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Abstract: Fixed and adaptive supervised dictionary learning (SDL) is proposed in this paper for
wide-area stability assessment. Single and hybrid fixed structures are developed based on impulse
dictionary (ID), discrete Haar transform (DHT), discrete cosine transform (DCT), discrete sine trans-
form (DST), and discrete wavelet transform (DWT) for sparse features extraction and online transient
stability prediction. The fixed structures performance is compared with that obtained from transient
K-singular value decomposition (TK-SVD) implemented while adding a stability status term to
the optimization problem. Stable and unstable dictionary learning are designed based on datasets
recorded by simulating thousands of contingencies with varying faults, load, and generator switching
on the IEEE 68-bus test system. This separate supervised learning of stable and unstable scenarios al-
lows determining root mean square error (RMSE), useful for online stability status assessment of new
scenarios. With respect to the RMSE performance metric in signal reconstruction-based stability pre-
diction, the present analysis demonstrates that [DWT], [DHT|DWT] and [DST|DHT|DCT] are better
stability descriptors compared to K-SVD, [DHT], [DCT], [DCT|DWT], [DHT|DCT], [ID|DCT|DST],
and [DWT|DHT|DCT] on test datasets. However, the K-SVD approach is faster to execute in both
off-line training and real-time playback while yielding satisfactory accuracy in transient stability
prediction (i.e., 7.5-cycles decision window after fault-clearing).

Keywords: sparse signal decomposition; supervised dictionary learning; dictionary impulsion;
singular value decomposition; discrete cosine transform; discrete Haar transform; discrete wavelet
transform; transient stability assessment

1. Introduction

Dynamic state estimation (DSE) is a fast-developing tool for stability monitoring
and control [1]. According to the IEEE TF on DSE [2], enhanced system observability
using DSE based internal angle and speed estimates will lead to several breakthroughs
in Wide-Area System Integrity Protection Systems (WA-SIPS) functions, such as faster
out-of-step detection, more realistic location of runaway generator and minimal amount
of generation/load to be shed in order to preserve system integrity without knowing
the topology accurately. However, instrumental in these achievements is the ability to
predict fault-induced instability from DSE based information in real-time, reliably, securely,
and fast enough to enable timely and effective countermeasures [3]. In the context of the
integration of renewable energy, development of smart grids and artificial intelligence, the
authors in [4] proposed a literature review of power system restoration to analyze dynamic
decision-making. More generally, application of AI techniques including supervised
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machine learning in the context of power systems event detection and diagnosis is a field
of growing interest [5].

1.1. Background on Sparse Dictionaries Learning

Sparse signals are characterized by a few non-zero coefficients in one of their trans-
formation domains [6]. Therefore, sparse signal decomposition consists in modelling data
vectors as sparse linear combinations of basis elements. The basis set used in the decom-
position is also called a dictionary. Sparse dictionary learning has attracted widespread
scientific attention in signal processing and power system areas. Sparse signal decom-
position on hybrid dictionaries is used in [7] for detecting and classifying single and
multi-power quality disturbances. In [8], discrete wavelet transform (DWT) and deep
neural networks (DNN) are developed for detecting series arc faults (with accuracy recog-
nition rate of 97.75%) in low-voltage residential power distribution. Alternatively, several
approaches are proposed in [9] for sparse signal decomposition based on DCT+K-SVD,
DCT+ method of optimal directions (MOD), DWT+K-SVD, and DWT+MOD. In [10], new
automatic transient detection and localization approaches are proposed for power qual-
ity analysis based on an over-complete dictionary (OCD) and `− 1 norm minimization.
Dictionary learning sparse decomposition is implemented in [11] for accurate and fast
classification of power quality (PQs) disturbances generated from the IEEE Power Energy
Society database. Damped-sinusoidal functions integrated in a redundant dictionary are
used in [12] to detect and characterize power systems oscillatory transients in the portion of
the time-domain signal based on matching pursuit. A Stockwell transform (ST) approach
is proposed in [13] to extract significant disturbance features, used as the input dataset of
K-nearest neighbor algorithms (K-NN), decision trees (DT) and support vector machines
(SVM). A compressive-information sparse representation based on sparse recovery with
a new high-dimensional convex hull is developed in [14] for fast and reliable PQs event
classification due to the new challenge of smart grids. The sparse representation and
fully connected neural networks based on sparse coding, intelligent features learning, and
neural networks are developed in [15] for extracting and classifying idiographic signal
residential fault. A fault diagnosis approach based on sparse representation and SVM
is used in [16] for computing sub-dictionaries and representing the testing sample while
in [17], K-SVD, compressive sampling matching pursuit, and Gauss random matrix are
used for reconstructing power quality events. For a signal-to noise ratio of 30 dB, a K-SVD-
CoSaMP algorithm reconstructs PQs better than the DCT algorithm.

