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Abstract: Thermal stress and moisture absorption can cause a synergetic negative impact on kraft
paper. Among various approaches for improving the dielectric properties of kraft paper, nanotech-
nology has had promising results. However, the hydrophilicity of most metal oxide nanoparticles
renders nanomodified kraft paper more vulnerable to thermal stress and moisture, thereby inducing
degradation. In nanomodified kraft paper research, the use of TiO2 nanoparticles has yielded the most
promising results. The major shortfall, however, is the hydrophilicity of TiO2. This work investigated
surface modifications of rutile-TiO2 nanoparticles (NPs) for improved hydrophobicity and thermal
stability. Rutile-TiO2 NPs is a nontoxic metal oxide that can withstand high temperature and is stable
in chemical reactions. Two cases of surfactants were used—alkyl ketene dimer (AKD) and alkenyl
succinic anhydride (ASA). The intention was to increase heat resistance and reduce the surface free
energy of the rutile-TiO2 NPs. The impacts of the surface modifiers on the rutile-TiO2 NPs were
characterised using FT-IR, muffle furnace, analytical weight balance, and TGA. It was discovered
that new functional groups were formed on the modified NPs examined through FT-IR spectra.
This indicates new chemical bonds, introduced through the surface modification. The unmodified
rutile-TiO2 NPs absorbed moisture, increasing their mass by 3.88%, compared with the modified
nanoparticles, which released moisture instead. TGA analysis revealed that AKD- and ASA-modified
rutile-TiO2 needed higher temperatures than the unmodified rutile-TiO2 to markedly decompose.
AKD, however, gave better performance than ASA in that regard. As an example, those modified
with 5% AKD sustained a 45% higher temperature than the pure TiO2 nanoparticles. Furthermore, in
both cases of the surfactants, the higher the percent of surfactant content was, the more thermally
stable the nanoparticles became. This work demonstrates the possibility of fabricating rutile-TiO2

NPs to give improved hydrophobicity and thermal stability for possible dielectric applications such
as in kraft paper for power transformer insulation.

Keywords: transformer; cellulose; kraft paper; dielectric properties; thermal stability; moisture
absorption; hydrophilic; nanoparticles; AKD; ASA; rutile-TiO2

1. Introduction

Temperature rise in power transformers can cause thermal-induced degradation of
kraft paper insulation. The temperature rise in power transformers may result from
electrical faults, overloads, etc. [1,2].

Exposed hydroxyl sites on kraft paper (adsorption sites of cellulose) make it hygro-
scopic. The exposed site (OH) with a large dipole moment attracts water through the
Coulomb force. The presence of water, therefore, modifies the dielectric properties of kraft
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paper [3–7]. Such a compromised kraft paper suffers from accelerated decomposition. As-
sociated problems include increased dielectric loss (loss factor) and increased susceptibility
to partial discharge-induced degradation. Furthermore, the mechanical properties of kraft
paper are degraded.

In a power transformer, the effects of pyrolysis and hydrolysis on kraft paper insulation
cannot be treated independently, as the presence of one can influence the other. For instance,
temperature rise in transformers can lead to moisture presence due to oxidation and can also
distort the bonding structure of kraft paper. On the other hand, the presence of moisture
in the transformer mostly due to ingress from the atmosphere or natural gassing of the
transformer oil affects the hydrogen bond of kraft paper [8–12]. The hydrogen bond defines
the cross linkage of cellulose chains on which the dielectric properties of the insulation
depend [13,14]. In essence, therefore, the rate of thermal stability or withstand of kraft
paper insulation is proportional to its moisture content [15].

To improve on kraft paper’s thermal stability, normally the paper is either chemically
or physically modified. Manufacturers of transformer insulation introduced different
thermally upgraded kraft papers around the late 1950s. The National Electrical Manufac-
turers Association (NEMA) recognised these improvements in 1962 through the standard
TR-1-1962 [16]. For the chemical modification of kraft paper, the water-absorbing group
(hydroxyl group) of the cellulose which is vulnerable to thermal effect is replaced with a
more stable functional group, cyanide ethylation patented in the early 1960s, as well as
acetylation. As for physical modification (thermal stabilisers), the rate of insulation degra-
dation is retarded through the reaction of the additives with degrading factors. Amine
compounds are the most frequently used additives for physical modification [2,16–18].

