Improving Thermal Stability and Hydrophobicity of Rutile-TiO2 Nanoparticles for Oil-Impregnated Paper Application
Abstract
:1. Introduction
2. Using Sizing Agents in Making Cellulose Fibre to Be Hydrophobic
3. Experimental Procedures
3.1. Materials
3.2. Synthesis of Rutile-TiO2 Nanoparticles
3.3. Surface Modification of the Rutile-TiO2 Nanoparticles
4. Characterisation of the Surface-Modified Rutile-TiO2 Nanoparticles
4.1. X-ray Diffraction Results
4.2. Raman Spectroscopy Results
4.3. Transmission Electron Microscopy (TEM) Results
4.4. Fourier-Transform Infrared Spectroscopy (FT-IR)
4.5. Moisture Absorption Characteristics
4.6. Thermal-Stress-Induced Weight Loss of Surface-Modified Rutile-TiO2 NPs
4.7. Thermogravimetric Analysis (TGA) Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lisoň, L.; Kolcunová, I.; Kmec, M. Effect of Thermal Ageing on the Oil-Paper Insulation. Acta Electrotech. Inform. 2014, 14, 23–26. [Google Scholar] [CrossRef]
- Jusner, P.; Schwaiger, E.; Potthast, A.; Rosenau, T. Thermal stability of cellulose insulation in electrical power transformers—A review. Carbohydr. Polym. 2021, 252, 117196. [Google Scholar] [CrossRef]
- Oommen, T.V.; Prevost, T.A. Cellulose insulation in oil-filled power transformers: Part II maintaining insulation integrity and life. IEEE Electr. Insul. Mag. 2006, 22, 5–14. [Google Scholar] [CrossRef]
- Anglhuber, M. Why is water killing power transformer insulation? Transformers Magazine, 8 July 2017; 106–112. [Google Scholar]
- Kulasinski, K.; Guyer, R.; Derome, D.; Carmeliet, J. Water Adsorption in Wood Microfibril-Hemicellulose System: Role of the Crystalline–Amorphous Interface. Biomacromolecules 2015, 16, 2972–2978. [Google Scholar] [CrossRef] [PubMed]
- Kulasinski, K. Effects of Water Adsorption in Hydrophilic Polymers. In Polymer Science: Research Advances, Practical Applications and Educational Aspects; Formatex Research Center: Badajoz, Spain, 2016; pp. 217–223. ISBN 978-84-942134-8-9. [Google Scholar]
- Nikjoo, R.; Taylor, N.; Edin, H.; Hollertz, R.; Wahlander, M.; Wagberg, L.; Malmstrom, E. Comparison of oil-impregnated papers with SiO2 and ZnO nanoparticles or high lignin content, for the effect of superimposed impulse voltage on AC surface PD. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 1726–1734. [Google Scholar] [CrossRef]
- Gielniak, J.; Graczkowski, A.; Moranda, H.; Przybylek, P.; Walczak, K.; Nadolny, Z.; Moscicka-Grzesiak, H.; Feser, K.; Gubanski, S.M. Moisture in cellulose insulation of power transformers—Statistics. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 982–987. [Google Scholar] [CrossRef]
- Martin, D.; Saha, T.; Dee, R.; Buckley, G.; Chinnarajan, S.; Caldwell, G.; Zhou, J.B.; Russell, G. Determining water in transformer paper insulation: Analyzing aging transformers. IEEE Electr. Insul. Mag. 2015, 31, 23–32. [Google Scholar] [CrossRef]
- Prevost, T.A.; Oommen, T.V. Cellulose insulation in oil-filled power transformers: Part I—History and development. IEEE Electr. Insul. Mag. 2006, 22, 28–35. [Google Scholar] [CrossRef]
- Garcia, B.; Burgos, J.C.; Alonso, A.M.; Sanz, J. A moisture-in-oil model for power transformer monitoring—Part I: Theoretical foundation. IEEE Trans. Power Deliv. 2005, 20, 1417–1422. [Google Scholar] [CrossRef]
- Shroff, D.H.; Stannett, A.W. A review of paper aging in power transformers. Transm. Distrib. IEE Proc. C-Gener. 1985, 132, 312–319. [Google Scholar] [CrossRef]