According to [18], linear sensitivity distribution factor is performed based on injection
shift factor of the line with respect to active power injection at all buses. The phasor data
angle and DC linear power flow reformulation are used in [19] for identifying multiple line
outages based on solving a sparse representation problem via coordinate descent iteration.
The cluster-based sparse coding (CSC) algorithm is proposed in [20] for multiple events
detection, recognition, and temporal localization in large-scale power systems while in [21],
sparse representation classification and random dimensionality reduction projection are
used to extract, reduce feature dimensionality and classify power system faults. The singu-
lar value decomposition (SVD) and total least square estimation via rotational invariance
techniques are used in [22], to analyze and extract amplitude, frequency, attenuation co-
efficient, initial phase of combined PQs. Among all dictionaries-based learning schemes,
which built on K-SVD and OMP algorithms, used e.g., in [23,24] for short-term prediction
of solar power fluctuations, is often considered as the most powerful computationally and
accuracy wise. In [25], the features extracted from active power are incorporated into a
dictionary learning based defense scheme for understanding the cyberattack process in
smart grids. As alternatives to dictionary learning, recurrent neural networks (RNN), long
short-term memory (LSTM), gated recurrent unit (GRU) and convolutional neural network-
LSTM (CNN-LSTM) have also been proposed for time series forecasting of solar irradiance
and photovoltaic power [26]. In the above work, the LSTM achieved the best performance
in terms of the root-mean square error evaluation error (RMSE). As a further application to
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time series, [27] used a nonlinear dictionary learning to decompose electricity signals and
learn the most representative temporal features introduced by operating devices.

1.2. Contributions of the Present Paper

The previous literature review established clearly that dictionary-based learning
applications in power systems have been focused hitherto on PQs analysis and time-
series forecasting and characterization. A timely contribution of this paper is therefore to
extend dictionary-based learning to transient stability assessment. Even though machine
learning has been studied extensively on this problem [28], there is no reported application
of K-SVD + OMP dictionary-based learning of post-disturbance time-responses for fast
stability prediction in the context of WA-SIPS or contingency screening in control rooms.
Furthermore, the paper investigates performance comparisons of single, hybrid, and
adaptive dictionaries for wide-area stability assessment which has not yet been addressed
in power system literature. In order to determine which dictionary learning approach
is the best, according to metrics such as accuracy, reliability, and security, in addition to
on-line and off-line computational requirements, this paper proposes to design twenty
stable and unstable supervised dictionary learning schemes for sparse reconstruction
and classification of stability signal responses based on generator time-series recorded by
PMU in post-disturbance stage. Our findings highlight the reconstruction and classification
performance of single, hybrid (with two and three sub-dictionaries) and learned dictionaries
on the test dataset (rotor speed and corresponding stability status).

The rest of this paper is organized as follows. Section 2 presents design approaches
of fixed and adaptive overcomplete dictionary learning for sparse signal decomposition.
Section 3 presents performance measures of supervised dictionary learning. Section 4
presents a top-down approach of sparse signal decomposition on fixed and adaptive
dictionary learning. Section 5 presents the experimental results of ten supervised dictio-
nary learning algorithms for TSA. Finally, some conclusions and perspectives are given
in Section 6.

2. Design of Fixed and Adaptive Supervised Dictionary Learning

Given Yrs = [y1, . . . , yN ] ∈ Rn×N the post-contingency rotor speed, which contains N
input signals of n dimension. The sparse decomposition of Yrs on dictionaries Drs ∈ Rn×K

(K � n, over-complete dictionary) is computed by:

Yrs =
K

∑
i=1

DirsXirs + εirs (1)

where: Xrs and εirs denote sparse coding and reconstruction errors of Yrs sparse signal
decomposition. The orthogonal matching pursuit (OMP) is the greedy method for sparse
coding mostly used in supervised dictionary learning, for minimizing the response recon-
struction over a finite number of iterations [29]. These dictionaries are used to evaluate the
transient stability which is the ability of the power system to remain in synchronism im-
mediately following a disturbance [30]. The architecture of singles, hybrids, and adaptive
supervised dictionary learning for reconstructing and classifying the signals and rapidly
predicting the transient stability status immediately after clearing a fault is presented
in Figure 1.

2.1. Fixed Single Supervised Dictionary Learning

From the PQD and time-series forecasting experiences, fixed dictionaries can be used
to reconstruct rotor speeds and predict the transient stability of generator responses. For
this purpose, the cosine transform, sine transform, wavelet transform and Haar transform
are simply applied to each signal to extract sparse and redundant features for stability of
signals reconstruction.
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Figure 1. Proposed flowchart of sparse signal decomposition on supervised dictionaries for transient stability assessment.

2.1.1. Discrete Cosine Transform

The discrete cosine transform (DCT) expresses a time-series generator response in
terms of a sum of cosine functions oscillating at different frequencies introduced by the
fault occurrence. The DCT kernel projection is defined by:

DCT = Drs =
√

2
n

[
ξi cos

(
π(2j+1)i

2n

)]
i, j = 0, 1, 2, 3, . . . , K− 1

(2)

where ξi = 1/
√

2 for i = 0, otherwise ξi = 1. The DCT proposes optimal de-correlation
coefficients of the stability signals, while grouping energy contained in the signals in low
frequency coefficients [7].

