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Abstract: We extend the widely-studied Heterogeneous Autoregressive Realized Volatility (HAR-RV)
model to examine the out-of-sample forecasting value of climate-risk factors for the realized volatility
of movements of the prices of crude oil, heating oil, and natural gas. The climate-risk factors have
been constructed in recent literature using techniques of computational linguistics, and consist of
daily proxies of physical (natural disasters and global warming) and transition (U.S. climate policy
and international summits) risks involving the climate. We find that climate-risk factors contribute
to out-of-sample forecasting performance mainly at a monthly and, in some cases, also at a weekly
forecast horizon. We demonstrate that our main finding is robust to various modifications of our
forecasting experiment, and to using three different popular shrinkage estimators to estimate the
extended HAR-RV model. We also study longer forecast horizons of up to three months, and we
account for the possibility that policymakers and forecasters may have an asymmetric loss function.

Keywords: climate risks; realized volatility; oil; natural gas; forecasting

1. Introduction

In a recent doctoral thesis, ref. [1] develops a general equilibrium model to show that
increased climate risks, which results in policies that restrict oil use and has an unknown
arrival time, cause oil firms to accelerate extraction, and this run on oil leads to a decrease in
the oil price, as well as the value of oil firms. Econometric evidence (based on cross-sectional
and time-series data) confirms the theoretical predictions, and is in line with the earlier
panel data-based empirical findings of [2], who too suggests that regional (i.e., Africa, Asia
and Oceania, Central and South America, the European Union, the Middle East, and North
America) climate-change mitigation activity (causing lower CO2 emissions) leads to lower
oil prices. Given the well-established “leverage” effect in the oil market [3,4], this “bad”
news from the perspective of oil traders is likely to translate into higher oil-price volatility.
At the same time, a positive supply-shock like the one described above has been shown to
negatively impact overall economic uncertainty [5,6], and to translate into lower oil-market
volatility based on the well-established “Theory of Storage” [7,8]. This theory stipulates
that increases (decreases) in uncertainty tend to make the path of future aggregate demand
of commodities, and as a result, also of aggregate production less (more) predictable. Given
this increased (reduced) unpredictability, risk averse commodity producers prefer to hold
more (less) physical inventory that causes a rise (fall) in the convenience yield, which, in
turn, leads to a hike (decline) in volatility of commodity prices.

Moreover, given that climate change is associated with physical risks (for example,
rising temperatures, higher sea levels, more destructive storms or floods, or more severe
wildfires), and transition risks (such as, climate policy changes, i.e., carbon taxation, emer-
gence of competitive green technologies due to innovation, shifts in consumer preferences),
every future scenario includes climate-related financial risks. Unsurprisingly, these risks,
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in turn, have been shown to unfold an adverse effect on a large number of asset classes
such as equities, fixed-income securities, real estate, and even financial instituitions [9,10],
to the extent that climate risks tends to enhance the stress of the entire financial system [11].
With the financialization of the oil market that has gained momentum post the Global Fi-
nancial Crisis [12–14], whereby participation of hedge funds, pension funds, and insurance
companies in the market has increased, higher financial stress has been shown to transmit
onto (higher) oil-market volatility [15–17]. Overall, there are multiple channels through
which climate risks can affect the volatility of oil-price fluctuations, where the ultimate sign
of the effect mirrors the relative strength of these theoretical avenues.

Modeling and, in particular, forecasting the volatility of the oil market is of paramount
interest to economists and policymakers alike because empirical evidence suggests that
movements in the volatility of the returns of the price of crude oil have predictive value
for subsequent slowdowns in worldwide economic growth [18,19]. Moreover, it is by
now quite common to view oil as an alternative investment in the portfolio decisions of
financial institutions due to its financialization. Hence, having available accurate forecasts
of the future path of the volatility of oil-price returns is not only of key importance for
policymakers in conceptualizing in due time macroeconomic policies that help to shield
economies from recessions, but also for oil traders, who need volatility forecasts as central
inputs to their investment decisions and portfolio choices [20].

Given the importance of volatility forecasts for investors and policy authorities, and
given that rich information contained in intraday data can produce more accurate estimates
and forecasts of daily (realized) volatility [21], we augment the Heterogeneous Autoregres-
sive (HAR) model developed by [22] to include climate-risk factors to forecast the realized
daily volatility (RV), as computed from 5-minute-interval data, of crude oil-price returns
over the period from January, 2001 to November, 2019 (alternatives to the HAR-RV model
include Generalized Autoregressive Conditional Heteroskedasticity (GARCH), multifractal,
and stochastic volatility models; for reviews of this literature, see [23,24]). The climate-risk
factors have been recently constructed by [25] using techniques of computational linguistics.
The climate-risk factors consist of daily proxies of physical (natural disasters and global
warming) and transition (U.S. climate policy and international summits) climate risks.