According to Jusneret et al. [2] and Liang et al. [18], both chemical and physical
approaches to thermal modification of cellulose increase the risk to health and safety of
personnel, as well as environmental contamination. There is a possibility of discharge of
highly toxic degradation by-products during thermal ageing, coupled with the displace-
ment of hydrogen bonds, resulting in a decrease in mechanical strength. These setbacks
are mainly due to cyanoethylation of kraft paper and the discharge of ammonia due to
amino compounds. In the literature, therefore, there is always emphasis on the need to
continuously search for less toxic and environmentally friendly kraft paper, with thermal
endurance solutions. In that regard, this work was conceived to explore possibilities of
improving the thermal stability of kraft paper through less toxic means.

In power transformers, more than 98% of the moisture is contained within kraft
paper. To mitigate this, kraft paper is dried to reduce the moisture content to 0.5% (by dry
weight), then impregnated with an oil to fill the air voids within the structure. When a
transformer is in use, moisture is contained in the solid insulation, dissolved in oil, and
also in a form of liquid in the core or bottom of the transformer [4,8,19–24]. The IEEE
C57.140 Guide for Evaluation and Reconditioning of Liquid Immersed Power Transformer
recommends drying wet insulation (solid and liquid). Some of these power transformer
drying (maintenance) methods include factory drying, vacuum dry-out method, off-line
processing approach, and the on-line transformer dryer [15,23]. According to a CIGRE
working group A2.18 [24], migration of moisture from kraft paper to oil for extraction
depends on temperature, and this process could take months. It follows, therefore, that
moisture management in power transformers requires mitigating the rate of moisture
absorption of kraft paper.

In this paper, the possibility of improving the thermal stability of a kraft paper with
less toxic material, as well as controlling its vulnerability to the surrounding moisture, is
explored. In the literature, nanotechnology has been recognised as a promising technique
for improving the dielectric properties of kraft paper. However, regarding the hydrophilic-
ity and thermal stability challenges of kraft paper, there has not been much research on
using the technology as a possible solution.
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In power transformer technology, the application of nanotechnology is increasingly
drawing research attention as a promising tool in addressing major threats to the life of
transformer insulation [25]. Kraft paper modified with nanoparticles has been reported to
contain more hydrogen bonds, as more traps within cellulose structure are filled with the
particles; this improves the bonding strength and the dielectric properties [26].

According to Liao et al. [27], oil-impregnated kraft paper modified with nano-TiO2
prevents the injection of space charge distortion; a 50% decrease was reported for the
modified paper with TiO2 NPs. Liu et al. [28] improved surface discharge inception
voltage on kraft paper modified with nanoparticles. The inception voltage was reported
to have improved from 2.85 kV for an unmodified paper to 3.5 kV for the modified one.
Hollertz [29] reported a 66% improvement in the tensile strength of paper after modification
with nanoparticles. Among the nanoparticles used for modification of kraft paper, metal
oxides are commonly used, and these include TiO2, ZnO, SiO2, and Al2O3 [7,26,28–30].

Of the options, nano-TiO2 has been reported to be superior. Its compatibility and
ability to improve the performance of kraft paper are notable. TiO2 is reported to be more
stable in reactions, nontoxic, low cost, and can withstand higher temperatures. The rutile
phase of nano-TiO2 has high electrical resistivity, thermal stability, and good mechanical
strength. In contrast to the other common phases of the TiO2 NPs (brookite and anatase), the
rutile is chemically stable and can withstand very high temperatures and pressure without
transforming or easily decomposing. Rutile-TiO2 has a relatively high dielectric constant,
making it suitable for some dielectric applications [31–37]. Although TiO2 NPs are an
attractive nanofiller for kraft paper, it has a major weakness in being hydrophilic [7,38,39].
It is worth noting that in the literature, most studies on modifying kraft paper with
TiO2 have been with the anatase phase and not the rutile. Therefore, in this work, the
investigated nanoparticles were rutile-TiO2. This paper presents a fabrication procedure
that produced rutile-TiO2 NPs with improved hydrophobicity and thermal stability.

2. Using Sizing Agents in Making Cellulose Fibre to Be Hydrophobic

Alkyl ketene dimer (AKD) and alkenyl succinic anhydride (ASA) are usually used to
make organic compounds to be hydrophobic. They are the most used water-resistive agents
(sizing) for manufacturing paper. Application of the sizing agent reduces the surface free
energy of the host material, resulting in better hydrophobicity. The mechanism involves
anchoring the hydrophilic head of the agents (AKD and ASA), with the host material and
the hydrophobic tail extended out to repel water, as demonstrated in Figure 1. As far
back as the 1960s, AKD and ASA have been used to control the wettability of paper. The
extent of the interaction of the agents with the host determines the degree of resultant
hydrophobicity of the modified paper [40–42].