2.1.2. Discrete Sine Transform

The discrete sine transform (DST) derived from the DCT, allows expressing the signal
as a sum of sinusoids with different frequencies and amplitudes. The DST kernel projection
is computed by:

DST = Drs =
√

2
n

[
ξi sin

(
π(2j+1)(i+1)

2n

)]
i, j = 0, 1, 2, 3, . . . , K− 1

(3)
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where ξi = 1/
√

2 for i = n− 1, otherwise ξi = 1. The DCT and the DST are almost similar
operations to the discrete Fourier transform (DFT). The only difference lies in the projection
kernels, which give real coefficients for the DCT, imaginary coefficients for the DST and
complex coefficients for the DFT [7].

2.1.3. Discrete Haar Transform

Discrete Haar transform (DHT) consists of orthogonal switched rectangular wave-
forms, which can take zero value and sample points in subintervals of t ∈ [0, 1] and where
the amplitude can differ from one function to another as follows [31]:

DHT ≡ Drs =
1√
N


2m/2, k−1

2m ≤ t < k−(1/2)
2m

−2m/2, k−(1/2)
2m ≤ t < k

2m

0, otherwise in [0, 1)

r = 2m + k− 1, t = n/N, 0 ≤ r, n ≤ N − 1

(4)

where: m and k represent the integer decomposition of the index r . The time-frequency
Haar function is unitary and invariant under circulant shift.

2.1.4. Discrete Wavelet Transform

The discrete wavelet transform (DWT) is calculated by convolving the post-contingency
signal with a mother wavelet transform Ψm,n [32].

DWT = Drs =
1√
am

0
∑
k

Ψm,n

(
k− nb0am

0
am

0

)
(5)

where: n and m are positive integers. The DWT allows extracting information content
at different positions and scales for subsequently reconstructing post-contingency stabil-
ity signals.

2.1.5. Impulse Dictionary

The impulse dictionary (ID) allows expressing signal as a linear combination of the
Dirac basis vectors representing the frequency response pic [7]. It is constructed as:

ID = Drs = [I]K×K (6)

2.2. Fixed Hybrids Supervised Dictionaries Learning

The fixed hybrid supervised dictionary learning is developed from the concatenation
of DCT, DHT, DST, DWT, and ID, with the aim of improving online reconstruction and
classification of the single dictionaries.

2.2.1. Two Sub-Dictionaries Concatenation

Three concatenations of two sub-dictionaries are constructed for sparse features ex-
traction and classification. Equations (7)–(9) represent these strings of dictionaries joining
single structure end-to end.

Yrsn×N = DrsXK×N = [DHT|DCT ]n×KXK×N (7)

Yrsn×N = DrsXK×N = [DWT|DHT ]n×KXK×N (8)

Yrsn×N = DrsXK×N = [DCT|DWT ]n×KXK×N (9)
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2.2.2. Three Sub-Dictionaries Concatenation

To improve the singles and hybrids structures with two sub-dictionaries, three string
concatenations are developed, see for instances Equations (10)–(12). The fixed predefined
overcomplete dictionary learning enables online TSA.

Yrsn×N = DrsXK×N = [DST|DHT|DCT ]n×KXK×N (10)

Yrsn×N = DrsXK×N = [ID|DCT|DST ]n×KXK×N (11)

Yrsn×N = DrsXK×N = [DWT|DHT|DCT ]n×KXK×N (12)

2.3. Adaptive Supervised Dictionary Learning

The K-SVD is a generalization of a k-means clustering algorithm introduced by [24] for
dictionary learning after estimation of the representation matrix. During the first learning
step of K-SVD, dictionary Drs = [d1 . . . dK] ∈ Rn×K (K � n, over-complete dictionary) is
fixed, and the best sparse coding Xrs = [x1 . . . xN ] ∈ RK×N is found, under the sparsity
constraint T. The K-SVD approach is evaluated based on solving an optimization problem
defined in Equation (13).

〈Drs, Xrs〉 = argmin
Drs ,Xrs

‖Yrs − DrsXrs‖2
2 subject to ∀i‖xi‖0 ≤ T (13)

The OMP is used for sparse coding fixed, hybrids, and adaptive overcomplete dictio-
nary learning (ODL). Given Drs, the sparse coding Xrs ∈ RK×N , is evaluated using the `0
norm by:

xirs = argmin
xirs

‖Yrs − DrsXrs‖2
2 subject to ∀i, ‖xi‖0 ≤ T (14)

where: Drs ∈ Rn×K and T denote overcomplete dictionaries and sparsity constraint respec-
tively. The update of each di atom necessarily leads to that of the non-zero entries in a row
vector xT

i 6= 0. The dictionary is learned by solving to following minimization problem:

min
di , xi
‖Ei − dixT

i ‖
2
2 subject to ‖d‖2

2 = 1 (15)

where: Ei = Yrs − ∑
j 6=i

djxT
j denotes the approximation error matrix, which can be easily

decomposed into U∆VT . The solution dj is a column of U and the coefficient vector xT
j is a

column of V × ∆(1, 1) [33].