To the best of our knowledge, ours is the first empirical study that sheds light on
the out-of-sample forecasting value of climate-risk factors for the RV of oil-price returns,
and, thereby, contributes to a rich and significant strand of research that uses the HAR-RV
model to forecast the same using a wide array of macroeconomic, financial, and behavioral
predictors (see, for example, [26–32], and the references cited therein). Importantly, we
also consider the role of climate-risk factors as predictors of the RV of heating oil and
natural gas, given that some researchers have recently highlighted the need to obtain
high-frequency forecasts of the volatility of these two energy prices [33–35]. We also go
beyond earlier literature in that we estimate our HAR-RV cum climate-risk factor models
not only by the standard ordinary least squares (OLS) technique, but we also apply three
different shrinkage estimators (the least absolute shrinkage and selection operator (Lasso)
estimator, the Ridge-regression estimator, and an elastic net) that select a parsimonious
forecasting model in a completely data-driven way. Finally, we take into account the
possibility that policymakers and forecasters need forecasts for horizons that extent beyond
one month, and we study an asymmetric loss function. An asymmetric loss function
easily arises in situation when policymakers and forecasters incur a larger loss from under-
than overestimating energy-price volatility by the same absolute seize in the wake of an
unfolding energy crisis. Similarly, overestimating energy-price volatility may be costlier
than underestimating volatility in times when high precautionary storage capacities cause
high opportunity costs.

At this stage, it is important to indicate that two somewhat related papers are the works
of [36,37], which forecasted monthly RVs of heating oil and crude oil prices, respectively,
based on the information content of the El Niño Southern Oscillation (ENSO) phases, using
a HAR-RV framework. Note that, ref [37] extended the work of [38], which provided
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in-sample evidence of the role of the ENSO in causing oil returns and volatility based on
a nonparametric k-th order quantile causality test. With our paper providing forecasts
at the daily frequency of the RVs of not only crude oil and heating oil prices, but also
natural gas prices, it can be considered as an improvement over these two papers, given
the importance of high-frequency forecasts for investors and policymakers in making their
respective decisions. Note that, high-frequency forecasts are important for investors in
terms of making timely portfolio decisions, given that daily volatility forecasts features
prominently in the context of Value-at-Risk (VaR) estimates [39]. Moreover, daily forecasts
of oil volatility can be fed into mixed-frequency data sampling (MIDAS) models to nowcast
monthly and/or quarterly macroeconomic variables [40], which will allow governments to
undertake appropriate policy decisions well-ahead of time before data on low-frequency
variables become available. More importantly, while ENSO is basically associated with the
natural-disaster component of climate risks, i.e., physical risks, we also investigate the role
of additional physical risks involving global warming, as well as transition risks associated
with U.S. climate policy and international summits. In other words, our approach is a
more general one, both in terms of the predictors capturing climate risks and econometric
methodologies employed, while investigating the role of climate risks in the forecastability
of the volatility of energy prices.

We organize the remainder of our paper as follows: We describe the data and method-
ology in Section 2. We summarize our forecasting results in Section 3, and we conclude
in Section 4.

2. Data and Forecasting Models
2.1. Data

The data on the realized volatility of returns of crude oil, heating oil, and natural
gas prices are obtained from Risk Lab. Risk Lab is maintained by Professor Dacheng
Xiu at Booth School of Business, University of Chicago. The data is downloadable from
the following internet page: https://dachxiu.chicagobooth.edu/#risklab, accessed on
1 October 2021. For an in-depth description of the data collection and the involved data
transformations, a reader is referred to the internet page of Risk Lab. Here, we only
reproduce very briefly some key properties of the data. Risk Lab collects trades at their
highest frequencies available. It then cleans the data collected in this way based on
the prevalent national best bid and offer that are available, up to every second. The
estimation procedure for realized volatility follows [41]. The estimation procedure uses
quasi-maximum likelihood estimates of volatility, building on moving-average models.
Non-zero returns of transaction prices are sampled up to their highest frequency available,
where days with at least 12 observations are considered. For our forecasting experiments,
we use the realized volatility estimates based on 5 min subsampled returns of the NYMEX
light crude oil, NYMEX heating oil No. 2, and NYMEX natural gas futures, which are
the only publicly available robust estimates for realized volatility associated with the
energy market.

