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Abstract: The challenge of maintaining the required level of mobility and air quality in cities can
be met by deploying an appropriate management system in which the immediate vicinity of roads
is monitored to identify potential pollution hotspots. This paper presents an integrated low-cost
system which can be used to study the impact of traffic related emission on air quality at intersections.
The system was used for three months in 2017 at five locations covering intersections in the centre
of a mid-sized city. Depending on the location, pollution hotspots with high PM2.5 and PM10

concentrations occurred 5–10% of the time. It was shown that despite the close mutual proximity
of the locations, traffic and the immediate surroundings lead to significant variation in air quality.
At locations with adverse ventilation conditions a tendency towards more frequent occurrences
of moderate and sufficient air quality was observed than at other locations (even those with more
traffic). Based on the results, a practical extension of the system was also proposed by formulating
a model for the prediction of PM2.5 concentration using a neural network. Information on transit
times, meteorological data and the background level of PM10 concentration were used as model
input parameters.

Keywords: low-cost sensors; traffic; air quality; pollution hotspots; transit time; neural network

1. Introduction

Air pollution remains a significant problem worldwide, affecting people’s health and
quality of life [1]. One of the relevant sources of emissions of gaseous pollutants such as
nitrogen oxides (NOx), carbon monoxide (CO)—but also fine particulate matter (PM2.5)—is
transport. For example, in Poland the largest share (54%) of PM2.5 total emissions in 2017
was associated with the burning of coal and wood in households; manufacturing, industry
and construction (29%) and transport (11%) were also significant sources of PM2.5 [2].

What is more, intensive road transport has become an inseparable element of the
contemporary urban landscape, determining the state of the local environment to a large
degree. For many years, the significant impact of transport-derived pollution on air quality
has been noted in urban conurbations. Despite the existence of multiple initiatives aimed
at improving the situation, in many European urban centres air pollution continues to
represent the main health risk factor [3]. Heavy traffic flow, a significant proportion of
individual (private) vehicles, a significant share of vehicles not meeting emissions stan-
dards and the not always optimal quality of infrastructure are relevant factors increasing
emissions of harmful compounds deriving from road traffic.

It is considered that in the long term, improvements in the situation in urban areas
will be achievable by making appropriate changes in the mobility sector, including changes
to both private and public transport. In this context, it is necessary to implement new
tools and methods of reducing air pollution in urban areas via the introduction of effective
mechanisms making use of intelligent transport systems for management of transport
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infrastructure and road traffic. A basic condition for the realization of effective man-
agement strategies is the launch of systems permitting simultaneous access to real-time
measurements of both road traffic and air pollution.

In many European cities air quality monitoring is carried out (and measurement
results made available), but due to installation costs, the number of stations operating in
regulatory air quality monitoring networks is limited. Moreover, when deciding locations
for monitoring sites, few or no formal attempts have been made to provide spatial cov-
erage [4]. As a consequence, the existing air quality network does not provide sufficient
spatial resolution. In general, to be able to identify pollution hotspots, a network of higher
density is needed.

Therefore, there are increasing attempts to install and use multi-element wireless
networks of low-cost pollution sensors [5]. Connecting information collected by a network
of air quality monitoring sensors (referred to hereafter as LCS) with models predicting pol-
lutant concentrations can be an effective solution permitting the introduction of short-term
air quality management strategies in urban areas. A number of published results confirm
that this approach is promising. Nitrogen dioxide (NO2) concentration was mapped by
the LCS network and urban-scale model for the Oslo in [6]. In [7,8] the LCS network with
land use regression models was used to map air pollution. In another study [9] the use of
LCS for monitoring ozone concentration as a part of a network with reference stations was
demonstrated. In a study [4] was proposed a method of creating an air quality monitor-
ing network that takes into account social (population) and environmental (air pollution)
factors; it can collect data with high spatiotemporal resolution in several layers, using
reference, low-cost and Internet-of-Things (IoT) sensors. In a study on this subject [10] the
authors used combined data from different sources in order to improve the spatiotempo-
ral estimation of PM2.5 pollution. In another study [11] the authors reported on an LCS
network deployed in Dezhou city which was used to identify pollution hotspots. LCS
networks are also being developed for more local applications [12].