Seppanen [43] used AKD and ASA to control the wettability of a paper and reported
that the contact angle (angle with which the water makes with the paper surface) indicated
a reduction in surface energy of the paper due to the application of the sizing agents.
Hubbe [41] also reviewed studies in the literature on the application of internal sizing agents
and revealed that AKD and ASA are the commonly used agents by paper manufacturers.
It has also been reported that AKD and ASA increase the heat resistance of the resultant
modified polymers and in cases where nano-metal oxides are used [40,41,43–49]. In this
work, therefore, rutile-TiO2 NPs were surface conditioned with AKD and ASA to study the
effectiveness of the modification on thermal and hydrophilic properties of the resultant
nanofiller. In the future extension of the present work, the modified TiO2 NPs will be used
to modify kraft paper for improved hydrophobicity and thermal stability.
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Figure 1. Sizing agent molecules orientation, redrawn from [50].

Bonding of inorganic fillers such as TiO2 NPs with an inorganic sizing agent can
be difficult. A coupling agent is, therefore, often used to bond the two. The coupling
agent can be represented by the formula R (CH2)n SiX3. The ‘X’ is the hydrolysable group
which forms a bond with TiO2 NPs. ‘R’ is the functional group; it bonds with the polymer
(cellulose) or organic material, which, in this case, are the sizing agents. Figure 2 illustrates
the interface bonding of organic (sizing agents) and inorganic (TiO2 NPs) material with
silane. The nanofiller reacts with ‘X’ to produce silanol (forming metal hydroxide), while
‘R’ produces a covalent bond with organic material [39,50–54].
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The rest of this paper presents the experimental work conducted to synthesise the
rutile-TiO2 NPs of specific shapes and dimensions. Some of the resultant nanoparticles
were surface modified with AKD and others with ASA sizing agent. Both sets were then
characterised using various techniques, and the results were analysed.
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3. Experimental Procedures
3.1. Materials

AKD sizing agent emulsion was obtained from Sappi™ Technology Centre (Pretoria,
South Africa). The ASA, silane coupling agent, and titanium (IV) butoxide were purchased
from Sigma-Aldrich (Pty.) Ltd. (St. Louis, MO, USA). Both chemicals were used as received.

3.2. Synthesis of Rutile-TiO2 Nanoparticles

The sol–gel method was used to synthesise rutile-TiO2 nanoparticles. The synthesis
procedure was iteratively explored to target producing rutile-TiO2 NPs of less than 20 nm.
The resultant optimised procedure is summarised as follows: a total of 30 mL titanium
butoxide (Ti(OBu)4) was added dropwise into 30 mL ice-water in a glass beaker under
magnetic stirring. The resultant aqueous solution was stirred for 30 min and heated to
remove water. A white residue was obtained, sonicated, and then washed several times in
distilled water before centrifuging. The product was dried in a laboratory oven at 80 ◦C for
24 h. 500 mg of the dry powder was annealed in a muffle furnace at 700 ◦C, ramped for 2 h,
and held for 2 h, resulting in the formation of the rutile phase of TiO2. The resultant NPs
were determined to be 19.7 nm on average. The NPs synthesis procedure is illustrated in
Figure 3. The synthesised nanoparticles were surface modified, as presented in the next
section.
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3.3. Surface Modification of the Rutile-TiO2 Nanoparticles

Three portions of 10 g each of TiO2 nanoparticles were dispersed in 32 mL of distilled
water and sonicated for 30 min. Then, 5 vol/vol%, 3 vol/vol%, and 1 vol/vol% of AKD
were added, making samples X, Y, and Z. The same procedure was repeated for ASA,
making samples A, B, C. After 35 min of stirring, 1.5 vol/vol% silane was added to each
mixture to connect the dissimilar compounds together and was stirred for 1 h. For ASA,
alum was added to the solution to further fuse and retain the ASA with the TiO2. Both
mixtures were heated for 20 min at 60 ◦C with continued stirring. The obtained samples
were centrifuged and rinsed with distilled water to remove the impurities and dried
at 80 ◦C. Figure 4 shows the block illustration of the modification model. The reaction
mechanism model is illustrated in Figure 5. The hydrolysis of the silane (Si-OH) makes
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TiO2 NPs react with the hydrolysable group (Si(OH)3), while the organofunctional group
reacts with sizing agents (AKD and ASA).
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4. Characterisation of the Surface-Modified Rutile-TiO2 Nanoparticles

