Constrain on Oil Recovery Stage during Oil Shale Subcritical Water Extraction Process Based on Carbon Isotope Fractionation Character
Abstract
:1. Introduction
2. Material and Methods
2.1. Sample Preparation
2.2. Pyrolysis Experiments
2.3. Gas Compositional and Isotopic Analysis
3. Results and Discussion
3.1. Products Character
3.2. Carbon Isotopes Character
3.3. The Indicative Significance of the Carbon Isotope to ORR
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jiang, X.; Han, X.; Cui, Z. New technology for the comprehensive utilization of Chinese oil shale resources. Energy 2007, 32, 772–777. [Google Scholar] [CrossRef]
- Selberg, A.; Viik, M.; Pall, P.; Tenno, T. Environmental impact of closing of oil shale mines on river water quality in North-Eastern Estonia. Oil Shale 2009, 26, 169. [Google Scholar] [CrossRef] [Green Version]
- Kang, Z.; Zhao, Y.; Yang, D. Review of oil shale in-situ conversion technology. Appl. Energ. 2020, 269, 115121. [Google Scholar] [CrossRef]
- Sun, Y.; Kang, S.; Wang, S.; He, L.; Guo, W.; Li, Q.; Deng, S. Subcritical Water Extraction of Huadian Oil Shale at 300 °C. Energy Fuels 2019, 33, 2106–2114. [Google Scholar] [CrossRef]
- Jiang, X.; Cui, H.; Liu, M.; Guo, Q.; Xu, J.; Yang, J.; Yang, Y.; Li, Y.W. Extracting coal liquids from direct coal liquefaction residue using subcritical water. Energy Fuels 2016, 30, 4520–4528. [Google Scholar] [CrossRef]
- Kang, S.; Sun, Y.; Qiao, M.; Li, S.; Deng, S.; Guo, W.; Li, J.; He, W. The enhancement on oil shale extraction of FeCl3 catalyst in subcritical water. Energy 2022, 238, 121763, in progress. [Google Scholar] [CrossRef]
- Zendehboudi, S.; Bahadori, A. Shale Oil and Gas Handbook: Theory, Technologies, and Challenges; Gulf Professional Publishing: Houston, TX, USA, 2015. [Google Scholar]
- Lu, H.; Jia, F.; Guo, C.; Pan, H.; Long, X.; Liu, G. Effect of shale ash-based catalyst on the pyrolysis of Fushun oil shale. Catalysts 2019, 9, 900. [Google Scholar] [CrossRef] [Green Version]
- Bicker, M.; Endres, S.; Ott, L.; Vogel, H. Catalytical conversion of carbohydrates in subcritical water: A new chemical process for lactic acid production. J. Mol. Catal. A Chem. 2005, 239, 151–157. [Google Scholar] [CrossRef]
- Jiang, H.; Hong, W.; Zhang, Y.; Deng, S.; Chen, J.; Yang, C.; Ding, H. Behavior, kinetic and product characteristics of the pyrolysis of oil shale catalyzed by cobalt-montmorillonite catalyst. Fuel 2020, 269, 117468. [Google Scholar] [CrossRef]
- Spigolon, A.; Lewan, M.; Barros, P.; Coutinho, L.; Mendonça, F. Evaluation of the petroleum composition and quality with increasing thermal maturity as simulated by hydrous pyrolysis: A case study using a Brazilian source rock with Type I kerogen. Org. Geochem. 2015, 83-84, 27–53. [Google Scholar] [CrossRef]
- Shao, D.; Zhang, T.; Kob, L.T.; Li, Y.; Yan, J.; Zhang, L.; Luo, H.; Qiao, B. Experimental investigation of oil generation, retention, and expulsion within Type II kerogen-dominated marine shales: Insights from gold-tube nonhydrous pyrolysis of Barnett and Woodford Shales using miniature core plugs. Int. J. Coal Geol. 2020, 217, 103337. [Google Scholar] [CrossRef]
- Zhan, H.; Wang, Y.; Chen, M.; Chen, R.; Zhao, K.; Yue, W. An optical mechanism for detecting the whole pyrolysis process of oil shale. Energy 2019, 190, 116343. [Google Scholar] [CrossRef]
- Kibria, M.; Das, S.; ·Hu, Q.; Basu, A.; Hu, W.; Mandal, S. Thermal maturity evaluation using Raman spectroscopy for oil shale samples of USA: Comparisons with vitrinite reflectance and pyrolysis methods. Petrol. Sci. 2020, 17, 567–581. [Google Scholar] [CrossRef] [Green Version]