As an alternative to the stationary LCS monitoring network, mobile monitoring
is sometimes used to determine air pollution concentrations in urban areas. A mobile
monitoring for predicting NO2 concentrations was presented in [13]. Mobile sampling for
mapping air pollution at streets in Seoul was presented in [14]. Results of mobile sampling
deployed on fleets of waste disposal trucks were combined with methods developed to
interpret PM2.5 measurements in Cambridge, Massachusetts [15]. As part of the GreenIoT
project in Uppsala, it is planned to supplement a stationary sensor network with LCS
mounted on the roofs of buses used for public transport [16]. In Sunway City, mobile
sampling with LCS for monitoring concentrations of carbon dioxide (CO2) and NO2
was performed [17]. In Nantes, the PM10 concentrations recorded by the stationary LCS
network and sensors deployed on vehicles were used for air quality mapping [18]. For
data collection in the case of mobile monitoring, cyclists can be used, which due to their
ubiquity present a potential global approach to data collection [19]. Mobile monitoring with
portable LCS can also be used in exposure studies, for instance to analyse the individual
exposure levels in the vicinity of roads (see, for example, [20]). Monitoring with personal
portable LCS can be used to determine air pollution exposure during commuting at a high
spatiotemporal resolution in near real-time [21]. In a study on this subject [22] the authors
used portable devices to quantify personal exposure levels to the in-car concentrations of
PM, NO2 and CO during morning and evening peak hours in Cairo.

Despite the fact that LCS are increasingly being used, some of their performance
characteristics still have to be investigated in greater depth. Therefore, intensive research
is being conducted on topics such as the variability between individual sensors, the accu-
racy which with data are recorded, the effect of environmental conditions and long-term
stability [23–27].

The literature review indicates a number of low-cost sensor applications for spatial
mapping of air quality at varying temporal resolution. However, measures aiming to
simultaneously manage both traffic and air quality (in the area of road infrastructure)
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require additional information characterising traffic conditions in real time. For signal-
controlled intersections, knowledge of the variability of traffic conditions is essential
for assessing the impact of transport on air quality. In this paper, an attempt has been
made to formulate a unique solution for characterising traffic conditions based on the
determination of transit times. Transit time is the result of the traffic signaling program
and the traffic volume at a given intersection. In this study we used an integrated low-cost
system for simultaneous recording of current transit times and current levels of pollution
at intersections. The system allows assessment of the influence of traffic-related emissions
on air quality and is a data source for implementing effective traffic management strategies
to prevent the emergence of local pollution hotspots.

2. Materials and Methods
2.1. Site Description

The research was conducted in a period of three months from 1 August to 3 November
2017 in Bielsko-Biała. Bielsko-Biała is a Polish city lying in the southern portion of the
country. It has approximately 175,000 inhabitants, covers an area of 125 km2 and has
410 km of paved roads per 100 km2. Within the city, a large number of cars are registered—
651 passenger cars per 1000 inhabitants [28]. Moreover, the city is located at the foot
of the mountains, several transport corridors intersect within it and public transport is
not particularly popular. As a result, the city suffers from air quality problems. In 2017,
the annual average exposure to PM2.5 was 29 µg/m3 [29]. Nowadays, according to the
European Environmental Agency [30], Bielsko-Biała ranks 310 in Europe on the list from
the cleanest city to the most polluted (out of 323 included), as a result of the annual mean
PM2.5 concentration being equal to 21.64 µg/m3. As indicated by the results of the studies
presented in [31], the average daily share of road traffic in PM2.5 pollution in Bielsko-Biała,
with a low urban background concentration, reached about 22%.