3. Performance Measures of Supervised Dictionary Learning

The confusion matrix is used to evaluate the classification performance of the dic-
tionary learning algorithms on the testing database. Three main metrics are calculated
from Table 1.

Table 1. Confusion matrix for TSA classification.

Observation Predicted Class

Positive (Secure) Negative (Insecure)

Actual Positive TP FN

Class Negative FP TN
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The accuracy metric defines the ability of learned dictionaries for correctly classifying
stable and unstable cases in the testing database:

Accuracy (%) =
TP + TN

TP + TN + FN + FP
(16)

The reliability metric in Equation (17) allows for evaluating the performance of learned
dictionaries on the unstable cases:

Reliability (%) =
TN − FN

TN
(17)

The security metric in (18) makes it possible to define the capacity of learned dictio-
naries to predict the stable case:

Security (%) =
TP− FP

TP
(18)

The RMSE defined in (19) is used to evaluate the difference between the predicted
Yrs_pred and observed Yrs_online signal responses:

RMSE =

√
1
n

n

∑
i=1

(
Yirs_online −Yirs_pred)

)2
(19)

4. Top-Down Approach of Sparse Signal Decomposition on Fixed and Adaptive
Dictionaries Learning

The simulation of a hundred faults on the line and generator buses of the IEEE
test system allowed generating generator rotor-speed responses and their stability status.
Figure 2 describes top-down architecture of the proposed system along with the details of
the experiment for an even greater clarity of SLOD.

Seventy percent of signals are used for offline-supervised dictionary learning while
30% are kept aside for online TSA. For an offline learning approach, the training signals are
labelled and separated into two databases: stable rotor speeds (Database 1) and unstable
rotor speeds (Database 2). Database 1 is used as input data for implementing 9 fixed
dictionaries Drs for stable cases reconstruction using: DHT, DCT, DWT, [DHT|DWT],
[DWT|DCT], [DHT|DCT], [DST|DHT|DCT], [ID|DCT|DST] [7], and [DWT|DHT|DCT]
dictionaries. Similarly, Database 1 is used as input data for developing an adaptive stable
dictionary Drs based on K-SVD approach. The second Database 2 is used as input for
establishing fixed dictionaries Drs for unstable case reconstruction using: DHT, DCT, DWT,
[DHT|DWT], [DWT|DCT], [DHT|DCT], [DST|DHT|DCT], [ID|DCT|DST] [7], and
[DWT|DHT|DCT] dictionaries. Similarly, database 2 is used as input data for realizing an
adaptive unstable dictionary Drs based on K-SVD approach.

The orthogonal matching pursuit algorithm is developed to carry out sparse coding
Xrs of rotor speeds from the test database (Database 3). The test database contains both
stable and unstable rotor speed signals Yrs. The stable and unstable sparse coding Xrs are
individually projected onto the 20 learned dictionaries Drs to determine playback degree
of stability. According to the projection result, if RMSE index of the signal obtained from a
stable dictionary is lower than RMSE index predicted by the unstable dictionary, the test
signal is targeted as being stable (stability status = “0”). In the opposite case, the signal
is labelled as being unstable (stability status = “1”). This analysis criterion is used for
evaluating accuracy, reliability (false positive success rate), and security (true negative
success rate) of each supervised dictionary-learning scheme on the testing database.
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5. Experimental Results

The analysis of supervised single ([DCT], [DHT], [DWT]) dictionaries, hybrids with
two ([DHT|DCT], [DCT|DWT], [DHT|DWT]) and hybrids with three ([DST|DHT|DCT],
[ID|DCT|DST], and [DWT|DHT|DCT]) sub-dictionaries for TSA was performed on the
IEEE 68 -bus test system. The 75 × 20,216 (i.e., 75 × 8664 allocated for online testing) post-
contingency speed signals used to train dictionary learning are generated by simulating
various types of fault with wide-range of duration applied on each line and at each
generator terminal bus of the test system under various power dispatch and topologies
conditions. The generated generator responses used for learning are summarized in stable
training set (i.e., 75 × 19,477) and unstable training set (i.e., 75 × 739). The unstable cases
thus represent a mere 3.8% of the cases, which means that the dataset is highly skewed
toward stable cases. These two dictionaries learned separately will allow classifying a joint
database containing stable and unstable scenarios. Each of the signals will be projected on
each of the two stable and unstable dictionaries. The learned stable or unstable dictionaries
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that give the lowest RMSE will define the stability status of the new scenario as either
stable or unstable.

5.1. Description of Dataset for TSA

To generate a diversity of cases, fault duration is gradually increased (per step of
0.5 cycle) until critical loss-of synchronism limit is reached along each line and close to each
generator bus of the test system. For each study case, the numerical simulation duration
is set to 10 s and transient fault occurs at t = 1 s. However, for the unstable scenarios,
numerical simulation duration varies according to the time instant of loss-of-synchronous.
For each simulation, only 75 post-contingency samples (sampling rate: 600 samples/s) per
rotor speed are used for dictionary learning which means a time-window of 125 ms for
making decision (7.5 cycles of fundamental). The re-sampling start time of the generator
signal responses varies according to the simulation fault clearing time instant.

