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Abstract: In Generation Expansion Planning (GEP), the power plants lifetime is one of the most
important factors which to the best knowledge of the authors, has not been investigated in the
literature. In this article, the power plants lifetime effect on GEP is investigated. In addition, the deep
learning-based approaches are widely used for time series forecasting. Therefore, a new version of
Long short-term memory (LSTM) networks known as Bi-directional LSTM (BLSTM) networks are
used in this paper to forecast annual peak load of the power system. For carbon emissions, the cost
of carbon is considered as the penalty of pollution in the objective function. The proposed approach
is evaluated by a test network and then applied to Iran power system as a large-scale grid. The
simulations by GAMS (General Algebraic Modeling System, Washington, DC, USA) software show
that due to consideration of lifetime as a constraint, the total cost of the GEP problem decreases by
5.28% and 7.9% for the test system and Iran power system, respectively.

Keywords: bidirectional LSTM; deep learning; generation expansion planning (GEP); lifetime;
planning; power system

1. Introduction

Nowadays, generation expansion planning (GEP) is an inevitable and important issue
for power system planners due to energy consumption growth. In this problem, technology
type, installation time, and location of new power plants are determined to supply the
predicted load with appropriate reliability [1].

From mathematical modeling viewpoint, the generation expansion problem can have
many constraints and variables. In addition, there are various objective functions such as
minimizing generation planning cost [2], maximizing profit in the market [3], maximizing
reliability [4,5], minimizing environmental pollution [6], and combination of mentioned
objective functions. The problem constraints include load supply, transmission lines, and
generators capacity [7], and in some cases, greenhouse gas generation, and also some
uncertainties [8,9] have been considered as constraint.

The authors of [10] have analyzed the GEP and the transmission expansion planning
(TEP) of a large-scale network with renewable energy. The objective function is to mini-
mize investment, maintenance, and fuel costs using a multi-cut Benders decomposition
algorithm for the optimization. A comprehensive and accurate optimization model of
China GEP has been presented in [11] and different types of power plants have been used.
In [12], the effects of solar and wind power plant uncertainty on the GEP model of IEEE
300-bus have been investigated. In [13], the GEP problem has been modeled based on
the game theory. The purpose of this article is to reduce carbon emissions by applying
carbon taxes. In [14], a comprehensive and deep review has been performed about the
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GEP problems such as uncertainties, energy policies, low carbon economy requirements,
renewable sources, electricity market, demand-side programs, distributed generation, and
so on. A review of the GEP problems, which include renewable energy power plants, has
been carried out in [15,16] and the operational flexibility issues have been investigated and
several ways have been proposed for solving this challenge. In [17], a review has been
performed about adding renewable power plants to the GEP model and three issues of
optimization models, general/partial equilibrium models, and alternative models, have
been studied. All the advantages and disadvantages of each model have been reviewed
which has led to better perception of the expected results. In [18], the GEP mathematical
modelling has been presented and pollutants and renewable energy effects have been
investigated. In the article, 100 MW wind power plants have been used as candidate and
shown that three 100 MW power plants in 14-years planning can be used. In [19], the wind
power plant has been evaluated as a large portion of power generation and uncertainty
effect of wind speed and gas power plants fuel price have been investigated. In [20],
renewable energies have been used to minimize fuel cost and CO2 emission.

The GEP studies are based on the determination of annual peak load. Modeling the
annual peak load uncertainty increases the accuracy of the results. Existing articles in the
field of GEP, modelling the peak load uncertainty, can be divided into three categories. In
the first category [2,4,6,18,21], the researchers have not considered the load uncertainty and
only a standard load profile of [22] has been used. In the second category [1,3,7,8,19,23–29],
the uncertainty of the load has been modelled using the annual load growth rate during
the following years. In the third group of the research [30–32], the load uncertainty
has been considered using different methods. The authors of [30] and [31] have used
scenario-based methods and in [32], regression analysis has been used for forecasting the
load. To have a good performance, scenario-based methods require the production of
a large number of scenarios, which have high computational costs and are inefficient in
large-scale problems [33]. In recent years, deep learning-based methods extensively have
been used for modeling uncertainties in power systems [33,34]. Long short-term memory
(LSTM) networks, which are a new version of recurrent neural networks (RNN), show
good performance in modeling uncertainties such as short-term load forecasting [35], and
electric vehicle demand modeling [36]. In the previous works, the deep-learning-based
methods have not been used for forecasting the annual peak load.