Phase identification of the sample was conducted using X-ray diffraction (Bruker
MeasSrv (D2-205530)/D2205530 diffractometer), as well as with Raman spectroscopy
using Bruker Infinity 1 spectrometer (Billerica, MS, USA) fitted with a 50× objective
lens for imaging. The nanoparticles shape was identified using transmission electron
microscopy (TEM). The Fourier-transform infrared spectroscopy (FT-IR) spectra of the
samples were obtained with an attenuated total reflectance (ATR) in the wavelength range
of 420–4000 cm−1 using PerkinElmer [55]. Analytical weight balance was used to measure
changes in mass of the sample due to moisture absorption and heat. A thermogravimetric
analyser (PerkinElmer STA 4000 analyser; Waltham, MA, USA) was used to study the
thermal stability of the samples. The various results of each analysis are presented in the
next section.

4.1. X-ray Diffraction Results

X-ray diffraction (XRD) was used to determine the crystallinity and phase of the
synthesised TiO2 NPs. The XRD pattern shows distinct diffraction peaks which match the
standard rutile-TiO2 reference peaks. All peaks are in good agreement with the standard
spectrum (JCPDS no.: 88-1175). As shown in Figure 6, the diffraction depicts sharpness of
the peaks, which indicates highly crystalline nanoparticles [56–58].
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Figure 6. X-ray diffraction pattern of the obtained rutile-TiO2 NPs.

The average crystallite size of the obtained rutile-TiO2 nanoparticles was calculated to
be 19.7 nm. The size was determined by the use of the Scherrer equation (Equation (1)) [56]
as given in Equation (1).

S =
Kλ

L cos θ
(1)

where
S = crystallites diameter (nm);
K = 0.9 (Scherrer constant);
λ = 0.14506 (wavelength of the X-ray source);
L = full width-half maximum radians (FWMH);
θ = peak position.

4.2. Raman Spectroscopy Results

Raman spectroscopy was used to characterise the obtained rutile-TiO2 NPs. Four
random spots were scanned on the specimen. The spectrum in Figure 7 shows the Raman
peak shifts for the rutile-TiO2 NPs. The rutile-TiO2 has four characteristic phonon modes
at 143 ± 2 cm−1 (B1g), 445 ± 5 cm−1 (Eg), 610 ± 1 cm−1 (A1g), and 235 ± 5 cm−1. From
Figure 7, it is evident that rutile exhibits dominant peaks at 448.16 cm−1 and 611.04 cm−1.
These peaks are attributed to Eg and A1g, active modes of rutile-TiO2 correspondently. The
third-most active optical phonon mode of rutile from the graph is the 144.06 cm−1 which is
attributed to B1g. The peak at 825.16 cm−1 is the weakest and poorly observed. This peak
is assigned B2g. A visible broadband at 235.76 cm−1, as observed on the graph, does not
correspond with any fundamental modes of the rutile phase. This may be attributed to the
disorder-induced scattering or second-order effect (SOE) as a consequence of multi-phonon
processes [59–61].
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4.3. Transmission Electron Microscopy (TEM) Results

Transmission electron microscopy (TEM) was used to examine the samples’ morphol-
ogy and size. As shown in Figure 8, the particles are agglomerated; therefore, particle size
distribution cannot be ascertained from the images obtained. However, as earlier reported
in the XRD analysis using the Scherrer equation, the average size of nanoparticles was
calculated as 19.7 nm. The agglomeration obtained in the particles could be due to the
high temperature used during calcination (which exists between the transition of the two
polymorphous of TiO2). Additionally, for small particles, Van der Waals attraction force
that is present between the NPs leads to agglomeration [60–63]. From the TEM images,
hexagonal-like shape is evident. To reduce agglomeration, high shear force mixing, ball
milling, or ultrasonication has to be employed for mixing with the host polymer such as
the case of kraft paper [64].
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4.4. Fourier-Transform Infrared Spectroscopy (FT-IR)

The FT-IR was recorded at room temperature using a PerkinElmer Fourier-transform-
attenuated total reflectance–infrared spectrometer (FT-UATR-IR-2) in the range from
420–4000 cm−1. As shown in Figure 9a, the spectrum of the obtained sample (rutile-TiO2)
was examined and compared with what is in the literature. The appearance of a band in
the region 531 cm−1 of the TiO2 NPs spectrum indicates the presence of metal to oxygen
bonding which corresponds to O-Ti-O bonding [64–69]. Compared with what is available
in the literature, the characteristic of -OH group (3200–3650 cm−1) is not obvious in the TiO2
spectrum [69–73]. This could be due to the annealing temperature and time, leading to the
removal of hydrolysable surface group, thereby fabricating ligand-free TiO2 NPs [74–76].