2.2. Measurement System

Simultaneous monitoring of traffic and pollution concentration was performed using
five extended base stations of the OnDynamic system (APM PRO, Bielsko-Biała, Poland).
This system is a low-cost intelligent architecture consisting of sensors and specialized soft-
ware, which allows gathering data and presenting information acquired from multimodal
sensors in real time, including: travel time, mean speed on the given section, traffic intensity
and current traffic obstructions/incidents. These traffic metrics are calculated based on
the identification of active Bluetooth devices mounted in passing vehicles. In 2015, the
OnDynamic system installed in Bielsko-Biała consisted of more than 20 measuring stations
located at major intersections within the city’s basic transport structure (Figure 1). On the
basis of the concept presented in [32], in summer 2017 extended base stations were put into
operation at several intersections (L1–L5) in the city centre (marked as EBS on Figure 1). At
these extended base stations, the commercially available optical particle counter sensor
PMS5003 (Plantower, Beijing, China) and electrochemical sensor CO-B4 (Alphasense, Great
Notley, Braintree, UK) were used to measure concentrations of particulate matter and
carbon monoxide, respectively.
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Figure 1. Locations of the OnDynamic system sensors on the road network in Bielsko-Biała (BS—base
station, EBS—extended base station allowing simultaneous recording of concentrations of CO and
PM). Map source: OpenStreetMap.

The set of monitoring equipment used for the study is characterized in Table 1. All
base stations of the system were mounted on an extension arm mounted to traffic lights.
An example view of one such station is shown in Figure 2.

Table 1. The monitoring equipment set used for the study.

Component Measuring Uncertainties Operation Range

OnDynamic Detection of Bluetooth
devices N/A 2.4–2.5 GHz

−20–50 ◦C

PMS5003 sensor Particulate matter
concentration

±10 µg/m3 for conc. ≤100 µg/m3

±10% for conc. ≥100 µg/m3
0–500 µg/m3

−10–60 ◦C

CO-B4 sensor Carbon monoxide
concentration ±4 ppb 0–1000 ppm

−30–50 ◦C

The system is structured to cover three main levels of functionality: data acquisition,
information processing and data visualization. Data are acquired via the microcontroller
at the base station; it detects the Bluetooth devices and performs initial data filtration.
Data from the base station regarding the devices detected in a given location are sent via a
virtual private network to the central database system. Information is processed by the
central servers, where the data is first analyzed, taking into account the station location,
and then the parameters characterising the traffic in the road network are estimated. Data
visualization is carried out using an Internet platform available from both stationary and
mobile devices. Data are presented on a map background, thus allowing simultaneous
visualization of current traffic parameters on particular sections of the network (Figure 3).
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Thanks to its advanced, inbuilt algorithms, the OnDynamic system is an advanced,
automated measuring environment. The system has proved a useful tool for monitoring
traffic conditions and analysing traffic long-term variability [33].

2.3. Data Processing

In traffic-related emission modeling and assessment of the emission impact on air
quality basic parameters characterising road traffic are used, such as traffic volume, vehicle
categories and traffic speed [34]. Using the OnDynamic system, two of these parameters
can be estimated: traffic volume and traffic speed. These are obtained as follows: each
base station in the measuring system registers unique MAC addresses of the Bluetooth
devices within a range of up to several hundred metres from the station, depending on the
signal strength and antenna direction. The address of a given device is registered by the
station in successive moments of time, as long as it is within the antenna’s range. In the
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next data processing stage, the traffic volume is estimated. To determine the total number
of Bluetooth devices in a given quarter of an hour, the database of registered addresses is
searched using filters, eliminating the addresses of devices not related to moving vehicles
from the dataset. Next, the mean travel time travel between the stations is determined for
a set of addresses registered in a given quarter of an hour based on the time difference
between registrations of a given address by neighbouring stations. Then, based on this,
the traffic speed is estimated. Additionally, the mean time that devices stay within the
station range is used to determine the average transit time through an intersection at a
given location.

Simultaneously to the aforementioned recording of Bluetooth devices’ MAC addresses,
a separate microcomputer supports the recording of instantaneous pollutant concentrations
at extended base stations. As each particular address is registered by successive extended
base stations, during a further stage in the data processing, it is possible to determine the
actual travel time and, consequently, to determine the traffic participants’ exposure rate on
particular sections of the road network [35]. The authors of this paper used the information
from the system on transit times and concentrations of pollutants: CO, PM2.5 and PM10.
These constituted the traffic and air quality characteristics of the intersection area. The
hourly mean pollutant concentrations were used to determine air quality index (AQIx)
classes in the surroundings of a given station—summarized in Table 2.

Table 2. The air quality index classes, concerning maximum hourly average concentration of CO,
PM2.5 and PM10 [36].