The GEP optimal solution with carbon emission cost has been considered by many
authors [37,38]. Currently, low-carbon technology is divided into two categories. In the first
category, carbon is absorbed directly by some technologies such as carbon capture. In the
second category, carbon emissions are reduced by using renewable energy instead of fossil
fuel power plants or improving the efficiency of power plants [39]. The authors of [40]
have presented an integrated generation and transmission expansion planning model with
carbon capture systems. In this paper, the total cost including investment, generation, and
carbon emission costs. In [41] a multi-period low carbon Generation Expansion Planning
(LC-GEP) model is proposed under a low carbon policy. To obtain the optimal generation
mix, a mixed-integer programming (MIP) model has been used under different carbon
policies. In [42] a linear programming model for coordinated GEP and TEP is presented.
Furthermore, the effects of different carbon emission policies on system planning have
been considered.

According to the previous works that are reviewed in Table 1, the knowledge gap in
this field can be defined as follows:

• Investigating the effects of power plants’ lifetime constrain on new and existing plants.
This constraint affects the GEP problem due to two practical reasons: 1-Some power
plants have less lifetime than the planning horizon. This fact may increase the costs,
and the GEP might have more cost than the case with a longer lifetime. 2-Some
power plants may have derated efficiency due to aging, or out of date technologies in
comparison with newer ones with less fuel consumption. Therefore, they should be
replaced by new ones.
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• Using a new version of LSTM networks known as Bi-directional LSTM (BLSTM)
networks for forecasting the annual peak load. The advantages of BLSTM networks
compared to LSTM networks are its two feedforward and feedback loops, which
lead to the use of the whole temporal horizon. This feature of BLSTM networks can
increase accuracy in time series forecasting tasks.

• Considering the carbon tax policy as a carbon emission reduction method in order to
prevent the release of carbon into the environment

Some power plants go out of operation every year due to reaching the end-of-life.
This issue is considered as a constraint in the model and a salvage value in the objective
function. In addition, in the constraint of load and supply balance, the amount of load
is equal to the output of the forecasted method (BLSTM networks). Considering carbon
emissions will have a cost added to the objective function. As the objective function is
minimized the carbon emissions will be reduced.

Table 1. Comparison between different works in the GEP.

Ref. GEP Lifetime of
Candidate Plants

Lifetime of
Existing Plants

Load
Forecasting

Carbon
Emission

Renewable
Energy

[11] 3 3 3 3

[14] 3 3 3

[25] 3 3

[26] 3 3 3 3

[27] 3 3 3 3

[29] 3 3 3 3 3

[38] 3 3

[39] 3 3

[40] 3 3 3

This paper 3 3 3 3 3 3

The rest of this paper is organized as follows. The GEP model is introduced in
Section 2. Section 3 describes the deep learning-based approach to forecast annual peak
load. The simulation results are included in Section 4 followed by a conclusion in Section 5.

2. Objective Function
2.1. Investment, Operation, and Maintenance Cost

The purpose of the proposed model is to minimize the total cost of investment and
operation costs. The objective function comprised of three terms: 1—investment cost
2—operation and maintenance cost and 3—salvage value which is shown in Equation (1).

Min
T

∑
t=1

{
f 1
t (Ut) + f 2

t (Xt)− f 3
t (Lt)

}
(1)

Subject to,
Xt = Xt−1 + Ut − Lt(t = 1, . . . , T) (2)

The state equation for the dynamic planning problem is presented in Equation (2). The
number of power plants per year is equal to the number of power plants of the previous
year plus new power plants minus retired power plants.