- Przybysz, P.; Dubowik, M.; Kucner, M.A.; Przybysz, K.; Przybysz Buzała, K. Contribution of Hydrogen Bonds to Paper Strength Properties. PLoS ONE 2016, 11, e0155809. [Google Scholar] [CrossRef] [Green Version]
- Hirn, U.; Schennach, R. Comprehensive analysis of individual pulp fiber bonds quantifies the mechanisms of fiber bonding in paper. Sci. Rep. 2015, 5, 10503. [Google Scholar] [CrossRef] [Green Version]
- Fofana, I.; Wasserberg, V.; Borsi, H.; Gockenbach, E. Drying of Transformer Insulation using Zeolite. Electr. Insul. Mag. IEEE 2004, 20, 20–30. [Google Scholar] [CrossRef]
- Prevost, T.A. Thermally Upgraded Insulation in Transformers. In Proceedings of the IEEE Electrical Insulation Conference and Electrical Manufacturing Expo, Indianapolis, IN, USA, 23–26 October 2005. [Google Scholar] [CrossRef]
- Morrison, E.L. Evaluation of the Thermal Stability of Electrical Insulating Paper. IEEE Trans. Electr. Insul. 1968, EI-3, 76–82. [Google Scholar] [CrossRef]
- Liang, N.; Liao, R.; Xiang, M.; Mo, Y.; Yuan, Y. Influence of Amine Compounds on the Thermal Stability of Paper-Oil Insulation. Polymers 2018, 10, 891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, J.; Zhang, T. Moisture content assessment of transformer solid insulation using return voltage spectrum. In Proceedings of the 2009 IEEE 9th International Conference on the Properties and Applications of Dielectric Materials, Harbin, China, 19–23 July 2009; pp. 257–260. [Google Scholar] [CrossRef]
- Martin, D.; Saha, T.; Perkasa, C.; Lelekakis, N.; Gradnik, T. Fundamental concepts of using water activity probes to assess transformer insulation water content. IEEE Electr. Insul. Mag. 2016, 32, 9–16. [Google Scholar] [CrossRef]
- Cui, Y.; Ma, H.; Saha, T.; Ekanayake, C. Understanding Moisture Dynamics and Its Effect on the Dielectric Response of Transformer Insulation. IEEE Trans. Power Deliv. 2015, 30, 2195–2204. [Google Scholar] [CrossRef] [Green Version]
- Suleiman, A.A.; Nazri, F.; Muhamad, N.A.; Bashir, N.; Mohamad, Z. Wetting characteristics for kraft paper immersed in mineral and biodegradable insulation oils. In Proceedings of the 2014 IEEE 8th International Power Engineering and Optimization Conference (PEOCO2014), Langkawi, Malaysia, 24–25 March 2014; pp. 194–198. [Google Scholar] [CrossRef]
- IEEE. Guide for Evaluation and Reconditioning of Liquid Immersed Power Transformers. In IEEE Std C57140-2017 Revis. IEEE Std C57140-2006; IEEE: New York, NY, USA, 2017; pp. 1–88. [Google Scholar] [CrossRef]
- CIGRE Working Group A2. 18. Life Management Techniques for Power Transformers; CIGRE: Paris, France, 2003. [Google Scholar]
- Contreras, J.E.; Rodríguez, E.; Taha-Tijerina, J. Nanotechnology applications for electrical transformers—A review. Electr. Power Syst. Res. 2017, 143, 573–584. [Google Scholar] [CrossRef]
- Liu, D.; Ye, J.; Xu, X.; Deng, C.G.; Li, X. Optimization of Mass Fraction and Particle Size of TiO2 Additives in Application of HVDC Transformer Insulation. In Proceedings of the 2019 IEEE 20th International Conference on Dielectric Liquids (ICDL), Roma, Italy, 23–27 June 2019. [Google Scholar] [CrossRef]