The FT-IR of the modified TiO2 NPs was conducted to examine the spectra of each
sample. Figure 9b shows the FT-IR spectra of pure AKD. From the plot, a weak and broad
peak is evident between 3041 and 3565 cm−1 which is characteristic of (OH) vibrations in
the AKD spectrum [77]. Comparing Figure 9b,c of the modified TiO2 NPs, the modified
TiO2 NPs show the presence of AKD features on its structure. The double bond carbon–
carbon stretching vibration–absorption peak at 1708 cm−1 relates to the absorption band
characteristic peak 1846 and 1633 cm−1 in the spectrum of AKD which usually correspond
to C=O and C=C. However, there was an absence of OH frequency absorption band in
the modified TiO2 NPs, suggesting the dehydration of water molecules in the complexes.
The appearance of double bond carbon stretching at 1708 cm−1 is very weak (almost not
existing). This indicates that the functional group is very symmetrical but does not imply
that the functional group is absent.

The adsorption bands at 2849 and 2916 cm−1 of the modified TiO2 NPs are from –CH2-
symmetric and asymmetric stretching vibration [48]. The spectra of the modified TiO2 NPs
with AKD, therefore, shows that new absorption bands are present which is evidence of
the presence of new chemical bonds formed through modification. There is a reaction and
connection between TiO2 NPs and AKD.
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Figure 9. Fourier-transform infrared spectra: (a) pure rutile-TiO2 NPs; (b) pure AKD; (c) AKD
surface-modified rutile-TiO2 NPs; (d) pure ASA; (e) ASA surface-modified rutile-TiO2 NPs.

The FT-IR spectrum of ASA is shown in Figure 9d. The spectrum peaks for ASA
arising from anhydride carbonyl stretching were identified at 1778 cm−1 and 1863 cm−1

which correspond with the literature. The 1778 cm−1 represents the stretching vibration
of C=O which conforms with 1785 ± 5 cm−1. At 916 cm−1, the stretching vibration band
of five-membered cyclic anhydrides (succinic anhydride) is identified. In Figure 9e which
characterises the modified TiO2 NPs with ASA, there is an absence of succinic anhydride
grouping (1778 cm−1 and 1863 cm−1). This is due to the hydrolysis of the anhydride which
results in the appearance of a band at 1689 cm−1. The band corresponds to the stretching
vibration of the C=O bond [78–80]. The absence of the bands at 1863 to 1778 cm−1 indicates
that the composite is free of unreacted modifier (ASA).The adsorption bands at 2849 and
2919 cm−1 of the modified TiO2 NPs are also from –CH2- symmetric and asymmetric
stretching vibration [48]. Figure 9e, therefore, demonstrates that new adsorption bands
and chemical bonds are formed after modification.
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4.5. Moisture Absorption Characteristics

Each sample of the surface-modified TiO2 NPs, including the unmodified, was
weighed using an analytical weigh balance. Then, 10 mL of distilled water was dropped in
each sample and was exposed to air for 3 days. The experiment was triplicated; the average
values and the error deviations are summarised in Table 1.

Table 1. Change in mass due to absorbed moisture.

Sample Sample
Mass (mg)

Average Triplicated Sample Mass
after 3 Days Exposure to Moisture Mass Change (%)

T (unmodified) 500 519.40 ± 0.46 3.88 ± 0.09
A (5%ASA) 500 494.40 ± 0.62 −1.12 ± 0.12
B (3%ASA) 500 497.00 ± 0.36 −0.60 ± 0.07
C (1%ASA) 500 497.70 ± 0.70 −0.46 ± 0.14
X (5%AKD) 500 486.70 ± 0.20 −2.66 ± 0.04
Y (3%AKD) 500 492.30 ± 0.44 −1.54 ± 0.09
Z (1%AKD) 500 494.00 ± 0.30 −1.20 ± 0.06

The unmodified rutile-TiO2 NPs (sample ‘T’), after having been exposed to air-
absorbed moisture, had a weight increase of 3.88%. In contrast, the modified samples
generally lost weight by releasing water into the atmosphere. These results demonstrate
the hydrophilic nature of TiO2 and the effect of sizing agents on reducing the hydrophilicity
behaviour of TiO2.

4.6. Thermal-Stress-Induced Weight Loss of Surface-Modified Rutile-TiO2 NPs

To determine thermal-stress-induced weight loss characteristics, 300 mg portions of
each sample were measured separately and placed in a furnace. The furnace temperature
was set to ramp up to 400 ◦C in 20 min and then stayed constant for 40 min. The samples
were then placed in a desiccator with silica gel to avoid moisture absorption as the samples
cooled off. Analytical weight balance was used to measure the change in mass of each
sample. This experiment was triplicated; Table 2 shows the average value of the weight
loss and error deviation of each case.