In the presence of a disturbance, the differences in the absolute values of rotor angles
of all the combinations (i, m) of the generators are calculated and compared to 180◦. If
the rotor angle does not exceed 180◦, or if the disturbance causing the rotor swing is
promptly removed, the generator may remain in synchronism with the system. Hence,
during fault simulations, the stability of the power system can take two possible status after
fault clearing, “Sss = 0” corresponding to the stable status, or “Sss = 1” corresponding
to the unstable status [34,35]. Figure 3 presents an example of stable (a) and unstable (b)
speed recorded during the search of critical fault clearing time on line 1 of the IEEE 68-bus
test system.
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Table 2 presents the dataset configuration used for reconstructing and classifying the
unknown testing database (containing 8664 signals: 8341 stable scenarios and 323 unstable
scenarios i.e., 3.72% of the cases) based on supervised learning of overcomplete dictionaries.
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Table 2. Configuration of stable and unstable sparse signal decomposition for TSA.

Sparse Signal Offline Online

Decomposition Features Extraction Reconstruction and TSA

Adaptive Dictionary Learning (ADL)
Rotor speed Prediction error

(For Drs and Xrs
computed) (For RMSE computed)

Fixed Dictionaries Learning
(1,2,3H OHD)

Rotor speed Prediction error

(For Drs and Xrs
computed) (For RMSE computed)

5.2. Fixed and Adaptive Sparse Features Extraction

The number of fixed and hybrid features (i.e., 25 indicators) extracted per signal
depends on the number of iterations defined by the orthogonal matching pursuit [36].
However, the adaptive dictionary learning allows extraction of 75 features per generator
response for online transient stability assessment. Table 3 summarizes the sparse signal
decomposition developed off-line and used for online TSA.

Table 3. Parameters used to train single, hybrids and adaptive supervised dictionary learning.

Configuration Learning
Approaches

Dictionaries/
Feature Size

Sparse Expansion
Coefficient Size

Adaptive dictionary (ADL) K-SVD 75 × 20,216 8700 × 20,216

Single dictionary
(SOD)

DHT

25 × 20,216

75 × 1,617,280
DCT 75 × 1,516,200
DWT 75 × 1,556,632

Two sub-dictionaries
(2H-OHD)

[DHT|DWT] 75 × 3,133,480
[DCT|DWT] 75 × 3,153,696
[DHT|DCT] 75 × 2,304,624

Three sub-dictionaries
(3H-OHD)

[DST|DHT|DCT] 75 × 3,800,608
[ID|DCT|DST] [7] 75 × 4,589,032
[DWT|DHT|DCT] 75 × 3,820,824

The stable K-SVD & OHD dictionaries are initialized and trained with stable signals
as input, while unstable K-SVD & OHD dictionaries are trained with unstable responses
only. For the fixed sparsity (i.e., matrix of numbers that includes many zeros or values
that will not be significant) T = 10, the coefficients are computed using OMP and the
maximum of number iterations in set as 90. K-means is the method used for defining
the maximum iterations able to converge the learning algorithm. It allows defining the
threshold beyond which no point changes during the sparse signal decomposition. This
method supposes that the last iterations have the least contribution to the percent of
correct representation [37]. From the online sparse coding extracted using OMP, stable,
and unstable K-SVD & OHD dictionary learning will allow reconstructing and predicting
transient stability signals. Sample K-SVD Figure 4a and OHD Figure 4b atoms extracted
from the learning of rotor speed responses. Figure 4 presents some examples of adaptive
K-SVD (a) and fixed OHD (b) atoms randomly extracted in the offline rotor speed Yrs.

Adaptive K-SVD atoms well describe the non-stationary and transient response of
generators signals immediately after clearing fault. However, usually sinusoidal fixed
OHD atoms (except DHT) are not satisfactory for analysis of the transient behavior of
generators. To illustrate the atoms performance extracted from the training database, we
selected two signals from the testing database, which are respectively stable and unstable.
Figure 5 presents sparse decomposition of testing signals ID 1 (in blue color) & ID 23 (in
red color) based on a separate stable and unstable K-SVD dictionary learning. The K-SVD
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demonstrates here its ability for an almost perfect fit of the signals in each of the dictionary.
This pattern of success is repeated for all signals in the training dataset.
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The OHD atoms, such as single (DCT, DWT, DHT) dictionaries, two ([DHT|DCT],
[DCT|DWT], [DHT|DWT]) and three ([DST|DHT|DCT], [ID|DCT|DST], [DWT|DHT|DCT])
sub-dictionaries are next used for reconstructing stable (blue color) & unstable (red color)
rotor speed and tracking online (black color) response, see Figure 6.
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5.3. Online Sparse Features Classification Based Overcomplete Dictionaries Learning

The projection of signals ID 1 & ID 23, on stable and unstable dictionary learning
(SOD, 2H-OHD, 3H-OHD & K-SVD), will allow evaluation of the online stability status
according to the atoms structure which gives the lowest RMSE. Figure 7 presents RMSE
prediction value obtained by projecting signals ID 1 (blue) and ID 23 (red) on stable and
unstable SOD and K-SVD respectively.