- Liao, R.-J.; Lv, C.; Yang, L.; Zhang, Y.-Y.; Liu, T. Space Charge Behavior in Oil-Impregnated Insulation Paper Reinforced with Nano-TiO2. BioResources 2013, 8, 5655–5665. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Wu, Y.; Xu, X.; Ye, J.; Li, J.; Yu, S.; Li, X. Suppression Mechanism of TiO2 for the Partial Discharge of Oil-Paper Insulation in Intensive Electric Field. In Proceedings of the 20th International Conference on Dielectric Liquids (ICDL), Rome, Italy, 23–27 June 2019. [Google Scholar] [CrossRef]
- Hollertz, R.; Wagberga, L.; Pitois, C. Novel cellulose nanomaterials. In Proceedings of the 2014 IEEE 18th International Conference on Dielectric Liquids (ICDL), Bled, Slovenia, 29 June–3 July 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Liao, R.; Zhang, F.; Yuan, Y.; Yang, L.; Liu, T.; Tang, C. Preparation and Electrical Properties of Insulation Paper Composed of SiO2 Hollow Spheres. Energies 2012, 5, 2943–2951. [Google Scholar] [CrossRef]
- Gao, F.; Xiang, M.; Liao, R.; Xu, Z.; Wang, J. The experimental investigation on space charge distribution of cellulose insulation paper modified with alumina nanoparticles. In Proceedings of the 2016 International Conference on Condition Monitoring and Diagnosis (CMD), Xi’an, China, 25–28 September 2016; pp. 757–760. [Google Scholar] [CrossRef]
- Gomes, C.; Izadi, M. Electrical Isolation of Two Earthing Systems under Lightning Conditions with TiO2 Nano Fluid Barrier. In Proceedings of the 2019 International Symposium on Lightning Protection (XV SIPDA), Sao Paulo, Brazil, 30 September–4 October 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Calva, P.; Cano, A.; Martinez, H. Fillers in Electrical Papers for Power Transformers. Adv. Mater. Res. 2014, 875–877, 335–340. [Google Scholar] [CrossRef]
- Morsy, F.; El-sherbiny, S.; Samir, M.; Fouad, O. Application of nanostructured titanium dioxide pigments in paper coating: A comparison between prepared and commercially available ones. J. Coat. Technol. Res. 2015, 13, 307–316. [Google Scholar] [CrossRef]
- Noman, M.T.; Ashraf, M.A.; Ali, A. Synthesis and applications of nano-TiO2: A review. Environ. Sci. Pollut. Res. 2019, 26, 3262–3291. [Google Scholar] [CrossRef]
- Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep. 2003, 48, 53–229. [Google Scholar] [CrossRef]
- Malekshahi Byranvand, M.; Kharata, A.; Fatholahib, L.; Malekshahi Beiranvand, Z. A Review on Synthesis of Nano-TiO2 via Different Methods. J. NanoStruct. 2013, 3, 1–9. [Google Scholar] [CrossRef]
- Kapilashrami, M.; Zhang, Y.; Liu, Y.S.; Hagfeldt, A.; Guo, J. Probing the Optical Property and Electronic Structure of TiO2 Nanomaterials for Renewable Energy Applications. Chem. Rev. 2014, 114, 9662–9707. [Google Scholar] [CrossRef] [PubMed]
- Vorontsov, A.; Valdes, H.; Smirniotis, P.; Paz, Y. Recent Advancements in the Understanding of the Surface Chemis-try in TiO2 Photocatalysis. Surfaces 2020, 3, 72–92. [Google Scholar] [CrossRef] [Green Version]
- Andritsch, T.; Fabiani, D.; Vazquez, I. Nanodielectrics-examples of preparation and microstructure. IEEE Electr. Insul. Mag. 2013, 29, 21–28. [Google Scholar] [CrossRef]
- Hubbe, M. Paper’s resistance to wetting—A review of internal sizing chemicals and their effects. BioResources 2007, 2, 106–145. [Google Scholar]
- Porkert, S. “Physico-Chemical Processes during Reactive Paper Sizing with Alkenyl Succinic Anhydride (ASA),” Technische Uni-versität Dresden, Germany. 2016. Available online: http://rgdoi.net/10.13140/RG.2.2.18268.39045 (accessed on 9 November 2019).
