GB 2021 FALSE TRUE TRUE 1% 73% 80% 100% 0.790 0.500 0.001 0.562 0.002 0.001 0.015

RF 2021 FALSE FALSE TRUE 1% 72% 81% 100% 0.789 0.500 0.000 0.000 0.000 0.000 0.000

RF 2021 FALSE TRUE TRUE 1% 73% 81% 100% 0.790 0.500 0.000 0.000 0.000 0.000 0.000

GB 2021 FALSE TRUE FALSE 1% 76% 79% 100% 0.790 0.500 0.000 0.000 0.000 0.000 0.000

RF 2021 FALSE TRUE FALSE 1% 77% 79% 100% 0.790 0.500 0.000 0.000 0.000 0.000 0.000

GB 2021 FALSE FALSE FALSE 1% 77% 79% 100% 0.789 0.500 0.000 0.000 0.000 0.000 0.000

RF 2021 FALSE FALSE FALSE 1% 77% 79% 100% 0.789 0.500 0.000 0.000 0.000 0.000 0.000

GB 2019 TRUE TRUE FALSE 52% 75% 87% 95% 0.832 0.676 0.404 0.670 0.505 0.411 0.430

GB 2019 TRUE FALSE FALSE 52% 75% 87% 95% 0.832 0.675 0.404 0.671 0.504 0.411 0.430

RF 2019 TRUE FALSE FALSE 52% 76% 86% 95% 0.832 0.672 0.396 0.675 0.499 0.406 0.427

RF 2019 TRUE TRUE FALSE 53% 78% 85% 95% 0.831 0.660 0.363 0.693 0.476 0.387 0.416

AW 2019 TRUE FALSE FALSE 55% 75% 87% 95% 0.814 0.577 0.168 0.773 0.276 0.216 0.301

RF 2019 FALSE TRUE FALSE 1% 75% 79% 100% 0.789 0.500 0.000 0.000 0.000 0.000 0.000

GB 2019 FALSE TRUE FALSE 1% 75% 79% 100% 0.789 0.500 0.000 0.000 0.000 0.000 0.000

GB 2019 FALSE FALSE FALSE 1% 76% 78% 100% 0.788 0.500 0.000 0.000 0.000 0.000 0.000

RF 2019 FALSE FALSE FALSE 1% 76% 78% 100% 0.788 0.500 0.000 0.000 0.000 0.000 0.000
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• “Model” (column 1)
The model used as explained in the Section 3.4 “Chosen Prediction Models”

• “Dataset”—“Include traffic” (columns 2–5)
The columns contain the datasets used as outlined in the section “Data”. TRUE
indicates that the dataset was used in training and prediction and FALSE indicates
that it was not used.

• Share correctly categorised (columns 6–9)
These columns contain the share of predictions that matched the real value. The
numbers in the second title row of Table 4 indicate how far removed a category was
allowed to be in order to be still considered correct. The column with the heading “0”
consequently contains the share of correctly assigned categories. Column “1” allows
for neighbouring categories (e.g., if “low” was predicted, “very low” and “medium”
were still considered correct) to be correct. Columns 2 and 3 follow the same pattern,
but allow further removed neighbours to be correct. Table 5 shows an example of how
the confusion matrix translates into the values shown in Table 4.

Table 5. Example of confusion matrix, including the information on which values were considered
correct depending on the number of allowed neighbours.

Predicted
vl l m h vh

Real

vl 1.0E+08 4.1E+07 1.0E+07 1.0E+07 4.9E+06
l 9.8E+05 1.2E+06 3.1E+05 2.9E+05 1.6E+05

m 1.0E+06 1.9E+06 8.6E+05 9.0E+05 3.0E+05
h 1.5E+06 1.8E+06 6.2E+05 1.0E+06 4.6E+05

vh 6.0E+06 1.1E+07 6.4E+06 1.2E+07 1.6E+07
Correctly assigned Correctly assigned incl. 1 neighbour

Correctly assigned incl. 2 neighbour Correctly assigned incl. 2 neighbour

• Binary metrics (columns 10–16)
The binary metrics columns contain typically applied metrics in binary classification
problems. These are, in order of appearance, accuracy, area under the receiver operat-
ing characteristic curve (AUC), recall, precision (Prec), F1 score (F1), Cohen’s kappa
score (Kappa), and Matthews correlation coefficient (MCC). As these are standard
metrics in machine learning, a detailed explanation of each is omitted at this point
and the reader is referred to the Appendix A.1 of this paper. Further information can
be found in the documentation of the used methods in the model evaluation package
of sklearn [44] or other literature.