According to SOD, the DWT is the best descriptor of stable rotor speed, while for the
unstable scenarios prediction DHT is most indicated. The RMSE resulting from hybrids of
[DHT|DCT], [DCT|DWT] & [DHT|DWT] are similarly used to perform fixed dictionary
learning for online TSA. The projection of signals ID 1 (blue) & ID 23 (red) on two hybrids
dictionaries learned separately, allows for a correct prediction of the online stability status
based on the lowest RMSE, see Figure 8.
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Regarding 2H-OHD, the [DHT|DWT] has lower RMSE predictors for the stable and
unstable stability status responses compared to [DHT|DCT], [DCT|DWT]. The projection
of signals ID 1 (blue) & ID 23 (red) on three hybrids dictionary learning allows effective
prediction of online TSA, with a slightly improved performance compared to single dic-
tionaries & hybrids with two sub-dictionaries, see Figure 9. Regarding 3H-OHD, the
[DST|DHT|DCT] has lower RMSE predictors for the stable and unstable stability status
responses compared to [ID|DCT|DST] and [DWT|DHT|DCT], which means a crisper
separation between stable and unstable cases.

Figure 10 presents the stability degree of signals ID 1 and ID 23, developed based on
stable and unstable dictionary learning. By definition, it is computed as the ratio between
RMSE of unstable dictionary divided by the RMSE of stable dictionary-based reconstruction.
Therefore, a small RMSE results in a high degree of stability meaning a higher probability
of the case being stable while a small value means that the case is likely classified as
unstable. For the stable case ID 1, the K-SVD gives a very large stability degree compared
to [DCT], [DHT], [DWT], [DHT|DCT], [DCT|DWT], [DWT|DHT], [DST|DHT|DCT],
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[ID|DCT|DST], and [DWT|DHT|DCT]. Similarly, K-SVD gives a very low stability degree
of ID 23, which confirms a good stability separability of K-SVD based dictionary.
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5.4. Performance Metrics of Sparse Decomposition on Fixed and Adaptive Overcomplete
Dictionaries Learning

The metrics (namely: accuracy, reliability, and security) are used to evaluate the per-
formance of fixed and adaptive overcomplete dictionary learning. The accuracy metric
defines the ability of learned dictionaries for correctly classifying stable (i.e., 8341 scenarios)
and unstable (i.e., 323 scenarios) in the testing database (i.e., 8664 scenarios). The reliability
metric makes it possible to evaluate the performance of learned dictionaries to predict un-
stable scenarios. The security metric allows defining the capacity of learned dictionaries to
predict the stable scenarios. They broadly succeed in projecting the new transient scenarios
on each stable and unstable dictionary and evaluating the probability for each of them
to have a low RMSE reconstruction. For each signal, the stability status classification is
confirmed or not, according to the absolute values of generators rotor angles. Table 4 sum-
marizes the online TSA effectiveness of each OHD and ADL developed based on separated
training datasets. Moreover, the performance of OHD and K-SVD based stable/unstable
dictionaries are compared to the supervised learning of overcomplete dictionaries (SLOD)
developed in [34], based on both rotor speed and stability status taken as the training input
and using a single dictionary containing both stable and unstable cases. It appears from
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Table 4 that all fixed dictionaries provided a decent performance with right to all metrics
using separate stable/unstable datasets in contrast to K-SVD dictionary whose reliability is
pretty-weak.

Table 4. TSA metric comparisons of fixed and adaptive supervised dictionary learning.

Configuration Learning
Approaches Accuracy Reliability Security

Adaptive dictionary (ADL)
(with a separate training dataset) K-SVD 93.42 81.68 93.35

SLOD [34]
(with a joint training dataset) TK-SVD 99.99 99.99 99.99

Single dictionary
(SOD)

(with a separate training dataset)
Two sub-dictionaries

(2H-OHD)
(with a separate training dataset)

Three sub-dictionaries
(3H-OHD)

(with a separate training dataset)

DCT 94.76 93.05 94.52
DHT 95.79 94.10 95.66
DWT 94.96 93.40 94.74

[DHT|DWT] 95.41 93.75 95.24
[DCT|DWT] 94.79 93.05 94.56
[DHT|DCT] 94.82 93.05 94.59

[DST|DHT|DCT] 94.88 93.05 94.66
[ID|DCT|DST] [7] 94.88 93.05 94.66
[DWT|DHT|DCT] 94.81 93.05 94.58

The single dictionary based on DHT seems in average to be the best post-disturbance
stability predictor with a 94.1% reliability success rate and 95.79% overall accuracy. By
contrast, the reliability of the ADL (K-SVD) algorithm is only 81.68%. This compared poorly
with the SLOD (TK-SVD) algorithm proposed in [34], which provided 99.99% success rate
across all performance metrics.