- Rauni, S. On the Internal Sizing Mechanisms of Paper with AKD and ASA Related to Surface Chemistry, Wettability and Friction, KTH; Royal Institute of Technology: Stockholm, Sweden, 2007. [Google Scholar]
- Tsuda, Y.; Kojima, M.; Matsuda, T.; Oh, J.M. Soluble Polyimides Based on Long-chain Alkyl Groups via Amide Linkages. Polym. J. 2008, 40, 354–366. [Google Scholar] [CrossRef] [Green Version]
- Biswas, A.; Cheng, H.N.; Kim, S.; Alves, C.R.; Furtado, R.F. Hydrophobic Modification of Cashew Gum with Alkenyl Succinic Anhydride. Polymers 2020, 12, 514. [Google Scholar] [CrossRef] [Green Version]
- Ryu, Y.S.; Lee, J.H.; Kim, S.H. Efficacy of alkyl ketene dimer modified microcrystalline cellulose in polypropylene matrix. Polymer 2020, 196, 122463. [Google Scholar] [CrossRef]
- varshoei, A.; Javid, E.; Rahmaninia, M.; Rahmany, F. The Performance of Alkylketene Dimer (AKD) for the Internal Sizing of Recycled OCC Pulp. Lignocellulose 2013, 2, 316–326. [Google Scholar]
- Zhang, Q.; Han, X.; Pu, J. In situ chemosynthesis of TiO2 nanoparticles to endow paper with high water-resistance and retention rate properties. Appl. Phys. A 2018, 124, 571. [Google Scholar] [CrossRef]
- Yuan, Z.; Wen, Y. Enhancement of hydrophobicity of nanofibrillated cellulose through grafting of alkyl ketene dimer. Cellulose 2018, 25, 6863–6871. [Google Scholar] [CrossRef]
- Li, L.; Neivandt, D. The mechanism of alkyl ketene dimer (AKD) sizing on cellulose model films studied by sum frequency generation vibrational spectroscopy. Cellulose 2019, 26, 3415–3435. [Google Scholar] [CrossRef]
- Kumudinie, C. Polymer–Ceramic Nanocomposites: Interfacial Bonding Agents. In Encyclopedia of Materials: Science and Technology; Buschow, K.H.J., Cahn, R.W., Flemings, M.C., Ilschner, B., Kramer, E.J., Mahajan, S., Veyssière, P., Eds.; Elsevier: Oxford, UK, 2001; pp. 7574–7577. [Google Scholar] [CrossRef]
- Xiang, B.; Jiang, G.; Zhang, J. Surface modification of TiO2 nanoparticles with silane coupling agent for nanocomposite with poly(butyl acrylate). Plast. Rubber Compos. 2015, 44, 148–154. [Google Scholar] [CrossRef]
- Zhao, J.; Milanova, M.; Warmoeskerken, M.M.C.G.; Dutschk, V. Surface modification of TiO2 nanoparticles with silane coupling agents. Colloids Surf. Physicochem. Eng. Asp. 2012, 413, 273–279. [Google Scholar] [CrossRef]
- Xie, Y.; Hill, C.; Xiao, Z.; Militz, H.; Mai, C. Silane coupling agents used for natural fiber/polymer composites: A review. Compos. Part Appl. Sci. Manuf. 2010, 41, 806–819. [Google Scholar] [CrossRef]
- Pouran, H.; Pérez Colodrero, R.; Wu, S.; Hix, G.; Zakharova, J.; Zhang, H. Assessment of ATR-FTIR spectroscopy with multivariate analysis to investigate the binding mechanisms of Ag and TiO2 nanoparticles to Chelex®-100 or MetsorbTM for DGT technique. Anal. Methods 2020, 12, 959–969. [Google Scholar] [CrossRef]