The key results are further summarised in Figure 2. The models have been grouped
into three key groups. The first group, “GB and RF incl. AW”, shows the average result of
all GB and RF that include the average weekly usage. “AW” is simply the result of the AW
and “GB and RF excl. AW” is the result of the models unaware of average weekly usage.
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Figure 2. Results of Table 4 grouped by model type and whether the average weekly data (AW) were
used or not. Part (a) shows the results for binary metrics and (b) for the categorised results. Category
“0” corresponds to the share of correctly assigned categories; “1” counts direct neighbour categories
(e.g., “very low”–“medium” are still correct if “low” was the true value); “2” includes neighbours
once removed; “3” neighbours twice removed.

Another way to look at the results is presented in Figure 3, where the accuracy of GB
with the 2021 dataset and all available data sources is compared to the accuracy for AW
at the level of charging stations. It can be observed that all models are able to predict the
usage of stations with either overall quite high or low usage. This is not surprising since a
station that is nearly always/never used will likely be used/not be used in the future as
well. The machine learning models, however, perform superiorly in the middle section,
with stations being used between 30% and 50% of the time.

4.3. Feature Importance

When trying to use the prediction models in a real-world application, it is relevant
to ensure that only those features are used that bring additional value to the prediction
performance. While, theoretically, no damage should be done by including data with little
additional value, the risk of overfitting and the effort required to warehouse and treat
excess data sources both rise significantly with the amount of data used as features.

Table A1 shows the feature relevance using the mean decrease in impurity as a metric
for the prediction models created in the context of this work. The AW is not included as it
does not rely on external features.
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5. Discussion

In this section, we discuss the results shown in the previous section. The structure is
similar to the order in which the results were presented. We start with a short discussion of
the model choice. The next three subsections discuss the usefulness of the different datasets
and models given the prediction tasks. As a last content discussion, the feature importance
is analysed. The section ends by discussing the limitations of the work done.

5.1. Model Choice

The comparison of a broad range of models was done to verify that the selected
models in fact perform well in comparison to others. Since the project requires a measure of
probability, the model choice was limited even before the comparison, but it is reassuring
that GB and RF are among the better choices even in the more general task of binary
classification. A Kappa and an MCC score of above 0.8 mean that the models have strong
prediction quality in the binary challenge. Since the classification into the more diverse
categories ranging from “very low” to “very high” is derived directly from the trained
binary models’ probability, the same conclusion can be drawn about the choice of models
for this application.

5.2. 2019 and 2021 Dataset

As can be seen in Table 4, the prediction performance in all major categories is signif-
icantly poorer for the longer dataset. The most likely explanation for this phenomenon
is that Germany experienced dramatic changes in the time period that the models were
unable to cover. One such change is the global COVID-19 pandemic, which resulted in
three major lockdowns, resulting in significantly altered mobility patterns. With much
more generous home office rules, the change in mobility patterns further had an effect
outside the strict lockdowns. The second main change is the strong rise in EV sales. There
were only 150,000 EVs on the road in the beginning of 2019 [45], but this number had risen
to over 1 million by August 2021 [3]. Given that the mobility patterns and the number of
users have dramatically changed over time, it is of little surprise that the models do not
perform well when they have to predict the full time range.

The market is continuously changing, with increasing market shares of EVs [1], higher
charging powers, and changing work modes, which may continue to change due to a
broader acceptance of home-working [46]. This implies that there will be ongoing shifts
in the use patterns of CSs. It therefore seems reasonable to assume that short training
timeframes are more suitable for prediction than long ones.

5.3. Predicting Half-Occupancy

Looking at Table 4, three distinct groups can be observed. These are:

• GB and RF unaware of average weekly data
All GB and RF models that are unaware of the average weekly data perform very
poorly. Besides a seemingly reasonable accuracy of around 0.78, the MCC is 0 and
AUC 0.5. The latter two indicate that the model has no predictive value. The reason
for this is that the provided input features are an insufficient basis to predict a CS
occupation of above 50% since the average occupation is too low and features are not
unique enough.