5.5. Computational Efficiency of Fixed and Adaptive Overcomplete Dictionaries Learning

The computational performance of fixed and adaptive dictionary learning was as-
sessed on a DELL computer configured with the Intel processor i7-7700HQ 4-core running
at 2.80 GHz with 16 GB of RAM. Although the CPU time is relatively significant, the
actual code is in Matlab scripting language and can therefore be made faster using C-
programming. Table 5 summarizes all CPU computational time for the offline learning
and online playback for TSA. The proposed adaptive overcomplete dictionaries take more
offline computation time (i.e., 298,475.89 s or about 83 h) for sparse features extraction.
However, K-SVD sparse features enable a very quick online transient stability prediction
(i.e., 4.45 s computation time) based on the generator signal responses (i.e., 8664 scenarios).
Compared to the best dictionary learning algorithm, the SLOD (TK-SVD), which has a
409,744.06 s or about 114 h offline training time and 6.59 s online playback time, the ADL
(K-SVD) is 37% and 48% faster respectively. Moreover, several paths for improving the
performance metrics of the ADL (K-SVD) to fully benefit from this improved computational
performance remains to be investigated, such as a longer data window for decision-making
and enhanced data normalization before dictionary learning, i.e., by using for instance
rotor speed deviation instead of the absolute speed.

Table 6 provides a summary of the advantages and disadvantages of supervised
dictionary learning for transient stability assessment.

The different methods are further compared in Figure 11 using data from Table 4. The
bottom line is that the reconstruction-based TSA is better done with fixed dictionaries. The
DHT turned out to be the best fixed dictionary in terms of both reliability and security
although the difference is not huge across all types of fixed dictionaries.
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Table 5. CPU time (in sec.) of fixed and adaptive supervised dictionary learning.

Configuration Learning
Approaches

Offline
Processing

Time/s

Online
Processing

Time/s

Adaptive dictionary (ADL)
(with a separate training dataset) K-SVD 298,475.89 4.45

SLOD [34]
(with a joint training dataset) TK-SVD 409,744.06 6.59

Single dictionary
(SOD)

(with a separate training dataset)
Two sub-dictionaries

(2H-OHD)
(with a separate training dataset)

Three sub-dictionaries
(3H-OHD)

(with a separate training dataset)

DHT 16,518.44 6061.06
DCT 42,290.29 17,547.32
DWT 45,882.93 17,366.59

[DHT|DWT] 31,535.18 13,854.68
[DCT|DWT] 52,812.70 18,519.29
[DHT|DCT] 55,830.41 20,278.90

[DST|DHT|DCT] 33,949.11 14,489.51
[ID|DCT|DST] [7] 28,617.70 12,320.68
[DWT|DHT|DCT] 40,062.59 16,521.75

Table 6. Advantages and disadvantages of fixed and adaptive dictionary learning for TSA.

Approaches Advantage Disadvantage

ADL

—Satisfactory accuracy and security;
—Good online CPU time;
—Implemented based on data-driven algorithm (K-SVD);
—Used separate approach for ADL.

—Not satisfactory reliability.
—Takes longer time for offline learning

SLOD [34]

—Good accuracy, reliability, security;
—Satisfactory online CPU time;
—Implemented based on data-driven algorithm (K-SVD);
—Used joint approach for SLOD.

Takes longer time for offline learning.

SOD

—Satisfactory accuracy security and reliability;
—Rectangular waveforms, which can take zero value and sample points
in subintervals of t ∈ [0, 1];
—Grouping energy contained in the signals in low
frequency coefficients;
—Extracting information content at different positions and scales for
subsequently reconstructing post-contingency;
—Used separate approach for SOD.

—Not satisfactory online CPU time;
—Not suitable for transient
signal reconstruction.

2H-OHD

—Satisfactory accuracy security and reliability;
—Allows extracting simultaneously the non-sinusoidal information, the
frequencies of the oscillations and a representation in a unitary
sub-interval, invariant by shifts.
—Allows extracting simultaneously the real low frequency coefficients,
the non-sinusoidal information and the oscillation frequencies;
—Allows extracting simultaneously, a representation in a unit
sub-interval, invariant by shifts and the low frequency real coefficients;
—Used separate approach for SOD.

—Not satisfactory online CPU time;
—Not suitable for transient
signal reconstruction.

3H-OHD

—Satisfactory accuracy security and reliability;
—Allows extracting simultaneously in the stability signals, the
imaginary coefficients, the representations in a unitary sub-interval,
invariant by shifts and the low frequency real coefficients;
—Allows extracting frequency peaks, real low frequency coefficients
and imaginary coefficients;
—Allows extracting in a way, the real coefficients low frequency, the
non-sinusoidal information, scales, representations in a sub-unit
interval, invariant by shifts and the imaginary coefficients;
—Used separate approach for 2H-OHD.