2.2. Carbon Emission Cost

In this paper, the carbon tax policy as a carbon emission reduction method has been
utilized in order to prevent the release of carbon into the environment. This tax is applied to
fossil fuel power plants. It is necessary to add this cost to the objective function. Therefore,
the objective function is proposed as follows:
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Min
T

∑
t=1

{
f 1
t (Ut) + f 2

t (Xt) + f 3
t (Xt)− f 3

t (Lt)
}

(3)

2.3. Constraints

In order to achieve an optimal expansion plan, several constraints such as lifetime,
reserve margin, the maximum number of new plants, mix capacity, and loss of load
probability (LOLP) constraints have been considered.

2.3.1. The Lifetime Constraint

In this paper, the impact of the lifetime constraint on new power plants as well as
existing power plants has been investigated. When lifetime ends, that capacity will be out
of the network. This is modeled as:

Li ≤ Li (t = 1, . . . , T and j = 1, . . . , J) (4)

2.3.2. The Reserve Margin Constraint

To achieve a stable operating point of the power system, the installed capacity has to
be greater than the annual peak load of each year. The reserve margin constraint is given
in Equation (5).

R ≤ R(Xt) ≤ R (t = 1, . . . , T) (5)

The upper limits of the reserve margin is considered 60%, and the lower limits of it is
15%.

2.3.3. Maximum Number of New Plants Constraint

There are restrictions on the construction of various types of power plants. The
number of new power plants in each year cannot exceed Ut. This constraint is modeled as
the following equation.

0 ≤ Ut ≤ Ut (t = 1, . . . , T) (6)

2.3.4. Mix Capacity Constraint

This constraint indicates the percentage of capacity of each power plant.

Mj
t ≤ ∑

i∈Ωj

xi
t ≤ Mj

t (t = 1, . . . , T and j = 1, . . . , J) (7)

The lower and upper bounds of the capacity mix are considered 0% to 30% for oil-fired,
0% to 40% for liquefied natural gas-fired (LNG-fired), 20% to 60% for coal-fired, and 30%
to 60% for nuclear units.

2.3.5. The LOLP Constraint

This article is considered the LOLP. The LOLP measures a probability of outages to
overall resource adequacy. The maximum amount of LOLP can be formulated as follows:

LOLP(Xt) ≤ ε (t = 1, . . . , T) (8)

3. Deep Learning-Based Approach for Annual Peak Load Forecasting

In this section, LSTM networks are introduced first, and then BLSTM networks are
described. Against standard feedforward neural networks, RNNs, which benefit from
recurrent weights, can learn the temporal dependence among data. This property of RNNs
has a significant effect on the accuracy of time series forecasting results [43]. The main
challenges in the training of deep RNNs are vanishing and exploding gradients. To solve
these problems, the robust version of RNNs known as LSTM networks have been intro-
duced in [33]. The construction of an LSTM block is shown in Figure 1. Equations (9)–(13)
describe the general formulation of an LSTM block [33,44]. In Equations (9), (10) and
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(12), the amount of outputs for input (it), forget (ft), and output (ot) gates are calculated,
respectively. In addition, Equation (11) shows the cell state, and St is the output of LSTM
block.:

it = σ
(

Wi S(l−1)
t

)
+ Whi S(t−1) + bi (9)

ft = σ
(

Wiϕ S(l−1)
t

)
+ Whϕ S(t−1) + b f (10)

ct = ft c(t−1) + it tanh(Wiγ S(l−1)
t + Whγ S(t−1) + bc ) (11)

ot = σ (Wio S(l−1)
t ) + Who S(t−1) + bo ) (12)

St = ottanh(ct) (13)

where LSTM block variables are (Wi , Wiϕ , Wiγ ) ε <r×nh , (Whi , Whϕ , Whγ ) ε <nh×nh,
(bi , b f , bc ,bo ) ε <1×nh.
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Figure 1. Construction of LSTM block.