• Average week model
The average week model reaches a reasonable score in all major metrics. The relatively
low recall, however, tells us that the model is unable to identify high CS occupation
and earns most of its accuracy score by correctly predicting labels with low occupation
rates. Given the goal of predicting usage spikes, this is clearly not ideal. This behaviour
can be explained by the fact that only stations with an extremely high usage rate over
the entire observed period during certain hours of the week would be correctly
predicted as having a high occupation rate.
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• GB and RF aware of average weekly data
Once GB and RF are aware of the average weekly data, the prediction performance
becomes much better. While there are small improvements in predictive quality if
weather and traffic information is available, they do not make a strong contribution to
station occupation. This occurs despite the fact that, individually, they show a strong
correlation with station occupation. A reason for this could be that there are strong
collinearities present. Traffic and station occupation, for instance, both show a similar
pattern over the course of the day when using aggregated data. The results show that
this effect holds true even when training detailed models.

The difference between the groups described in the second and third bullet points
of the above list can also be observed in Figure 3. Unsurprisingly, both models achieve
high accuracy for CSs with either a very high or a very low average occupation. Given
that these CSs are either practically never used or always used, they are very likely to
exhibit this behaviour in the test set as well. External features are irrelevant compared to
the strong trend.

The difference is more pronounced in the middle segment, where CSs have more
diverse usage. For these situations, GB (and RF, although not shown) have access to more
information than AW and are thereby able to analyse the situation better. This allows these
models to make much more accurate decisions in this segment, which is the reason that
most binary metrics in Table 4 are much higher for GB and RF as compared to AW.

5.4. Predicting Categorised Values

Given that the ultimate goal of this work is to create a user-friendly way of displaying
the likelihood that a CS is occupied, special attention is paid to the prediction of categorised
values analysed through the confusion matrix. The 2021 data show a quite clear trend,
where both RF and GB models are able to predict the exact category in over 80% of the
predictions and predict the category itself or a nearby category at a rate of over 90%.

For users of the model, this high accuracy is good news. For most people, the difference
between, for instance, “low” and “very low” is quite negligible, but the general tendency is
of relevance. We can further see that GB and RF outperform AW significantly. This shows
that simply taking the average weekly usage is insufficient when trying to make reasonably
accurate predictions, but a correction using more models that are sophisticated is necessary.

As a third point, we can see, similar to the previous subsection, that the models
unaware of the average weekly usage pattern are unable to make an accurate prediction.
Virtually all predictions are in the categories “low” and “medium” since traffic, weather,
and calendar data alone provide insufficient information for a prediction by itself. A
consequence of this fact is that the suggested model can only be used in a real-world
application if the stations have been operational for some time.

For the prediction of how a newly built station in a new location would likely be used,
other tools are more adequate (see this paper’s literature review, as well as the literature
review in [8,47]).

5.5. Feature Importance

As can be seen in Table A1, the average weekly occupation is by far the dominating
factor if it is available. As was shown already earlier, both GB and RF only provide useful
outputs once they gain access to the average weekly usage. It is consequently of little
surprise that this feature is heavily used and reduces around 99% of impurity. The models,
however, score significantly better than the AW in close to all settings. This seeming
contradiction can be overcome by understanding that the average weekly usage essentially
forms a starting point for the remainder of the decision trees. Upon visual inspection, most
trees use the average occupation in the first two to three decision nodes, and only after this
do they switch to other decision variables. The other features are consequently used to
correct the average occupation for the specific circumstances that occur during a specific



Energies 2021, 14, 7834 18 of 24

hour. This fact explains why the GB and RF have much higher prediction performance
than the AW.

5.6. Limitations

In this work, several limitations must be considered. These are listed in the following.

• Market development
The EV market has undergone tremendous changes in the studied period. The number
of vehicles increased from approximately 150,000 vehicles in early 2019 to one million
in 2021. Similar trends could be observed with respect to the number of CSs. At
the same, vehicle range has increased significantly over time [9] and travel within
Germany is now comfortably possible [48]. It seems probable that all these changes
had an effect on infrastructure usage. Consequently, training and test data might in
part be outdated, which the results in Table 4, including the 2019 dataset, also show.

• COVID-19 pandemic
The COVID-19 pandemic has had an immense and lasting impact on mobility and
travel patterns in Germany and worldwide. These developments are a second highly
dynamic factor that the used models may not be able to reflect in detail.

• Availability of datasets
One can think of various other aspects that probably increase prediction accuracy
but for which we could not obtain datasets in this study. Examples of such data are
events taking place (where visitors require recharging opportunities), hotel bookings
(assuming that people need more public infrastructure if they are not at home), etc.
If a reliable and quantifiable dataset can be obtained for these tasks, the prediction
accuracy would likely increase further.