—Not satisfactory online CPU time;
—Not suitable for transient
signal reconstruction.
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Giving that DHT takes only about 50% of the computation time of the 3H-OHD
from [7] in both supervised learning and online playback, it is definitely more promising
and warrants further investigation in the TSA context. Additionally, given the short
prediction window (75 ms) and the highly skewed two-data classes characterizing machine
learning based TSA (with the unstable class typically representing only 3 to 10% of the total
data set), the reconstruction-based classification using K-SVD appears unsuitable and rather,
the TK-SVD based supervised learning algorithm of [34] should be further investigated
and compared with the reconstruction-based classification using fixed DHT dictionary.
These two options emerged as the best dictionary-based TSA prediction methods from the
present study.

6. Conclusions

This work aims at reconstructing and predicting transient stability assessment based
on fixed and adaptive overcomplete dictionary learning for online stability signal responses
reconstruction. Practically speaking, this study develops and implements new arrangement
of atoms able to improve wide-area stability monitoring and control using a dual-dictionary
signal reconstruction approach. To this end, fixed and adaptive structures have been
investigated based on DCT, DHT, and DWT dictionary learning for rotor speeds sparse
reconstruction. Afterwards, stability status is determined based on the RMSE of rotor speed
prediction using each stable/unstable dictionary to design the level of belonging to each
class. The ratio of RMSE from these two separated predictions is proposed as measured of
stability (or instability) of the given observed post-disturbance signal over a short 4.5-cyles
data window.

Several concatenations of two (i.e., [DHT|DCT], [DCT|DWT], and [DHT|DWT])
and three (i.e., [DST|DHT|DCT], [ID|DCT|DST], and [DWT|DHT|DCT]) fixed sub-
dictionaries are used to perform similar sparse decomposition on dual-dictionaries. Alter-
natively, the K-SVD adaptive approach is implemented using dual-dictionaries learned
from the stable/unstable generator response datasets. While the adaptive K-SVD demon-
strated a better reconstruction performance, in terms of prediction errors, its reliability
performance was not satisfactory due to the highly skewed dataset derived from the IEEE
68-bus test system (3.8% of stable cases only) and short data frames (75 ms). Overall,
this study proved that [DWT], [DHT|DWT], and [DST|DHT|DCT] fixed dictionaries are
better stability indicators compared to adaptive K-SVD, [DHT], [DWT], [ID|DCT|DST],
and [DWT|DHT|DCT] but none of these methods could match the good performance
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of the method reported in [35]. We will further evaluate the performance of the K-SVD
and DHT based dictionary learning methods for TSA on the combined database of IEEE
39 and 68 -bus test systems in the presence of multi-faults and for various simultaneous
disturbances. Moreover, to reduce the offline training time, we also plan to develop parallel
computer-based dictionary learning of PMU based generator signal responses to enable
online TSA on large-scale power systems.
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Abbreviations

K-SVD K-singular value decomposition
TK-SVD Transient K-singular value decomposition
DST Discrete sine transform
DCT Discrete cosine transform
ADL Adaptive dictionary learning
DWT Discrete wavelet transform
DHT Discrete Haar transform
ID Impulse dictionary
UPE Unstable prediction error
SPE Stable prediction error
OHD Overcomplete hybrid dictionaries
SOD Single overcomplete dictionaries
2H-OHD Two overcomplete hybrid dictionaries
3H-OHD Three overcomplete hybrid dictionaries
[DHT|DCT] Concatenation of discrete Haar and cosine transforms
[DCT|DWT] Concatenation of discrete wavelet and cosine transforms
[DHT|DWT] Concatenation of discrete Haar and wavelet transforms
[DST|DHT|DCT] Concatenation of discrete sine Haar and cosine transforms
[ID|DCT|DST] Concatenation of discrete impulse, cosine and sine transforms
[DWT|DHT|DCT] Concatenation of discrete wavelet, Haar and cosine transforms
Stable DHT DHT dictionary learned from stable dataset
Unstable DHT DHT dictionary learned from unstable dataset
Stable DWT DWT dictionary learned from stable dataset
Unstable DWT DWT dictionary learned from unstable dataset
Stable DCT DCT dictionary learned from stable dataset
Unstable DCT DCT dictionary learned from unstable dataset
Stable [DHT|DCT] [DHT|DCT] dictionary learned from stable dataset
Unstable [DHT|DCT] [DHT|DCT] dictionary learned from unstable dataset
Stable [DCT|DWT] [DCT|DWT] dictionary learned from stable dataset
Unstable [DCT|DWT] [DCT|DWT] dictionary learned from unstable dataset
Stable [DHT|DWT] [DHT|DWT] dictionary learned from stable dataset
Unstable [DHT|DWT] [DHT|DWT] dictionary learned from unstable dataset
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Stable [DST|DHT|DCT] [DST|DHT|DCT] dictionary learned from stable dataset
Unstable [DST|DHT|DCT] [DST|DHT|DCT] dictionary learned from unstable dataset
Stable [ID|DCT|DST] [ID|DCT|DST] dictionary learned from stable dataset
Unstable [ID|DCT|DST] [ID|DCT|DST] dictionary learned from unstable dataset
Stable [DWT|DHT|DCT] [DWT|DHT|DCT] dictionary learned from stable dataset
Unstable [DWT|DHT|DCT] [DWT|DHT|DCT] dictionary learned from unstable dataset
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