AQI Class
AQIx 6 AQIx 5 AQIx 4 AQIx 3 AQIx 2 AQIx 1

Pollutant

CO (mg/m3) 3 7 11 15 21 >21
PM2.5 (µg/m3) 13 35 55 75 110 >110
PM10 (µg/m3) 20 50 80 110 150 >150

Based on the recorded pollutant concentrations for each location and the air quality
index classes, AQIx, an overall air quality index class, AQIOV, is assigned as:

AQIOV = min{AQICO, AQIPM2.5, AQIPM10} (1)

3. Results and Discussion

Air quality in cities may be considered to be the result of the effects of wind, envi-
ronment and the shape of urban space [37]. The air pollution level in the vicinity of the
road depends on a number of factors, such as: traffic conditions which influence on total
exhaust emission (e.g., traffic intensity, vehicle categories, level of service, number of stops
etc.), the urban background pollution, the layout and density of buildings near the road,
wind speed and direction, the intensity of mechanical turbulence generated by vehicles, as
well as other factors. During the study period, the concentrations recorded at particular
locations showed that local pollution hotspots were formed. The frequency of occurrence
of the overall air quality index classes at particular locations are presented in Table 3.

Table 3. Occurrence rates of overall air quality index classes at locations L1–L5.

Rate of Occurence (%)

AQI Class Location AQIOV 6 AQIOV 5 AQIOV 4 AQIOV 3 AQIOV 2 AQIOV 1

L1 28.4 39.9 15.5 6.2 4.4 5.6
L2 21.5 51.3 13.4 4.7 4.7 4.4
L3 38.8 42.4 7.5 3.2 4.1 4
L4 41.1 44.5 5.8 3.5 2.9 2.2
L5 28.8 44.8 13 6.2 4 3.2
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Based on the frequency of occurrence of AQIOV classes, it can be concluded that
generally very good (AQIOV 6) and good (AQIOV 5) air quality were recorded for at least
68.3% of the time (at L1) and not more than 85.6% of the time (at L4). However, in all
locations also poor (AQIOV 2) and very poor (AQIOV 1) air quality occurred sometimes.
Below, the authors discuss the details of the results obtained.

3.1. Meteorological Conditions and Urban Background Pollution

During the period analyzed, moderate wind from the southwest prevailed. Figure 4
shows the wind rose on the basis of measurements recorded by a meteorological station
located not more than 5 km from each of the locations analyzed (L1–L5). No wind was
recorded during 41 h of observation, while weak winds of 1 m/s were almost thirteen
times more frequent than no wind at all.
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The urban background CO and PM10 concentrations were recorded by the station
belonging to the regulatory air quality network and were subject to changes on individual
days during the period analyzed. Unfortunately, this station does not register the PM2.5
concentration. The urban background CO level throughout the observation period cor-
responded to AQICO(b) 6, i.e., very good air quality. In turn, the PM10 urban background
concentration values indicated variation in AQI classes, excluding AQIPM10(b) 1, i.e., never
very poor (Table 4).

Table 4. Occurrence rates of air quality index classes for urban PM10 background.

Rate of Occurrence (%)

AQI Class AQIPM10(b) 6 AQIPM10(b) 5 AQIPM10(b) 4 AQIPM10(b) 3 AQIPM10(b) 2 AQIPM10(b) 1

Urban
background 55.6 39.7 3.2 1.2 0.3 0

The data presented in Table 4 show that for most of the observation hours, the AQI
class determined based on PM10 concentration for urban background showed very good
air quality. The indications for moderate (AQIPM10(b) 4) and sufficient (AQIPM10(b) 3) air
quality were 73 h and 26 h, respectively, and poor air quality (AQIPM10(b) 2) was recorded
for 7 h. When the background pollution level was high (AQIPM10(b) 2) the wind speed was
between 1 and 3 m/s (mean value 1.9 m/s) and no wind gusts were recorded.
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3.2. Characterization of Traffic and the Vicinity of Intersections in Locations Analyzed

The stations of the system in Bielsko-Biała were located in the vicinity of intersections
with varying traffic intensity and in the immediate vicinity of inhomogeneous buildings.
In this study, the diversity of local conditions resulting from the layout and density of
buildings in the immediate surroundings was characterized by the Sky View Factor (SVF)
value [39,40]. To determine the SVF values at the locations analyzed, site photographs
taken with a fisheye lens (Figure 5) were used. The SVF values were determined using the
SVF Calculator [41]. The results for the individual locations are summarized in Table 5.
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Table 5. The SVF values determined for the locations analyzed.