Figure 2 presents the structure of the BLSTM networks which models the long-term de-
pendencies. The accuracy of time series forecasting results can be improved by considering
the whole temporal horizon with two-directional memory of the BLSTM networks [45,46].

In the BLSTM networks, we have two groups of LSTM blocks, one as a backward
layer and another as a forward layer, which provide two ways for transferring information;
one from future to past and another way from past to future. As a result, BLSTM networks
have high ability in feature extraction and good performance in time series forecasting for
long term horizon.
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The BLSTM is an appropriate solution, where we are facing with data whose outputs
are employed as the input data in the future steps. This configuration brings a strong
memory for the BLSTM network to remember and utilize all the useful previous and future
features with high accuracy [47]. In the BLSTM networks, Xt ε <n×r is the mini-batch input

data in a time step t,
→
Ht ε <n×nh and

←
Ht ε <n×nh are forward and backward hidden states

which calculated based on Equations (14) and (15), respectively. Hidden state in a time step
t is Ht ε <n×2nh, and output is O f n ε <n×no which is calculated based on Equation (16).

→
Ht = tanh

(
XtWxh( f ) +

→
Ht−1

)
Whh( f ) + bh( f ) (14)

←
Ht = tanh

(
XtWxh(b) +

←
Ht−1

)
Whh(b) + bh(b) (15)

O f n = HtWo + bo (16)

BLSTM network variables are Wxh( f ) ε<r×nh, Whh( f ) ε<nh×nh, bh( f ) ε<r×nh, Wxh(b)

ε <r×nh, Whh(b) ε <nh×nh, and bh(b) ε <1×nh.

4. Case Studies

In this section, the effects of various power plants lifetime on a test system [22] and
Iran large-scale power system [48] are investigated for a 30-year horizon using simulations.

4.1. Case 1: Test System

This system has 12 power plants that their data are given in Table 2. In this table, LNG
and PWR (power plants) stand for liquefied natural gas and pressurized water reactor,
receptively. Table 3 lists the forecasted peak demand for each year. Technical and economic
data of candidate plants are presented in Table 4, where PHWR stands for pressurized
heavy-water reactor. The planning horizon is divided into fifteen 2-year stages. To begin
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the simulation, the remaining lifetime of existing power plants are assumed as listed in
Table 5.

Table 2. Technical and economic data of existing plants of test system.

Name No. of Units Unit Capacity
(MW)

Operating Cost
($/kWh)

Fixed O&M Cost
($/kW-mon)

Oil 1 1 200 0.024 2.25
Oil 2 1 200 0.027 2.25
Oil 3 1 150 0.030 2.13

LNG G/T 3 50 0.043 4.52
LNG C/C 1 1 400 0.038 1.63
LNG C/C 2 1 400 0.040 1.63
LNG C/C 3 1 450 0.035 2.00

Coal 1 2 250 0.023 6.65
Coal 2 1 500 0.019 2.81
Coal 3 1 500 0.015 2.81
PWR 1 1 1000 0.005 4.94
PWR 2 1 1000 0.005 4.63

Table 3. Forecasted peak demand of test system.

Year Peak (MW) Year Peak (MW)

0 5000 16 17,000
2 7000 18 18,000
4 9000 20 20,000
6 10,000 22 22,000
8 12,000 24 24,000
10 13,000 26 26,000
12 14,000 28 27,000
14 15,000 30 30,000

Table 4. Technical and economic data of candidate plants of test system.

Candidate Type Oil LNG Coal PWR PHWR

Construction upper limit 5 4 3 3 3
Capacity (MW) 200 450 500 1000 700

Operating cost ($/kWh) 0.021 0.035 0.014 0.004 0.003
Fixed O&M cost

($/kW-mon) 2.20 0.90 2.75 4.60 5.50

Capital cost ($/kW) 812.5 500.0 1062.5 1625.0 1750.0
Lifetime (years) 20 22 24 26 28

Table 5. Remaining lifetime of existing power plants of test system.