If the EV market and the COVID-19 pandemic should stabilise, it would certainly be
of interest to study the topics in this paper again. We believe that it would, for instance,
be critical to include seasonal patterns in future work, but could not do so here due to the
fact that too much changed over a period of a single year. If researchers have access to
datasets described in the last point of the Limitations list, a new study would certainly also
be highly interesting and may create new insights into which features add value.

6. Conclusions

In this paper, we showed how the occupation level of a CS can be predicted accurately
using data-driven methods. The models were able to achieve high scores in all standard
metrics typically used in machine learning. We further showed how a binary training
set might be used to create models that are then able to predict the more fine-grained
categories of “very low” to “very high” occupation levels of public CI.

We further conclude that predicting future CS requires knowledge of past station usage.
Since the usage patterns are currently changing quickly due to the COVID-19 pandemic
and the rapidly growing market, it is sufficient to have knowledge of the near past. Longer
datasets are not required. If this information is unavailable, at least the features available
in this work were able to provide a useful prediction in the time resolution required. The
addition of other datasets, such as traffic and weather data, increases model performance
somewhat, but the impact is comparably small. Using a machine learning algorithm is
sensible since the tested algorithms, GB and RF, scored significantly better than the simple
average usage on a weekly basis.
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Abbreviations/Nomenclature

Abbreviation Meaning
AW Average week model
CS Charging station (for electric vehicles)
CI Charging infrastructure (for electric vehicles)
EV Electric vehicle
EVSE Electric vehicle supply equipment
GB Gradient Boosting Classifier
MCC Matthews correlation coefficient
RF Random Forest Classifier

Appendix A

Appendix A.1. Metric Descriptions

In the following, the key metrics used for binary classification are described. Given
that sklearn was used for metric computation, the definitions follow the documentation [44]
quite closely. For more detailed information, the reader is referred to the standard literature
on machine learning.

Accuracy

Accuracy(y, ŷ) =
nsamples−1

∑
i=0

1(ŷi = yi)

=
tp+tn

tp+tn+ fp+ fn

where ŷ is the predicted binary value, y is the real value in the test set, and 1(x) is the
indicator function. In the second definition, tp is the sum of true positives, tn is the sum of
true negatives, fp is the sum of false positives, and fn is the sum of false negatives.
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Accuracy is defined as the share of predictions that were predicted correctly. This score
does not treat an imbalance in the test set. In the context of this paper, high accuracy can
be achieved by predicting that a CS will be used less than 50% for all prediction instances.
Since this the case in the majority of cases, accuracy scores of above 70% can be achieved
with a naïve model.

Area under the receiver operating characteristic curve (AUC)

AUC=
∫ 1

0
Accuracy(y, ŷ)dθ

ŷ=

{
positive i f y̌ ≥ θ

negative otherwise

where Accuracy, y, and ŷ are defined in the previous subsection and y̌ is the predicted
probability that ŷ is positive.

A perfect prediction would achieve an AUC of 1, meaning that the true positive rate is
always 1 and the false positive rate always 0. This is achieved if y̌ is 1 for all true positives
and 0 for all true negatives. A score of 0.5 is achieved if the predictor is random. A score
below 0.5 would indicate that the model is guessing incorrectly more often than random
choice would have been.

Recall
Recall =

tp

tp + fn

where tp. is the sum of true positive predictions and fn is the number of false negative predictions.
Recall shows how many of the positive values have been labelled correctly as positive

compared to the total number of positives in the test set. In the context of this paper, the
recall consequently tells us how many high-usage situations the system correctly identified.

Precision (Prec)

Precision =
tp

tp + fp

where tp is the sum of true positive predictions and fp is the number of false positive predictions.
Precision is a measure for how many of the predicted positive values were actually

positive. In the context of this paper, the score consequently tells us how many of the
predicted high-usage situations were actually true.

F1 score (F1)

F1 = 2 · Precision · Recall
Precision + Recall

The F1 score is a weighted average of recall and precision. The metric consequently
tries to balance the statements made. For this paper, this consequently strikes a balance
between measuring how many situations were correctly predicted as positive compared to
how many there were and how many were predicted.

Cohen’s kappa score (Kappa)

κ = po−pe
1−pe

=
2·(tp ·tn− fn · fp)

(tp+ fp)·( fp+tn)+(tp+ fn)·( fn+tn)

where po is the relative observed agreement among raters and pe is the probability of
chance agreement. In the second definition, tp is the sum of true positives, tn is the sum of
true negatives, fp is the sum of false positives, and fn is the sum of false negatives.