Location L1 L2 L3 L4 L5

SVF Value (−) 0.92 0.86 0.96 0.94 0.58

A comparison of the SVF values indicates that the most restrictive surrounding built
environment—and therefore the least favorable ventilation conditions—was at L5. If
identical emissions were to occur at all locations, the worst air quality could be expected
at L5.

In fact, the traffic volumes on individual intersections at the locations under consid-
eration varies. The highest volume of traffic is recorded at L3. The traffic volume at L1
and L2 is a few percent lower. The lowest traffic volumes were recorded at L4 and L5
(over 30% lower than at L3)—see Table 6. At all locations, the afternoon peak is higher
than the morning peak; the greatest differences were measured for locations L2 and L5.
The percentage shares of heavy vehicles (i.e., urban buses and heavy duty vehicles of
mass >3.5 mg) are highest at locations L1 and L5. For locations on the same road situated
in the city centre (from L2 to L4) the percentage share of heavy vehicles is almost at the
same level.
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Table 6. Traffic characteristics at individual locations (data from the city road administration).

Location L1 L2 L3 L4 L5

Traffic volume
(6 a.m.–6 p.m.)

(veh./12-h)
33,547 33,398 34,748 23,950 22,618

Morning peak (veh./h) 3011 3158 3526 2314 1943
Afternoon peak (veh./h) 3109 3276 3592 2347 2249

Average flow (veh./h) 2837 2839 2917 2016 1889
Share of heavy vehicles 6% 3% 4% 3% 5%

Knowing only the total traffic volume does not allow unambiguous identification of
the level of service, which significantly determines the level of emissions. The level of
service at an intersection is related to the transit time, which may vary for intersections
with the same total volume of traffic. The variability in transit time on weekdays and at
weekends determined by the OnDynamic system in the period analyzed is presented in
Figure 6.
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The longest transit times in the period analyzed were recorded at L3. The median
transit times at L1 and L2 are noticeably different, despite the almost identical traffic
volumes. In contrast, the median transit times calculated for L5 and L2 are comparable,
despite significantly different traffic volumes. The traffic at individual intersections is also
subject to clear daily variability. Figure 7 shows the mean values for individual hours of
the day at L3 and L5. It is easy to see that transit times may differ according to the type and
time of day at different locations. On working days, the most unfavorable traffic conditions
are generally recorded at L3 from 8 am to 6 pm and at L5 from 8 am to 3 pm. Therefore,
during these hours pollution hotspots are more probable because the level of service is
lower due to longer transit times and consequently increased traffic-related emissions.
Daily differentiation in traffic conditions is one of the factors determining the variability of
air pollution in the vicinity of roads. In our earlier work we performed analyses of hourly
mean PM2.5 concentrations and traffic data for a period of almost one month. It was shown
that on most days the estimated hourly average share of traffic-related emissions in PM2.5
pollution was clearly correlated with the traffic volume [31].
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3.3. Air Quality in the Vicinity of Roads

Concentrations of pollutants recorded by sensors at base stations confirmed poorer
air quality in the vicinity of roads, for all locations (in comparison to urban background).
Nevertheless, the CO concentrations recorded at individual locations during the analyzed
period, although higher than in the urban background, are still very good, at AQICO 6.
However, levels of PM concentrations recorded by the stations indicate the formation of
local pollution hotspots. The general characteristics of the variability in air pollution level
at the considered locations in relation to the concentration of CO and of both PM fractions
are presented in boxplots (Figure 8).