Name
(Fuel Type) Lifetime (years) Name

(Fuel Type) Lifetime (years)

Oil 1 6 LNG C/C 3 20
Oil 2 10 Coal 1 8
Oil 3 14 Coal 2 12

LNG G/T 4 Coal 3 16
LNG C/C 1 10 PWR 1 12
LNG C/C 2 16 PWR 2 16

Figures 3–7 show the number of different power plants of the test system in a 30-year
horizon. It can be seen that due to retirement, some power plants are out of plan in some
years, but it is not efficient to rebuild these power plants and the remaining demand is
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supplied by constructing other power plants type. Figure 3 shows that the LNG power
plants have been used at the end of the planning period more. Due to lower operating
cost of coal power plants than the LNG type, these power plants have been used more
throughout the period as shown in Figure 4. In Figure 5, two oil-fired power plants
constructed in the 4th year are retired in the 22nd year. In this year, instead of constructing
new oil-fired power plant, four new LNG power plants are built to provide load and supply
balance. As shown in Figures 6 and 7, due to the high investment cost and low operating
cost of nuclear power plants, they have been used at the beginning of the period. Without
considering the lifetime, it is necessary to rebuild the power plant(s) of the same type after
retirement. Then, the GEP problem solving without considering the lifetime has more
limitations. Therefore, the optimal result of the GEP problem considering the lifetime is
always equal to or less than the optimal result of the same problem without considering
lifetime.
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Figure 7. Number of nuclear power plants (PWR) during planning horizon.

Table 6 presents retired and new power plants of the test system in a 30-year horizon.
It can be observed that the power plants are out of the plan when their lifetime spans.
For instance, since oil-fired power plants lifetime is 20 years, two oil-fired power plants
constructed in the 4th year are retired in the 22nd year. The red (blue) numbers indicate the
conditions that the number of power plants constructed from a type is greater (less) than
the number of retired power plants of the same type. According to Table 6, in the 26th year,
two PWR power plants are retired and a new PWR power plant is rebuilt. Therefore, the
total number of PWR power plants is decreased. This result is indicated in the 26th year of
Figure 7, where the trend curve is decreasing. If the lifetime constraint is not considered,
the total number of power plants is always increasing.
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Table 6. Number of retired and new power plants of test system.

Year
Oil LNG PWR Coal

New Retired Total New Retired Total New Retired Total New Retired Total

2 1 0 1 0 0 0 2 0 2 2 0 2
4 2 0 3 0 0 0 0 0 2 0 0 2
6 2 0 5 1 0 1 0 0 2 0 0 2
8 0 0 5 0 0 1 2 0 4 0 0 2
10 0 0 5 0 0 1 0 0 4 1 0 3
12 1 0 6 0 0 1 1 0 5 0 0 3
14 4 0 10 0 0 1 1 0 6 1 0 4
16 2 0 12 2 0 3 0 0 6 2 0 6
18 0 0 12 2 0 5 1 0 7 0 0 6
20 4 1 15 2 0 7 2 0 9 0 0 6
22 0 2 13 4 0 11 0 0 9 0 0 6
24 5 2 16 3 0 14 3 0 12 3 2 7
26 1 0 17 0 0 14 1 2 11 2 0 9
28 1 0 18 0 1 13 2 0 13 2 0 11
30 3 1 20 0 0 13 2 0 15 0 0 11

The total operation cost is obtained by the summation of all the years operation
cost. The cost of the construction is only calculated in the year of power plant installation.
Figures 8–12 present a new and retired power plant capacity of each year. It can be observed
that although PHWR and PWR power plants have high construction cost (Table 4), the
low cost of the operation causes that a large share of the production is provided by PHWR
and PWR plants in the early years of planning. On the contrary, according to Table 4, the
least construction and the most operation cost belong to LNG power plants. Therefore, due
to high operation cost, only one LNG power plant is constructed before the 16th year as
shown in Figure 8.
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The total cost with and without considering the lifetime for the test system is listed in
Table 7. As can be seen, the total cost considering the lifetime constraint is improved by
5.28% in comparison with the total cost without considering the lifetime constraint.