- Lis, G.P.; Mastalerz, M.; Schimmelman, A.; Lewan, M.; Stankiewicz, B. FTIR absorption indices for thermal maturity in comparison with vitrinite reflectance R0 in type-II kerogens from Devonian black shales. Org. Geochem. 2005, 36, 1533–1552. [Google Scholar] [CrossRef]
- Prinzhofer, A.; Mello, M.; Silva, F.; Takaki, T. New geochemical characterization of natural gas and its use in oil and gas evaluation. AAPG Memoir 2000, 73, 107–119. [Google Scholar]
- Behar, F.; Lorant, F.; Lewan, M. Role of NSO compounds during primary cracking of a Type II kerogen and a Type III lignite. Org. Geochem. 2008, 39, 1–22. [Google Scholar] [CrossRef]
- Lei, G.; Li, Z.; Yao, C.; Zheng, Y.; Wang, N.; Wang, Z. Numerical simulation on in-situ upgrading of oil shale via steam injection. J. China Univ. Petrol. 2017, 41, 100–107. (In Chinese) [Google Scholar]
- Leonte, M.; Wang, B.; Socolofsky, S.A.; Mau, S.; Breier, J.A.; Kessler, J.D. Using Carbon Isotope Fractionation to Constrain the Extent of Methane Dissolution into the Water Column Surrounding a Natural Hydrocarbon Gas Seep in the Northern Gulf of Mexico. Geochem. Geophys. Geosystems 2018, 19, 4459–4475. [Google Scholar] [CrossRef]
- Xia, X.; Chen, J.; Braun, R.; Tang, Y. Isotopic reversals with respect to maturity trends due to mixing of primary and secondary products in source rocks. Chem. Geol. 2012, 339, 205–212. [Google Scholar] [CrossRef]
- Pan, C.; Yu, L.; Liu, J.; Fu, J. Chemical and carbon isotopic fractionations of gaseous hydrocar-bons during abiogenic oxidation. Earth Planet. Sci. Lett. 2006, 246, 70–89. [Google Scholar] [CrossRef]
- Gao, L.; Wu, S.; Deev, A.; Olson, R.; Mosca, F.; Zhang, S.; Ni, Y.; Qu, Q.; LaFollette, R.; Chen, G.; et al. The gas isotope interpretation tool: A novel method to better predict production decline. AAPG Bull. 2017, 101, 1263–1275. [Google Scholar] [CrossRef]
- Schoell, M. The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochim. Cosmochim. Acta 1980, 44, 649–661. [Google Scholar] [CrossRef]
- Gao, L.; Schimmelmann, A.; Tang, Y.; Mastalerz, M. Isotope rollover in shale gas observed in laboratory pyrolysis experiments: Insight to the role of water in thermogenesis of mature gas. Org. Geochem. 2014, 68, 95–106. [Google Scholar] [CrossRef]
- Zumberge, J.; Ferworn, K.; Brown, S. Isotopic reversal (‘rollover’) in shale gases produced from the Mississippian Barnett and Fayetteville formations. Mar. Pet. Geol. 2011, 31, 43–52. [Google Scholar] [CrossRef]
- Bottinga, Y. Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite-carbon dioxide-graphite-methane-hydrogen-water vapor. Geochim. Cosmochim. Acta 1969, 33, 49–64. [Google Scholar] [CrossRef]
- Polyakov, V.; Kharlashina, N. The use of heat-capacity data to calculate carbon-isotope fractionation between graphite, diamond, and carbon-dioxide—A new approach. Geochim. Cosmochim. Acta 1995, 59, 2561–2572. [Google Scholar] [CrossRef]
- Kueter, N.; Schmidt, M.; Lilley, M.; Bernasconi, S. Experimental determination of equilibrium CH4-CO2-CO carbon isotope fractionation factors (300–1200 °C). Earth Planet. Sci. Lett. 2019, 506, 64–75. [Google Scholar] [CrossRef]
- Horita, J. Carbon isotope exchange in the system CO2-CH4 at elevated temperatures. Geochim. Cosmochim. Acta 2001, 65, 1907–1919. [Google Scholar] [CrossRef]
- Lu, S.; Li, J.; Xue, H.; Chen, F.; Xu, Q.; Wang, M.; Li, W.; Pang, X. Pyrolytic Gaseous Hydrocarbon Generation and the Kinetics of Carbon Isotope Fractionation in Representative Model Compounds with Different Chemical Structures. Geochem. Geophys. Geosystems 2019, 20, 1773–1793. [Google Scholar] [CrossRef]
- Berner, U.; Faber, E.; Stahl, W. Mathematical simulation of the carbon isotopic fractionation between huminitic coals and related methane. Chem. Geol. 1992, 94, 315–319. [Google Scholar] [CrossRef]