Table 2. Weight loss analysis of surface-modified rutile-TiO2 NPs under thermal stress.

Sample Sample Initial
Mass (mg)

Average Triplicated Sample
Mass after 3 Days Weight Loss (%)

T (unmodified) 300 298.80 ± 0.78 0.40 ± 0.26
A (5%ASA) 300 293.00 ± 0.50 2.33 ± 0.17
B (3%ASA) 300 292.30 ± 0.61 2.57 ± 0.21
C (1%ASA) 300 291.50 ± 0.50 2.83 ± 0.17
X (5%AKD) 300 295.60 ± 0.53 1.47 ± 0.18
Y (3%AKD) 300 296.70 ± 0.20 1.10 ± 0.07
Z (1%AKD) 300 297.20 ± 0.36 0.93 ± 0.12

From the table, the surface-modified samples lost more weight than the unmodified
sample, and the amount of weight loss is directly proportional to the percent content of the
sizing agent applied on each sample. The weight loss of the composites can be attributed to
the breakage or disintegration of the bond between organic and inorganic compounds [81].
This indicates that the modified samples contain more than one compound. In essence, the
weight loss under heating is predominated by the decomposition of the surfactants. This
phenomenon is further confirmed in the thermogravimetric analysis, as presented in the
next section.
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4.7. Thermogravimetric Analysis (TGA) Results

The Thermogravimetric analysis (TGA) of the samples was conducted under nitrogen
gas. From the graph of pure TiO2 NPs (Figure 10a), a rapid loss of moisture occurred
between 75 and 90 ◦C, followed by a significant degradation at about 186 ◦C which is
attributed to the decomposition of the TiO2 [45,82]. The initial steep gradient (representing
a rapid loss of moisture) and the subsequent steep depression on the graph further confirm
the results obtained in Table 1 about moisture absorption of the unmodified sample. As for
the 5% AKD-modified rutile-TiO2 NPs, there is drastic thermal decomposition at 270 ◦C
which is about 45% higher than that of pure rutile-TiO2 NPs. For the reduced AKD content
of 3%, the decomposition of modified rutile-TiO2 NPs occurs at a lower temperature of
261 ◦C which is about 40% higher than that of the pure rutile-TiO2 NPs. A further reduction
of AKD to 1% resulted in the modified rutile-TiO2 NPs decomposing drastically at 253 ◦C
which is about 36% higher than that of pure rutile-TiO2 NPs. For AKD, in all cases of
surface medication of rutile-TiO2 NPs, there is increased thermal stability of at least 36%.
In the case of ASA modified NPs, the temperatures at which the modified NPs drastically
decomposed were 211 ◦C, 194 ◦C, 187 ◦C for 5%, 3% and 1% ASA content, respectively. It
is worth noting that for all cases of ASA modification, the temperature at which drastic
decomposition occurred was lower than the least % AKD content modified sample. This
shows that AKD modified samples are more thermally stable than the ASA. However,
the ASA-modified samples show improvement in thermal stability except for 1% content
whose thermal stability is the same as that of the pure rutile-TiO2 NPs. Table 3 summarises
the effects of surfactant content and type on the thermal stability of the resultant modified
samples.

Table 3. Effects of surfactant content and type on thermal stability.

Sample Temperature at Which Drastic
Decomposition Occurred (◦C)

Difference in Temperature to the
Pure Rutile-TiO2 NPs (%)

T (unmodified) 186 0
A (5%AKD) 270 45.2
B (3%AKD) 261 40.3
C (1%AKD) 253 36.0
X (5%ASA) 211 13.4
Y (3%ASA) 194 4.3
Z (1%ASA) 187 0.5

The decomposition of the modified rutile-TiO2 NPs samples at higher temperatures
could be attributed to improved heat resistance associated with the long-chain organic
compounds from surfactants [57,79,82–84]. Both cases of the modified TiO2 NPs show that
the modified samples have better thermal stability than pure rutile-TiO2 NPs.
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Figure 10. Thermogravimetric analysis graph: (a) pure TiO2 NPs; (b) 5% AKD/TiO2 NPs; (c) 3% AKD/TiO2 NPs; (d) 1%
AKD/TiO2 NPs; (e) 5% ASA/TiO2 NPs; (f) 3% ASA/TiO2 NPs; (g) 1% ASA/TiO2 NPs.
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5. Conclusions