Table 7. Total cost of test system with and without considering lifetime.

Method Total Cost (M $)

Without considering lifetime 40,248
With considering lifetime 38,231

4.2. Forecasting Annual Peak Load

The case study for forecasting annual peak load is the Iran network. Since there are
not enough yearly peak load data for the training procedure of deep BLSTM network, July
to September daily peak load data of Iran network are used in 10 years (2011–2020). The
reason for using the daily peak load data from July to September is that the annual peak
load of Iran network occurs in one of these three months. The dataset includes 930 data. In
this case, 80%, 10%, and 10% of the dataset are allocated for the training, validation, and
testing task, respectively. For forecasting the peak load of every day, 31 prior daily peak
load data (31 × 1) are used. At the end of the forecasting procedure, the maximum value
forecasted for July to September in a year is chosen as the peak load of that year. To show
the performance of the BLSTM network, the year 2020 is selected as a test year. For the
BLSTM network, 20 hidden layers are considered for each LSTM block, and the maximum
number of epochs is set as 1000. The training procedure of the BLSTM network for annual
peak load forecasting is carried out in Python using the “Keras” library.

To demonstrate the BLSTM performance, the BLSTM network results are compared
with two other benchmark methods, i.e., the LSTM network and multi-layer perceptron
(MLP). The forecasted results from July to September 2020 are presented in Figure 13.

To show the robustness of the BLSTM network, three error criteria of the forecasted
results are calculated for different methods which are presented in Table 8. These error
criteria are the mean absolute error (MAE), the mean absolute percentage error (MAPE),
and the root mean square error (RMSE) [35]. As presented in Table 8 and Figure 13, the
BLSTM method has a better performance compared to the other benchmark methods in
forecasting the daily peak load. In addition, the annual forecasted peak load by the BLSTM
for the year 2020 is 59,258.2 MW which only has a 1.22% error in comparison with the
real data, whereas LSTM has a 3.59% error, and MLP has a 5.07% error, which shows the
superiority of the BLSTM method in annual peak load forecasting. The forecasted annual
peak loads for 30 years (2020–2050) are presented in Table 9.
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Table 8. Error criteria of forecasted results for daily peak load from July to September 2020.

Error Criterion

MAPE (%) MAE (MW) RMSE (MW)

BLSTM 1.90 1031.74 1276.69
LSTM 2.29 1243.79 1515.57
MLP 3.57 1942.65 2437.11

Table 9. Forecasted peak demand of Iran power system by BLSTM.

Year Peak (MW) Year Peak (MW)

1 60,479 16 80,180
2 62,613 17 80,685
3 64,644 18 82,143
4 66,560 19 82,812
5 68,354 20 83,446
6 70,021 21 85,632
7 71,558 22 86,143
8 72,967 23 89,231
9 74,248 24 91,968
10 75,408 25 92,457
11 76,451 26 92,967
12 77,384 27 92,692
13 78,216 28 93,619
14 78,954 29 94,276
15 79,606 30 95,889

4.3. Case 2: Iran Power System

In this section, the effect of considering the lifetime on Iran power system is investi-
gated. Available and candidate power plants data are given in Table 10 [48].

Table 11 lists the total cost with and without considering the lifetime for Iran power
system. It can be observed that considering the lifetime constraint reduces the cost about
8.28%.

Figures 14–19 present the number of different power plants of Iran power system
in a 30-year horizon. Due to dimensions of the problem, which can be considered as a
large-scale power system, the effect of considering the lifetime constraint can more clearly
be seen. As a result, in Iran power system, there are more years that the number of power
plants decreased in comparison with the test system, discussed in the last section.
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Table 10. Technical and economic data of candidate and existing plants of Iran power system.