The highest median CO concentration at the locations analyzed was recorded at L2.
At L5, despite the lower traffic level, but due to unfavorable ventilation conditions (the
lowest SVF), the median CO concentration is comparable to L1 and even higher than
the median concentration at a location with much higher traffic volumes, i.e., L3. The
lowest CO concentrations were observed at L4. The maximum recorded hourly average
concentration of CO confirms that traffic did not change the AQICO class determined by
the urban background level at any of the locations. Therefore, it can be concluded that the
recorded CO concentrations at the locations analyzed, although higher than that of the
urban background, do not contribute to the formation of local pollution hotspots. Analysis
of statistics for hourly average concentration of PM2.5 and PM10 indicates that the highest
hourly average concentrations were recorded at L1 and L2. As for CO, a higher median
PM concentration was observed at L5 than at L3, which had the highest traffic volume but
the most favorable ventilation conditions. However, the PM concentrations recorded at
individual locations indicate the formation of local pollution hotspots.

In order to identify which conditions were conducive to the formation of pollution
hotspots, the meteorological conditions under which high values of hourly average concen-
tration of PM10 were recorded at individual locations were determined. For all locations,
the maximum recorded PM10 concentrations show a significant dependence on wind
direction. Figure 9 shows the polar plots for the maximum recorded hourly average con-
centration of PM10 depending on the wind direction and speed in the urban background
and at individual locations.
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The analysis of the data provided shows that in general, for all locations, the east and
northeast wind was favorable to forming pollution hotspots. At L1, L2 and L5, the north
wind was also conducive to the formation of high PM10 levels. Clearly, at L2, unfavorable
conditions were also recorded for the northwest wind direction. Direct comparison of
the data indicates certain differences for wind from other directions. Urban background
levels were higher also when the wind was coming from the southeast which led to
higher concentrations, especially at L1 and L2. At these two locations, the southeast wind,
including at speeds exceeding 2 m/s, led to moderate air quality.

The variability of air quality at individual locations, resulting from the different traffic
conditions and restrictions on the free dispersion of pollutants in the immediate vicinity,
can also be characterized in relation to the frequency of occurrence of individual classes of
AQIPM10 and AQIPM2.5 as shown in Table 7.

A comparison of the occurrence rates of AQIPM10 classes and PM10 urban background
AQIPM10(b) classes indicates that as a result of traffic-related emissions, air quality in the
vicinity of road infrastructure was, for many hours, significantly worse than in other areas
of the city. At each location, air quality was more frequently both moderate (AQIPM10 4)
and sufficient (AQIPM10 3) compared to the conditions for the urban background. At the
same time, poor (AQIPM10 2) and very poor (AQIPM10 1) air quality in the vicinity of roads
was recorded at certain times. The frequency of occurrence of the lowest AQI classes varied,
most frequently recorded at L1 and L2. At L2, in the very centre of the city, poor air quality
occurred 10 times more often than in other areas of the city influenced only by the urban
background. Of the locations studied, the least deterioration of air quality in relation to the
background was observed for L4. It is worth noting that despite the lower traffic volume
at L5, due to the limitations on free dispersion of pollution in the immediate vicinity, the
frequency of occurrence of moderate (AQIPM10 4) and sufficient air quality (AQIPM10 3)
was even higher than the frequency observed for locations with more traffic.
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Table 7. Occurrence rates of AQIPM10 and AQIPM2.5 at locations L1–L5.

Rate of Occurrence(%)

AQI Class Location AQIPM10 6 AQIPM10 5 AQIPM10 4 AQIPM10 3 AQIPM10 2 AQIPM10 1

L1 39.4 38.9 10.9 4.1 2.7 4
L2 33.4 47 8.9 3.8 3 3.9
L3 44.9 40.6 6 3.4 2.4 2.7
L4 46.6 42.2 4.9 3.3 1.4 1.6
L5 36.5 45.1 10 4.2 2 2.2

AQI Class Location AQIPM2.5 6 AQIPM2.5 5 AQIPM2.5 4 AQIPM2.5 3 AQIPM2.5 2 AQIPM2.5 1
L1 31.7 36.9 15.4 6 4.4 5.6
L2 24.9 48 13.4 4.6 4.7 4.4
L3 49.7 31.7 7.3 3.2 4.1 4
L4 55.3 31 5.4 3.2 2.9 2.2
L5 33 41 12.8 6.1 4 3.1

The analysis of frequency of particular classes of AQIPM2.5 confirms earlier conclusions
concerning the assessment of air quality at the given locations. Direct comparison of the
occurrence rates of individual classes of AQIPM2.5 and AQIPM10 confirms the expected
greater impact of traffic-related emission of PM2.5 on air quality in the vicinity of roads. The
calculated AQIPM2.5 for all considered locations indicates significantly more frequent situa-
tions in which local pollution hotspots occur. Therefore, monitoring PM2.5 concentrations
in the vicinity of roads should be a priority for the city of Bielsko-Biała.