A protocol to synthesise 19.7 nm rutile-TiO2 NPs was proposed and presented in this
work. It was further demonstrated that the moisture absorption characteristics, as well as
thermal stability of the nanoparticles, can be improved through surface modification
of the rutile-TiO2 NPs. Two types of surfactants were investigated: AKD and ASA.
In the case of AKD surface-modified rutile-TiO2 NPs, the FT-IR spectra indicate the
presence of new functional groups. Improvement in terms of rate of moisture absorption
(within an approximate deviation of ±0.14%) and thermal stability were determined in
surface-modified rutile-TiO2 NPs. For ASA surface-modified rutile-TiO2 NPs, there was
improvement observed in the rate of moisture absorption and thermal stability except for
the least % content of ASA sample that behaved similar to the unmodified rutile-TiO2 NPs.
Possible applications of the more thermally stable and hydrophobic modified rutile-TiO2
can be explored in future works.
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66. Ferenc, W.; Cristóvão, B.; Sarzyński, J. Magnetic, thermal and spectroscopic properties of lanthanide(III) 2-(4-chlorophenoxy)
acetates, Ln(C8H6ClO3)3•nH2O. J. Serbian Chem. Soc. 2013, 78, 1335–1349. [CrossRef]

67. Ukken, M.P.; Ummathur, M.B. Synthesis and Characterization of Two Conjugated b-diketones and their Metal Complexes. Arch.
Appl. Sci. Res. 2013, 5, 247–250.

68. Kumar, M.; Sharma, T.R. Synthesis, Characterization and Properties of Metal Complexes of Beta-diketonate Complexes. Orient. J.
Chem. 2012, 28, 1827–1831. [CrossRef]

69. Wu, J.G.; Deng, R.W.; Chen, Z.N. Transition metal complexes of 2-thenoyltrifluoroacetone isonicotinoyl hydrazone. Transit. Met.
Chem. 1993, 18, 23–26. [CrossRef]

http://doi.org/10.1295/polymj.PJ2007169
http://doi.org/10.3390/polym12030514
http://doi.org/10.1016/j.polymer.2020.122463
http://doi.org/10.1007/s00339-018-1979-5
http://doi.org/10.1007/s10570-018-2048-0
http://doi.org/10.1007/s10570-019-02295-2
http://doi.org/10.1016/B0-08-043152-6/01356-5
http://doi.org/10.1179/1743289815Y.0000000007
http://doi.org/10.1016/j.colsurfa.2011.11.033
http://doi.org/10.1016/j.compositesa.2010.03.005
http://doi.org/10.1039/C9AY02458A
http://doi.org/10.1007/s13204-013-0196-y
http://doi.org/10.1166/jnn.2012.4634
http://doi.org/10.1038/ncomms6881
http://www.ncbi.nlm.nih.gov/pubmed/25562287
http://doi.org/10.1016/j.rinp.2019.01.054
http://doi.org/10.1103/PhysRevB.75.045416
https://www.hindawi.com/journals/jnm/2014/124814/
http://doi.org/10.1021/jp0470952
https://www.hindawi.com/journals/jnp/2016/6539581/
http://doi.org/10.1155/2016/6539581
http://doi.org/10.1016/j.powtec.2005.08.020
http://doi.org/10.1080/00387019808003254
http://doi.org/10.2298/JSC121203043F
http://doi.org/10.13005/ojc/280437
http://doi.org/10.1007/BF00136042


Energies 2021, 14, 7964 16 of 16

70. Bagheri, S.; Shameli, K.; Abd Hamid, S.B. Synthesis and Characterization of Anatase Titanium Dioxide Nanoparticles Using Egg
White Solution via Sol-Gel Method. J. Chem. 2012. Available online: https://www.hindawi.com/journals/jchem/2013/848205/
(accessed on 4 November 2020). [CrossRef]

71. Vetrivel, V.; Rajendran, D.K.; Kalaiselvi, V. Synthesis and characterization of Pure Titanium dioxide nanoparticles by Sol-gel
method. Int. J. ChemTech Res. 2015, 7, 1090–1097.

72. Wang, Z.; Lian, J.; Xiang, X.; Zu, X.; Wang, L. Preparation and characterization of polymer/inorganic nanoparticle composites
through electron irradiation. J. Mater. Sci. 2006, 41, 405–410.

73. Pan, H.; Wang, X.; Xiao, S.; Yu, L.; Zhang, Z. Preparation and characterization of TiO2 nanoparticles surface-modified by
octadecyltrimethoxysilane. Indian J. Eng. Mater Sci. 2013, 7, 561–567.