- Cramer, B.; Faber, E.; Gerling, P.; Krooss, B. Reaction kinetics of Stable carbon isotopes in natural gass: Insights from dry, open system pyrolysis. Energy Fuel. 2001, 15, 517–532. [Google Scholar] [CrossRef]
- Tang, Y.; Perry, J.; Jenden, P.; Schoell, M. Mathematical modeling of stable carbon isotope ratios in natural gases. Geochim. Cosmochim. Acta 2000, 64, 2673–2687. [Google Scholar] [CrossRef]
- He, K.; Zhang, S.; Mi, J.; Zhang, W. Pyrolysis involving n-hexadecane, water and minerals: Insight into the mechanisms and isotope fractionation for water-hydrocarbon reaction. J. Anal. Appl. Pyrolysis 2018, 130, 198–208. [Google Scholar] [CrossRef]
- He, K.; Zhang, S.; Mi, J.; Zhang, W. The evolution of chemical groups and isotopic fractionation at different maturation stages during lignite pyrolysis. Fuel 2017, 211, 492–506. [Google Scholar] [CrossRef]
- Sackett, W. The thermal stability of methane from 600–1000 °C. Org. Geochem. 1995, 23, 403–405. [Google Scholar] [CrossRef]
- Li, Q.; Fu, X.; Li, J.; Wang, Y.; Lv, X.; Hu, C. Effect of heating rate on yields and distribution of oil products from the pyrolysis of pubescen. Energy Technol. 2018, 6, 366–378. [Google Scholar] [CrossRef]
- Deng, S. Sub-critical water extraction of organic matter from oil shale lumps. J. Anal. Appl. Pyrolysis 2012, 98, 151–158. (In Chinese) [Google Scholar] [CrossRef]
- Tian, H.; Xiao, X.; Wilkins, R.; Tang, Y. An experimental comparison of gas generation from three oil fractions: Implications for the chemical and stable carbon isotopic signatures of oil cracking gas. Org. Geochem. 2012, 46, 96–112. [Google Scholar] [CrossRef]
- Prinzhofer, A.A.; Huc, A.Y. Genetic and post-genetic molecular and isotopic fractionations in natural gases. Chem. Geol. 1995, 126, 281–290. [Google Scholar] [CrossRef]
- Wang, Q.; Xie, Z.; Jia, C.; Li, C. Characteristics of gases evolution during Huadian oil shale pyrolysis. Chem. Ind. Eng. Prog. 2017, 3, 4416–4422. (In Chinese) [Google Scholar]
- Gao, J.; Liu, J.; Ni, Y. Gas generation and its isotope composition during coal pyrolysis: The catalytic effect of nickel and magnetite. Fuel 2018, 222, 74–82. [Google Scholar] [CrossRef]
- Lewan, M.D.; Roy, S. Role of water in hydrocarbon generation from Type-I kerogen in Mahogany oil shale of the Green River Formation. Org. Geochem. 2011, 42, 31–41. [Google Scholar] [CrossRef]
- Seewald, J.S. Organic–inorganic interactions in petroleum-producing sedimentary basins. Nature 2003, 426, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Wu, X.; Wang, X.; Jin, Z.; Zhu, D.; Meng, Q.; Huang, S.; Liu, J.; Fu, Q. Carbon and hydrogen isotopes of methane, ethane, and propane: A review of genetic identification of natural gas. Earth Sci. Rev. 2018, 190, 247–272. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Z.; Sun, L.; Li, Y.; Zhang, M.; Ji, L. Stable isotope reversal and evolution of gas during the hydrous pyrolysis of continental kerogen in source rocks under supercritical conditions. Int. J. Coal Geol. 2019, 205, 105–114. [Google Scholar] [CrossRef]
- Li, W.; Zhu, Y.-M.; Liu, Y. Gas evolution and isotopic fractionations during pyrolysis on coals of different ranks. Int. J. Coal Geol. 2018, 188, 136–144. [Google Scholar] [CrossRef]
- Duan, Y.; Sun, T.; Qian, Y.; He, J.; Zhang, X.; Xu, L.; Wu, B. Pyrolysis experiments of forest marsh peat samples with different maturities: An attempt to understand the isotopic fractionation of coalbed methane during staged accumulation. Fuel 2012, 94, 480–485. [Google Scholar] [CrossRef]