- El-Sherbiny, S.; Morsy, F.; Samir, M.; Fouad, O.A. Synthesis, characterization and application of TiO2 nanopowders as special paper coating pigment. Appl. Nanosci. 2014, 4, 305–313. [Google Scholar] [CrossRef] [Green Version]
- Anwar, M.S.; Kumar, S.; Ahmed, F.; Arshi, N.; Seo, Y.A.; Lee, C.; Koo, B. One Step Synthesis of Rutile TiO2 Nanoparticles at Low Temperature. J. Nanosci. Nanotechnol. 2011, 12, 1555–1558. [Google Scholar] [CrossRef]
- Li, L.; Yan, J.; Wang, T.; Zhao, Z.-J.; Zhang, J.; Gong, J.; Guan, N. Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production. Nat. Commun. 2015, 6, 5881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekoi, E.J.; Gowen, A.; Dorrepaal, R.; Dowling, D.P. Characterisation of titanium oxide layers using Raman spectroscopy and optical profilometry: Influence of oxide properties. Results Phys. 2019, 12, 1574–1585. [Google Scholar] [CrossRef]
- Mazza, T.; Barborini, E.; Piseri, P.; Milani, P.; Cattaneo, D.; Li Bassi, A.; Bottani, C.; Ducati, C. Raman spectroscopy characterization of TiO2 rutile nanocrystals. Phys. Rev. B Condens. MATTER Mater. Phys. 2007, 75, 045416. [Google Scholar] [CrossRef]
- Wypych, A.; Bobowska, I.; Tracz, M.; Opasinska, A.; Kadlubowski, S.; Krzywania-Kaliszewska, A.; Grobelny, J.; Wojciechowski, P. Dielectric Properties and Characterisation of Titanium Dioxide Obtained by Different Chemistry Methods. Available online: https://www.hindawi.com/journals/jnm/2014/124814/ (accessed on 11 June 2020).
- Wang, W.; Gu, B.; Liang, L.; Hamilton, W.A.; Wesolowski, D.J. Synthesis of Rutile (α-TiO2) Nanocrystals with Controlled Size and Shape by Low-Temperature Hydrolysis: Effects of Solvent Composition. J. Phys. Chem. B 2004, 108, 14789–14792. [Google Scholar] [CrossRef]
- Tsai, W.-B.; Kao, J.-Y.; Wu, T.-M.; Cheng, W.-T. Dispersion of Titanium Oxide Nanoparticles in Aqueous Solution with Anionic Stabilizer via Ultrasonic Wave. J. Nanoparticles 2016. Available online: https://www.hindawi.com/journals/jnp/2016/6539581/ (accessed on 1 November 2020). [CrossRef]
- Mandzy, N.; Grulke, E.; Druffel, T. Breakage of TiO2 Agglomerates in Electrostatically Stabilized Aqueous Dispersions. Powder Technol. 2005, 160, 121–126. [Google Scholar] [CrossRef]
- Al-Wassil, A.I.; Al-Farhan, K.A.; Mukhalalati, M.; Mahfouz, R.M. Coordination Chemistry of Thenoyltrifluoroacetone 1-Synthesis and Characterization of In3+-thenoyltrifluoroacetone Complex. Spectrosc. Lett. 1998, 31, 299–305. [Google Scholar] [CrossRef]
- Ferenc, W.; Cristóvão, B.; Sarzyński, J. Magnetic, thermal and spectroscopic properties of lanthanide(III) 2-(4-chlorophenoxy) acetates, Ln(C8H6ClO3)3•nH2O. J. Serbian Chem. Soc. 2013, 78, 1335–1349. [Google Scholar] [CrossRef]
- Ukken, M.P.; Ummathur, M.B. Synthesis and Characterization of Two Conjugated b-diketones and their Metal Complexes. Arch. Appl. Sci. Res. 2013, 5, 247–250. [Google Scholar]