In the next Section, a model for predicting PM2.5 concentrations is formulated based on
transit times in the intersection area, meteorological data and PM10 background concentration.

3.4. Prediction of the PM2.5 Concentration in the Area of Intersections

Data collected during our study by using the system enables the formulation of a
prediction model of PM2.5 concentrations. In practical applications, the prediction of
traffic-related pollutant concentrations is performed on the basis of historical data using
models based on multiple linear regression [44,45], neural network models [46] and also
models based on advanced data mining methods such as random forest [47]. Due to
the generalizability of the data and in view of the non-linear relationship between PM2.5
concentration levels and traffic conditions in the intersection area [31], in this work, a
multi-layer feed-forward neural network is proposed for predicting the hourly average
concentration of PM2.5. The following hourly mean meteorological parameters were used
as independent predictor variables: wind direction, wind speed, relative humidity and
temperature of the air. The next predictor variable used is hourly PM10 background
concentration registered by the city’s regulatory air quality monitoring network, in lieu
of the PM2.5 background concentration (unavailable). Traffic characteristics are given by
values of transit times i.e., median of transit times and 85-percentile of transit times for a
given hour. Local ventilation conditions are characterized by the SVF.

After preliminary testing of the learning ability, the network architecture 8-X-X-1 with
two hidden layers was applied. This nomenclature means that the network has eight input
signals (all values are normalized values of predictor variables), two hidden layers and
one neuron on the output layer (representing PM2.5 concentration at an intersection). The
number of neurons per hidden layers was chosen as a result of calculations of the values of
minimum prediction errors obtained for the learning set. As a result of that process, on the
first hidden layer there are 24 neurons and 8 on the second hidden layer. As the neuron
activation function, a bipolar sigmoid function was used, taking the form:

f
(

wTz
)
= −1 + 2

(
1 + e−0.05wTz

)−1
(2)

where w and z are vectors of weights and input signals, respectively. Initial weighting
values were selected randomly and then the learning process was carried out. Vectors of
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input parameters were also selected randomly. One third of all hourly concentration data
gathered by the low-cost system in the period of analysis was used as the learning set. For
the network learning, the gradient descent algorithm with a momentum term was used,
i.e., (n + 1) new weights are calculated iteratively [48]:

w(n+1) = w(n) − η(n)∇Ω(n) + δ
(

w(n) − w(n−1)
)

(3)

where η is the learning coefficient, Ω is the mean square error of the network’s response
and δ is a momentum factor.

The learning of the network was performed until the network reached a level of error
of prediction below 10 µg/m3 (which is the lowest value of any uncertainty level for the
PMS sensors used in the study) for 85% of the cases in the entire learning set. (The level of
85% of total cases was set arbitrarily).

Finally, as the validation step of the proposed model, the prediction error was cal-
culated using the neural network for each record in the remaining two thirds of the
measurement data set. This means that records used for learning were not used in the
validation. A scatterplot for hourly concentration of PM2.5 recorded by the system and
predicted using a model for traffic and meteorological data considered in the validation set
is presented in Figure 10. In turn, the comparison of AQI classes set on the base of hourly
concentration of PM2.5 recorded by the system and predicted using a model for traffic and
meteorological data considered in the validation set is presented in Figure 11.
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Metrics used for the evaluation of model accuracy for predicting the hourly mean
PM2.5 concentration are summarized in Table 8. We used these metrics in evaluating the
model in order to address the following main questions:

• How good are correlated values of calculated concentrations from model and real
concentrations?;

• How large a mean error for the calculated concentration of PM2.5 can be expected?;
• Does the model have a tendency to overestimate or underestimate the calculated

concentration of PM2.5?;
• In how many cases is the model’s prediction of AQIPM2.5 false?