Type Investment
(1000 Rial/kW)

O&M Cost
(Rial/kWh)

CO2 Generation
Rate (ton

CO2/MWh)

Existing
Capacity (MW)

Plant Life
(year)

Unit Size
(MW)

Nuclear 87,990 3150 0 0 60 1000
Coal based 80,700 2925 0.4 0 40 320

Combined cycle 20,411 293 0.34 14,632 20 480
Natural gas 12,750 390 0.5 21,617 15 162
Steam based 24,450 450 0.71 15,704 30 320

Hydroelectric 48,920 494 0 9542 50 100
Wind 56,430 103.2 0 90 22 25
Solar 92,700 171.9 0 0 20 100

Photovoltaic 135,000 27.3 0 0 15 100
Biomass 121,500 1350 0 0 20 25

Table 11. Total cost of Iran power system with and without considering lifetime.

Method Total Cost (M Rial)

Without considering lifetime 9.54 × 109

With considering lifetime 8.84 × 109
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Table 12 lists new and retired power plants for various years. The results show that as
similar as the previous case, in some years, several power plants are retired and new ones
(red numbers) are built. However, in some years, when power plants are retired, some of
them are replaced and the remaining ones are provided by other power plant types (blue
numbers).

Table 12. Retired and new power plants of Iran power system.

Biomass Natural Wind Photovoltaic

Year New Retired Total New Retired Total New Retired Total New Retired Total

16 0 0 39 0 6 26 1 0 49 0 6 34
17 2 0 41 1 3 24 0 0 49 0 0 34
18 0 0 41 0 0 24 0 0 49 0 4 30
19 0 0 41 2 6 20 0 0 49 3 0 33
20 1 0 42 5 3 22 5 0 54 3 6 30
21 1 6 37 3 0 25 3 0 57 5 6 29
22 3 0 40 5 5 25 1 0 58 0 5 24
23 5 4 41 1 4 22 5 6 57 4 4 24
24 6 6 41 6 0 28 6 6 57 6 0 30
25 3 6 38 3 0 31 3 6 54 1 2 29
26 3 6 35 2 1 32 1 3 52 1 1 29
27 6 3 38 6 1 37 6 0 58 6 2 33
28 0 1 37 1 1 37 2 6 54 0 0 33
29 5 0 42 0 1 36 5 5 54 3 0 36
30 3 2 43 4 1 39 3 4 53 3 4 35

4.4. Carbon Reduction

In this scenario, the effect of carbon emission costs on Iran’s power system is in-
vestigated. In this case, hydroelectric, wind, solar, photovoltaic, and Biomass plants are
renewable sources. These sources do not add extra cost to the objective function. In con-
trast, coal-based plants, combined-cycle plants, natural gas plants, steam-based plants are
fossil-fuel power plants whose carbon emission costs are as shown in Table 10.

Table 13 lists the total ton of carbon which all power plants release into the environ-
ment with and without considering the carbon emission constraint for Iran power system.
It can be observed that considering this constraint decreases the total amount of carbon
by 17%.
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Table 13. Total carbon produced by Iran power system with and without considering carbon
emissions constraint.

Method Total Carbon (Ton)

Without considering the carbon emission constraint 1.5492 × 106

With considering the carbon emission constraint 1.2731 × 106

As can be seen from Figure 20, the capacity of fossil fuel power plants has been reduced
due to the cost of carbon emissions. For example, without considering the carbon emission
constraint, the combined-cycle plants produced about 26,400 MW, but with considering
the carbon emission constraint, the amount of production has been reduced to 22,560 MW.
Conversely, for renewable power plants such as solar plants, this value has increased from
4800 MW to 5500 MW.
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5. Conclusions