- Kumar, M.; Sharma, T.R. Synthesis, Characterization and Properties of Metal Complexes of Beta-diketonate Complexes. Orient. J. Chem. 2012, 28, 1827–1831. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.G.; Deng, R.W.; Chen, Z.N. Transition metal complexes of 2-thenoyltrifluoroacetone isonicotinoyl hydrazone. Transit. Met. Chem. 1993, 18, 23–26. [Google Scholar] [CrossRef]
- Bagheri, S.; Shameli, K.; Abd Hamid, S.B. Synthesis and Characterization of Anatase Titanium Dioxide Nanoparticles Using Egg White Solution via Sol-Gel Method. J. Chem. 2012. Available online: https://www.hindawi.com/journals/jchem/2013/848205/ (accessed on 4 November 2020). [CrossRef]
- Vetrivel, V.; Rajendran, D.K.; Kalaiselvi, V. Synthesis and characterization of Pure Titanium dioxide nanoparticles by Sol-gel method. Int. J. ChemTech Res. 2015, 7, 1090–1097. [Google Scholar]
- Wang, Z.; Lian, J.; Xiang, X.; Zu, X.; Wang, L. Preparation and characterization of polymer/inorganic nanoparticle composites through electron irradiation. J. Mater. Sci. 2006, 41, 405–410. [Google Scholar]
- Pan, H.; Wang, X.; Xiao, S.; Yu, L.; Zhang, Z. Preparation and characterization of TiO2 nanoparticles surface-modified by octadecyltrimethoxysilane. Indian J. Eng. Mater Sci. 2013, 7, 561–567. [Google Scholar]
- León, A.; Reuquen, P.; Garín, C.; Segura, R.; Vargas, P.; Zapata, P.; Orihuela, P.A. FTIR and Raman Characterization of TiO2 Nanoparticles Coated with Polyethylene Glycol as Carrier for 2-Methoxyestradiol. Appl. Sci. 2017, 7, 49. [Google Scholar] [CrossRef]
- Zhuravlev, L.T. Concentration of hydroxyl groups on the surface of amorphous silicas. Langmuir 1987, 3, 316–318. [Google Scholar] [CrossRef]
- Kotsokechagia, T.; Cellesi, F.; Thomas, A.; Niederberger, M.; Tirelli, N. Preparation of Ligand-Free TiO2 (Anatase) Nanoparticles through a Nonaqueous Process and Their Surface Functionalization. Langmuir 2008, 24, 6988–6997. [Google Scholar] [CrossRef]
- Seo, W.S.; Cho, N.S.; Ohga, S. Possibility of Hydrogen Bonding between AKD and Cellulose Molecules. J. Fac. Agric. Kyushu Univ. 2008, 53, 405–410. [Google Scholar] [CrossRef]
- Pliev, T.N.; Karpov, O.N.; Glavati, O.L.; Popovich, T.D. Infrared spectroscopic analysis of high-molecular alkenylsuccinic anhydrides for succinic anhydride groupings. J. Appl. Spectrosc. 1973, 18, 71–75. [Google Scholar] [CrossRef]
- Nishiyama, M.; Isogai, A.; Onabe, F. Structures of Alkenyl Succinic Anhydride(ASA) Components in ASA-Sized Papersheet. Seni Gakkaishi 1996, 52, 180–188. [Google Scholar] [CrossRef] [Green Version]
- Candy, L.; Vaca-Garcia, C.; Borredon, E. Synthesis and characterization of oleic succinic anhydrides: Structure-property relations. J. Am. Oil Chem. Soc. 2005, 82, 271–277. [Google Scholar] [CrossRef]
- Huang, P.; Zhao, Y.; Kuga, S.; Wu, M.; Huang, Y. A versatile method for producing functionalized cellulose nanofibers and their application. Nanoscale 2016, 8, 3753–3759. [Google Scholar] [CrossRef]
- Ba-Abbad, M.M.; Kadhum, A.A.H.; Mohamad, A.B.; Takriff, M.S.; Sopian, K. Synthesis and Catalytic Activity of TiO2 Nanoparticles for Photochemical Oxidation of Concentrated Chlorophenols under Direct Solar Radiation. Int. J. Electrochem. Sci. 2012, 7, 18. [Google Scholar]