Kappa measures how well matching was performed relative to a random assignment.
Due to the relatively complex definition, no direct definition in the context of this work
is possible.
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Matthews correlation coefficient (MCC)

MCC =
tp · tn − fp · fn√(

tp + fp
)
·
(
tp + fn

)
·
(
tn + fp

)
· (tn + fn)

where tp is the sum of true positives, tn. is the sum of true negatives, fp is the sum of false
positives, and fn is the sum of false negatives.

MCC is a balanced measure and describes a model’s prediction performance on a
score from −1 to 1. A score of 1 corresponds to a perfect model, 0 to a model with no
predictive value, and −1 to a model perfectly predicting the opposite of reality. MCC is
the key measure in our paper for binary classification problems since it most accurately
describes model performance in a highly imbalanced test set, as is the case in our work.

Appendix A.2. Feature Importance of the Selected Models

Table A1 shows the feature importance for the models created in this paper.
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Table A1. Feature importance based on mean decrease in impurity of selected models, sorted by dataset first and then by MCC (i.e., same as in Table 4).

Model Dataset Include Average
Week

Include
Weather

Include
Traffic

Feature Importance Based on Mean Decrease in Impurity

Vacation Long
Weekend Traffic Traffic

Relative Weekday Hour Average
Occupation Temperature Precipitation

GB 2021 TRUE TRUE TRUE 0.3% 0.0% 0.2% 0.0% 0.0% 0.1% 98.1% 1.3% 0.0%

GB 2021 TRUE FALSE TRUE 0.3% 0.0% 0.1% 0.0% 0.0% 0.0% 99.5%

RF 2021 TRUE TRUE TRUE 0.1% 0.0% 0.6% 0.1% 0.0% 0.1% 98.4% 0.8% 0.0%

RF 2021 TRUE TRUE FALSE 0.1% 0.0% 0.0% 0.1% 99.2% 0.7% 0.0%

GB 2021 TRUE FALSE FALSE 0.3% 0.0% 0.0% 0.0% 99.6%

RF 2021 TRUE FALSE FALSE 0.1% 0.0% 0.0% 0.0% 99.9%

RF 2021 TRUE FALSE TRUE 0.1% 0.0% 0.7% 0.1% 0.0% 0.0% 99.1%

GB 2021 TRUE TRUE FALSE 0.3% 0.0% 0.0% 0.1% 98.2% 1.3% 0.0%

GB 2021 FALSE FALSE TRUE 0.9% 0.3% 77.5% 19.1% 0.8% 1.5%

GB 2021 FALSE TRUE TRUE 1.0% 0.4% 75.5% 18.7% 0.7% 1.3% 2.4% 0.0%

RF 2021 FALSE FALSE FALSE 36.9% 4.9% 10.8% 47.5%

GB 2021 FALSE FALSE FALSE 37.1% 6.9% 13.2% 42.8%

RF 2021 FALSE TRUE TRUE 1.4% 0.2% 82.2% 11.1% 0.7% 1.9% 2.6% 0.1%

RF 2021 FALSE FALSE TRUE 1.4% 0.2% 83.0% 12.8% 0.7% 2.0%

GB 2021 FALSE TRUE FALSE 19.1% 12.5% 11.9% 26.5% 27.5% 2.4%

RF 2021 FALSE TRUE FALSE 19.0% 4.1% 10.7% 33.3% 30.7% 2.2%

GB 2019 TRUE TRUE FALSE 0.1% 0.0% 0.0% 0.2% 99.3% 0.3% 0.0%

GB 2019 TRUE FALSE FALSE 0.1% 0.0% 0.0% 0.1% 99.7%

RF 2019 TRUE FALSE FALSE 0.0% 0.0% 0.0% 0.1% 99.8%

RF 2019 TRUE TRUE FALSE 0.1% 0.0% 0.0% 0.2% 99.5% 0.2% 0.0%

GB 2019 FALSE FALSE FALSE 14.8% 14.5% 17.4% 53.3%

RF 2019 FALSE FALSE FALSE 14.2% 12.0% 16.0% 57.8%

RF 2019 FALSE TRUE FALSE 10.4% 4.9% 9.0% 30.6% 43.8% 1.2%

GB 2019 FALSE TRUE FALSE 13.1% 6.8% 10.6% 28.2% 39.8% 1.5%
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