74. León, A.; Reuquen, P.; Garín, C.; Segura, R.; Vargas, P.; Zapata, P.; Orihuela, P.A. FTIR and Raman Characterization of TiO2
Nanoparticles Coated with Polyethylene Glycol as Carrier for 2-Methoxyestradiol. Appl. Sci. 2017, 7, 49. [CrossRef]

75. Zhuravlev, L.T. Concentration of hydroxyl groups on the surface of amorphous silicas. Langmuir 1987, 3, 316–318. [CrossRef]
76. Kotsokechagia, T.; Cellesi, F.; Thomas, A.; Niederberger, M.; Tirelli, N. Preparation of Ligand-Free TiO2 (Anatase) Nanoparticles

through a Nonaqueous Process and Their Surface Functionalization. Langmuir 2008, 24, 6988–6997. [CrossRef]
77. Seo, W.S.; Cho, N.S.; Ohga, S. Possibility of Hydrogen Bonding between AKD and Cellulose Molecules. J. Fac. Agric. Kyushu Univ.

2008, 53, 405–410. [CrossRef]
78. Pliev, T.N.; Karpov, O.N.; Glavati, O.L.; Popovich, T.D. Infrared spectroscopic analysis of high-molecular alkenylsuccinic

anhydrides for succinic anhydride groupings. J. Appl. Spectrosc. 1973, 18, 71–75. [CrossRef]
79. Nishiyama, M.; Isogai, A.; Onabe, F. Structures of Alkenyl Succinic Anhydride(ASA) Components in ASA-Sized Papersheet. Seni

Gakkaishi 1996, 52, 180–188. [CrossRef]
80. Candy, L.; Vaca-Garcia, C.; Borredon, E. Synthesis and characterization of oleic succinic anhydrides: Structure-property relations.

J. Am. Oil Chem. Soc. 2005, 82, 271–277. [CrossRef]
81. Huang, P.; Zhao, Y.; Kuga, S.; Wu, M.; Huang, Y. A versatile method for producing functionalized cellulose nanofibers and their

application. Nanoscale 2016, 8, 3753–3759. [CrossRef]
82. Ba-Abbad, M.M.; Kadhum, A.A.H.; Mohamad, A.B.; Takriff, M.S.; Sopian, K. Synthesis and Catalytic Activity of TiO2 Nanoparti-

cles for Photochemical Oxidation of Concentrated Chlorophenols under Direct Solar Radiation. Int. J. Electrochem. Sci. 2012, 7, 18.
83. Lopera-Valle, A.; Elias, A. Amine Responsive Poly(lactic acid) (PLA) and Succinic Anhydride (SAh) Graft-Polymer: Synthesis

and Characterization. Polymers 2019, 11, 1466. [CrossRef] [PubMed]
84. Song, X.; Chen, F.; Liu, F. Preparation and characterization of alkyl ketene dimer (AKD) modified cellulose compo-site membrane.

Carbohydr. Polym. 2012, 88, 417–421. [CrossRef]

https://www.hindawi.com/journals/jchem/2013/848205/
http://doi.org/10.1155/2013/848205
http://doi.org/10.3390/app7010049
http://doi.org/10.1021/la00075a004
http://doi.org/10.1021/la800470e
http://doi.org/10.5109/12849
http://doi.org/10.1007/BF00939110
http://doi.org/10.2115/fiber.52.180
http://doi.org/10.1007/s11746-005-1066-5
http://doi.org/10.1039/C5NR08179C
http://doi.org/10.3390/polym11091466
http://www.ncbi.nlm.nih.gov/pubmed/31500310
http://doi.org/10.1016/j.carbpol.2011.10.062

	Introduction 
	Using Sizing Agents in Making Cellulose Fibre to Be Hydrophobic 
	Experimental Procedures 
	Materials 
	Synthesis of Rutile-TiO2 Nanoparticles 
	Surface Modification of the Rutile-TiO2 Nanoparticles 

	Characterisation of the Surface-Modified Rutile-TiO2 Nanoparticles 
	X-ray Diffraction Results 
	Raman Spectroscopy Results 
	Transmission Electron Microscopy (TEM) Results 
	Fourier-Transform Infrared Spectroscopy (FT-IR) 
	Moisture Absorption Characteristics 
	Thermal-Stress-Induced Weight Loss of Surface-Modified Rutile-TiO2 NPs 
	Thermogravimetric Analysis (TGA) Results 

	Conclusions 
	References