- Lopera-Valle, A.; Elias, A. Amine Responsive Poly(lactic acid) (PLA) and Succinic Anhydride (SAh) Graft-Polymer: Synthesis and Characterization. Polymers 2019, 11, 1466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, X.; Chen, F.; Liu, F. Preparation and characterization of alkyl ketene dimer (AKD) modified cellulose compo-site membrane. Carbohydr. Polym. 2012, 88, 417–421. [Google Scholar] [CrossRef]
Sample | Sample Mass (mg) | Average Triplicated Sample Mass after 3 Days Exposure to Moisture | Mass Change (%) |
---|---|---|---|
T (unmodified) | 500 | 519.40 ± 0.46 | 3.88 ± 0.09 |
A (5%ASA) | 500 | 494.40 ± 0.62 | −1.12 ± 0.12 |
B (3%ASA) | 500 | 497.00 ± 0.36 | −0.60 ± 0.07 |
C (1%ASA) | 500 | 497.70 ± 0.70 | −0.46 ± 0.14 |
X (5%AKD) | 500 | 486.70 ± 0.20 | −2.66 ± 0.04 |
Y (3%AKD) | 500 | 492.30 ± 0.44 | −1.54 ± 0.09 |
Z (1%AKD) | 500 | 494.00 ± 0.30 | −1.20 ± 0.06 |
Sample | Sample Initial Mass (mg) | Average Triplicated Sample Mass after 3 Days | Weight Loss (%) |
---|---|---|---|
T (unmodified) | 300 | 298.80 ± 0.78 | 0.40 ± 0.26 |
A (5%ASA) | 300 | 293.00 ± 0.50 | 2.33 ± 0.17 |
B (3%ASA) | 300 | 292.30 ± 0.61 | 2.57 ± 0.21 |
C (1%ASA) | 300 | 291.50 ± 0.50 | 2.83 ± 0.17 |
X (5%AKD) | 300 | 295.60 ± 0.53 | 1.47 ± 0.18 |
Y (3%AKD) | 300 | 296.70 ± 0.20 | 1.10 ± 0.07 |
Z (1%AKD) | 300 | 297.20 ± 0.36 | 0.93 ± 0.12 |
Sample | Temperature at Which Drastic Decomposition Occurred (°C) | Difference in Temperature to the Pure Rutile-TiO2 NPs (%) |
---|---|---|
T (unmodified) | 186 | 0 |
A (5%AKD) | 270 | 45.2 |
B (3%AKD) | 261 | 40.3 |
C (1%AKD) | 253 | 36.0 |
X (5%ASA) | 211 | 13.4 |
Y (3%ASA) | 194 | 4.3 |
Z (1%ASA) | 187 | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmood Katun, M.; Kadzutu-Sithole, R.; Moloto, N.; Nyamupangedengu, C.; Gomes, C. Improving Thermal Stability and Hydrophobicity of Rutile-TiO2 Nanoparticles for Oil-Impregnated Paper Application. Energies 2021, 14, 7964. https://doi.org/10.3390/en14237964
Mahmood Katun M, Kadzutu-Sithole R, Moloto N, Nyamupangedengu C, Gomes C. Improving Thermal Stability and Hydrophobicity of Rutile-TiO2 Nanoparticles for Oil-Impregnated Paper Application. Energies. 2021; 14(23):7964. https://doi.org/10.3390/en14237964
Chicago/Turabian StyleMahmood Katun, Mohammed, Rudo Kadzutu-Sithole, Nosipho Moloto, Cuthbert Nyamupangedengu, and Chandima Gomes. 2021. "Improving Thermal Stability and Hydrophobicity of Rutile-TiO2 Nanoparticles for Oil-Impregnated Paper Application" Energies 14, no. 23: 7964. https://doi.org/10.3390/en14237964
APA StyleMahmood Katun, M., Kadzutu-Sithole, R., Moloto, N., Nyamupangedengu, C., & Gomes, C. (2021). Improving Thermal Stability and Hydrophobicity of Rutile-TiO2 Nanoparticles for Oil-Impregnated Paper Application. Energies, 14(23), 7964. https://doi.org/10.3390/en14237964