- Lu, S.; Zhang, M. Petroleum Geochemistry; Petroleum Industry Press: Beijing, China, 2008. (In Chinese) [Google Scholar]
- Hou, L.; Ma, W.; Luo, X.; Liu, J. Characteristics and quantitative models for hydrocarbon generationretention-production of shale under ICP conditions: Example from the Chang 7 member in the Ordos Basin. Fuel 2020, 279, 118497. [Google Scholar] [CrossRef]
- Xie, L.; Sun, Y.; Uguna, C.N.; Li, Y.; Snape, C.E.; Meredith, W. Thermal cracking of oil under water pressure up to 900 bar at high thermal maturities: 1. Gas compositions and carbon isotopes. Energy Fuel 2016, 30, 2617–2627. [Google Scholar] [CrossRef] [Green Version]
Proximate Analysis (wt %, ad) | Ultimate Analysis (wt %, ad) | Fischer Assay Analysis (wt %) | |||
---|---|---|---|---|---|
Moisture | 3.36 | C | 40.40 | Shale oil | 16.08 |
Volatiles | 36.52 | H | 5.97 | Gas | 4.80 |
Fixed carbon | 3.42 | N | 0.75 | Water | 5.77 |
Ash | 56.70 | S | 0.83 | Residue | 73.35 |
Time | C1H4 | C2H6 | C2H4 | C3H8 | C3H6 | CO2 | CO | H2 | Wetness Index a | ORR b | CH4 | C2H6 | C3H8 | CO2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
h | Volume (%) | Weight (%) | δ13C (‰, VPDB) | |||||||||||
2 | 3.84 | 0.87 | 0.18 | 0.28 | 0.12 | 54.95 | 1.03 | 3.90 | 28.36 | 6.13 | −36.8 | −31.96 | −29.79 | −8.19 |
4 | 4.89 | 1.74 | 0.19 | 0.77 | 0.28 | 63.18 | 0.53 | 4.73 | 42.20 | 7.18 | - | - | - | - |
6 | 5.78 | 1.98 | 0.18 | 0.78 | 0.25 | 64.38 | 0.45 | 3.49 | 38.05 | 9.02 | −36.96 | −29.58 | −27.94 | −5.95 |
8 | 6.08 | 2.19 | 0.17 | 0.96 | 0.29 | 62.84 | 0.30 | 5.84 | 41.26 | 11.36 | - | - | - | - |
10 | 6.74 | 2.45 | 0.17 | 1.08 | 0.30 | 64.11 | 0.29 | 6.23 | 41.14 | 11.39 | −37.54 | −29.68 | −27.11 | −5.69 |
20 | 8.30 | 3.14 | 0.14 | 1.42 | 0.34 | 64.02 | 0.24 | 7.81 | 41.67 | 11.50 | −39.55 | −30.69 | −29.39 | −7.11 |
30 | 10.88 | 3.95 | 0.09 | 1.81 | 0.32 | 61.93 | 0.11 | 8.14 | 39.52 | 15.31 | −38.79 | −30.16 | −28.89 | −6.65 |
50 | 12.4 | 4.60 | 0.09 | 2.25 | 0.38 | 56.8 | 0.14 | 9.27 | 40.95 | 15.73 | −38.59 | −29.85 | −28.49 | −6.83 |
70 | 13.45 | 5.12 | 0.06 | 2.66 | 0.34 | 61.94 | 0.05 | 6.46 | 41.95 | 16.52 | −38.55 | −30.8 | −29.11 | −7.56 |
100 | 14.69 | 5.54 | 0.05 | 2.85 | 0.30 | 59.25 | 0.03 | 6.16 | 41.03 | 15.74 | −38.95 | −30.98 | −29.37 | −7.54 |
Time | C1H4 | CO2 | Recovered Dry Coefficient a |
---|---|---|---|
h | Volume (%) | ||
2 | 5.07 | 55.72 | 97.52 |
4 | 6.21 | 63.58 | 95.05 |
6 | 6.77 | 64.72 | 95.21 |
8 | 7.62 | 63.07 | 94.19 |
10 | 8.37 | 64.33 | 93.79 |
20 | 10.31 | 64.20 | 92.44 |
30 | 12.94 | 62.01 | 91.12 |
50 | 14.75 | 56.91 | 88.97 |
70 | 15.08 | 61.98 | 88.58 |
100 | 16.24 | 59.27 | 87.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, R.; Ren, L.; Deng, S.; Sun, Y.; Chang, Z. Constrain on Oil Recovery Stage during Oil Shale Subcritical Water Extraction Process Based on Carbon Isotope Fractionation Character. Energies 2021, 14, 7839. https://doi.org/10.3390/en14237839
Zhao R, Ren L, Deng S, Sun Y, Chang Z. Constrain on Oil Recovery Stage during Oil Shale Subcritical Water Extraction Process Based on Carbon Isotope Fractionation Character. Energies. 2021; 14(23):7839. https://doi.org/10.3390/en14237839
Chicago/Turabian StyleZhao, Rongsheng, Luquan Ren, Sunhua Deng, Youhong Sun, and Zhiyong Chang. 2021. "Constrain on Oil Recovery Stage during Oil Shale Subcritical Water Extraction Process Based on Carbon Isotope Fractionation Character" Energies 14, no. 23: 7839. https://doi.org/10.3390/en14237839
APA StyleZhao, R., Ren, L., Deng, S., Sun, Y., & Chang, Z. (2021). Constrain on Oil Recovery Stage during Oil Shale Subcritical Water Extraction Process Based on Carbon Isotope Fractionation Character. Energies, 14(23), 7839. https://doi.org/10.3390/en14237839