In this paper, the benefits of considering the lifetime constraint on the GEP problem
for a 30-year planning horizon have been investigated. Furthermore, since the foundation
of GEP studies is based on the annual peak load forecast, a new version of recurrent neural
networks known as Bi-directional LSTM networks have been used for forecasting the
annual peak load. To show the performance of the BLSTM network, it has been applied on
Iran grid data for a test year (2020). The numerical results show the good performance of
deep BLSTM which can forecast annual peak load with only 1.22% error in comparison
with the real data. To indicate the effect of lifetime constraint, a test system and Iran
large-scale power system have been considered as the case studies. The simulation results
have shown that after considering the lifetime, sometimes it is not efficient to rebuild
retired power plants and another type of power plant should be constructed to meet the
demand. In the GEP problem, the power plant(s) of the same type is (are) rebuilt without
considering the lifetime constraint. This leads to extra limitations in comparison with
the solution, which considers the lifetime constraint. Therefore, the optimal result of the
GEP problem with lifetime constraint has less cost. The results of simulations showed
that the power plants such as PWR and PHWR, which have low operation costs and high
construction, have been constructed in the early years of planning horizon. In contrast,
only one LNG power plant has been constructed in the early years of planning horizon
due to low construction and high operation cost. In comparison with the total cost of the
case, which did not consider the lifetime constraint, the total cost has been decreased by
5.28% and 7.9% after considering the lifetime for the test system and Iran power system,
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respectively. Moreover, by considering the carbon emission constraint, the total amount of
carbon has been decreased by 17%.
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Nomenclature

Parameters
c1 Cognitive component
c2 Social component
J Fuel type number
Mj

t Lower bound of j-th fuel type in a year t
Mj

t Upper bound of j-th fuel type in a year t
R Lower bound of reserve margin
R Upper bound of reserve margin
T Time period numbers (years) in the planning horizon

Ut
Maximum manufactural capacity vector (MW) of generation unit types in
a year t

w Inertia weight
Ωj Type indicator set of the j-th generation unit
n Total number of input data
nh Total number of hidden units
no Total number of outputs
r Dimension of each input data sequence
Variables
Lt Retired capacity vector (MW) of generation unit types in a year t
LOLP(Xt) loss of load probability with Xt, in a year t
Ut Added capacity vector (MW) of generation unit types in a year t
va(k) Velocity of the a-th particle at iteration k
xi

t Added capacity (MW) of the i-th unit in a year t
Xt Cumulative capacity vector (MW) of generation unit types in a year t
ya(k) Position of the a-th particle at iteration k
f 3
t (Lt) Discounted salvage value ($) due to retired capacity Lt in a year t

f 1
t (Ut) Discounted construction cost ($) due to added capacity Ut in a year t

f 2
t (Xt)

Discounted operation and maintenance cost due to cumulative capacity Xt in a
year t

f 3
t (Xt) Discounted carbon emission cost due to cumulative capacity Xt in a year t

R(Xt) Capacity reserve margin of Xt in a year t
bc, b f , bi, bo Bias vector for cell block, forget gate, input gate, and output gate, respectively
bh(b), bh( f ) Bias vector for backward and forward hidden layer, respectively
ct, ft, it Data vector of cell block, forget gate, and input gate at a time t, respectively

cht, f ht, iht
Data vector of cell block, forget gate, and input gate at a time t in hidden
layer, respectively

Ht Total hidden vector layers
→
Ht,
←
Ht Hidden vector for forward and backward layer at a time t, respectively

ot Data vector of output gate at a time t
O f n Output vector of final layer
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oht Data vector of output gate at a time t in hidden layer
St State vector of current layer at a state t
Sl

t State vector of a layer l at a state t
Shl

t State vector of a hidden layer l at a state t
Whi , Whϕ,
Whγ, Who

Weight vector for output of previous state input gate, forget gate, cell block,
and output gate, respectively

Wi , Wiϕ ,
Wiγ, Wio

Weight vector for input of current state input gate, forget gate, cell block,
and output gate, respectively

Whh(b), Whh( f ) Weight vector of backward and forward layer output data, respectively
Wo Weight vector of output layer
Wxh(b), Wxh( f ) Weight vector of backward and forward layer input data, respectively
Xt Input data vector at a time t

Indices
a Index for particle number
i Index for power plant type
j Index for fuel type
k Index for iteration number
t Index for time period
l Index for hidden layer
t Index for time
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