Table 8. Validation metrics and their values calculated for the model outputs (oi and pi are concentrations observed and
predicted by the model for the i-th h, respectively; o and p are the mean values).

Metric Definition Calculated Value

Coefficient of determination R2 = 1− ∑N
i=1(pi−o)2

∑N
i=1(oi−o)2

0.86

Mean Absolute Error MAE = 1
N

N
∑

i=1
|pi − oi| 6.85 µg/m3

Mean Absolute Percentage Error MAPE = 1
N

N
∑

i=1

∣∣∣ pi−oi
oi

∣∣∣·100% 24%

Fractional Bias FB =
o−p

0.5(o+p)
−0.02

Normalized Mean Square Error NMSE =
1
N ∑N

i=1(oi−pi)
2

o·p
0.14

Hit rate Hit rate = 1
N

N
∑

i=1

{
1 if AQI(oi) = AQI(pi)

0 otherwise
0.72

The obtained values of validation metrics for the model predicting PM2.5 concentration
in the area of intersections lead to the following conclusions:

• The fact that R2 > 0.85 indicates that the adopted set of input parameters allows
mapping of local conditions and prediction of PM2.5 concentration in the areas of
intersections not covered by direct measurements;

• MAE is below 10 µg/m3 and thus the mean absolute error for the model is lower than
the level of uncertainty of measurement;

• MAPE for the entire data set is 24%, with higher percentage errors to be expected in
the case of low concentration levels (AQIPM2.5 6)—indeed for this subset of data the
average percentage error is 47%;

• The FB value, which for an ideal model is equal to zero, indicates a slight tendency of
the model to overestimate concentrations;

• The NMSE value, which is a measure that emphasizes the scatter in the entire data set
has a small value;

• The Hit rate indicates in how many cases the conformity of the predicted and recorded
air quality index was obtained. These metrics show that the model correctly indicated
AQIPM2.5 in 72% of cases. The slight tendency to overestimate PM2.5 concentrations
(FB < 0) translates into an indication of a lower than true air quality index in 19%
of cases. This means that the model indicates more favorable conditions than are
recorded in only 9% of cases.

The assessment presented in this paper indicates that the neural network with the
proposed set of input predictor variables is an effective method for predicting air quality
i.e., it can be used for extending the low-cost system functionality at locations where
OnDynamic system stations only record transit times.

4. Conclusions

The challenge of maintaining the required level of mobility and air quality in cities can
be met by deploying a traffic management system covering a sufficiently extensive area. In
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such a system, the urban area should be monitored to identify potential pollution hotspots
using a network of sensors. An integrated low-cost system for simultaneous monitoring of
traffic and pollutant concentration at intersections was presented in this paper. The practical
usefulness of the system is ensured by the small external dimensions of the stations, their
low energy demand and the capability for almost continuous data transmission. In addition,
a PM2.5 concentration prediction model was formulated, increasing the functionality of the
system. To summarise the findings, the main conclusions are as follows:

• During the three months analyzed, for 5–10% of the total time the recorded PM
concentrations at individual locations in Bielsko-Biała indicated unacceptable air
quality;

• Traffic emission of PM2.5 more frequently lead to hotspot formation;
• Traffic-derived carbon monoxide emissions only slightly deteriorated the air quality

in the vicinity of roads;
• Despite the close mutual proximity of the locations, the volume of traffic, traffic

conditions and the immediate surroundings lead to significant variations in air quality;
• Transit time is a useful parameter characterizing traffic at intersections;
• A neural network-based model can be used to predict air quality due to PM2.5 concen-

trations at intersections, with acceptable accuracy;
• At locations with adverse ventilation conditions, a tendency to higher frequency of

occurrence of moderate (AQIPM10 4) and sufficient air quality (AQIPM10 3) than in
other locations even with more traffic was recognized. This confirms the important
role of local conditions determining traffic-related pollution emission and dispersion,
although, naturally, the general likelihood of local hotspots increases with increased
urban background levels.

The system used in this study simultaneously performs monitoring of transit times at
intersections and pollutant concentrations in the vicinity of roads. Data gathered by the
system can be used to assess the level of exposure to air pollution in the vicinity of roads.
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