Based on data availability, we study the sample period from 3 January 2001 to
27 November 2019. The total number of observations are 3471, 3437, and 3523 for crude
oil, heating oil, and natural gas. Figure 1 depicts the realized volatilities. The realized
volatilities exhibit the typical large and sudden occasional peaks familiar from the analysis
of other asset prices. We also observe that the recent COVID-19 pandemic resulted in
relatively large peaks of the realized volatilities of crude oil and heating oil at the end of
the sample period. In addition, we observe that the pattern of the dynamics of the realized
volatilities changed after roughly the first 1500 observations. In our empirical analysis, we
shall use rolling- and recursive-estimation windows to account for this changing pattern.

We plot the autocorrelation functions of the realized volatilities in Figure 2. The
autocorrelation functions exhibit a characteristic slowly decaying pattern. The HAR-RV
model is tailored to capture such a pattern in the data, and, hence, we use this popular
model to set the stage for our empirical analysis.

https://dachxiu.chicagobooth.edu/#risklab
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Figure 1. Realized volatilities. RV denotes the realized variance of the returns of the prices of the
respective metals. The sample period is 3 January 2001–27 November 2019.
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Figure 2. Autocorrelation functions. ACF denotes the autocorrelation function of the realized
volatility of the returns of the prices of the respective metals. The dashed horizontal line denotes the
95% confidence line. The sample period is 3 January 2001–27 November 2019.

Given that climate-change risk can be measured along a multitude of dimensions,
ref [25] apply the Latent Dirichlet Allocation (LDA) technique, an unsupervised textual-
analysis method, to anatomize climate-change risks and contrive climate-risk factors. The
LDA technique initially was developed by [42] to deconstruct a text corpus into what
they call “topics”. A topic can be characterized in terms of the frequency distribution
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of its words. Ref. [25] apply the LDA technique to the articles that contain the words
“climate change” and “global warming”, published from January, 2000 to November, 2019
in Thomson Reuters News Archive. Once the LDA technique has identified the topics,
ref [25] can give the topics an economic interpretation. Furthermore, they can generate
time series of the the topic shares that represent the proportion of an article’s text associated
with a given topic. The topic shares represent how news coverage has evolved over time
for any given topic. In a final step, ref. [25] single out four key climate-related topics: the
occurrence of natural disasters, the role of emissions in relation to global warming, U.S.
climate policy, and international climate-change summits.

The time series of the four climate-related topics are treated as climate-risk factors
because their fluctuations signal future effects on the economy. The data is publicly
available for download from the website of Dr. Renato Faccini (https://sites.google.com/
site/econrenatofaccini/home/research?authuser=0, accessed on 1 October 2021). Besides
these four climate-risk factors, there is also a fifth factor, with [25] obtaining the latter
by performing a narrative analysis on the textual factor to identify the content of U.S.
climate change news. The authors select articles with a loading on the domestic policy
topic greater than 40%, and mark it with a 1 if it signals an increase in transition risks, with
a −1 if it signals a fall, and with a zero if its content is mixed. Then, they create a time
series by summing the marks given to the articles over each day. Figure 3 plots the five
climate-risk factors.
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Figure 3. Climate risks. The sample period is 3 January 2001–27 November 2019.
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2.2. Forecasting Models

Our forecasting models are extensions of the popular HAR-RV model introduced
into the literature by [22]. The HAR-RV model incorporates realized volatilities from
different time resolutions into a unified forecasting model and, thereby, formalizes the
heterogeneous-market hypothesis of [43], and it captures various important properties of
the realized volatilities of returns of energy prices (i.e., long memory [44] and multi-scaling
behavior [45]). We study in our empirical research the following extended variants of the
HAR-RV model:

RVt+h = β0 + β1RVt + β2RVt,w + β3RVt,mRVt,m + β4xt + ηt+h, (1)

where ηt+h denotes a a serially independent mean-zero disturbance term that comprises
latent-volatility-measurement as well as estimation error, and the coefficients, βi, i = 0, ..., 4,
are usually estimated by the ordinary-least-squares (OLS) technique. The parameter, h,
denotes the forecast horizon. We set h = 1, 5, 22 for a daily, weekly, and monthly horizon.
For h > 1, we forecast the average realized volatility over the relevant forecast horizon, as
is common in the empirical literature. Moreover, RVt,w denotes the average weekly realized
volatility from day t− 5 to month t− 1, and RVt,m denotes the average monthly realized
volatility from day t− 22 to month t− 1.

The benchmark HAR-RV model is nested in the forecasting model given in Equation (1)
and obtains upon setting β4 = 0, such that any additional predictor, xt is excluded from
the model. Our extended versions of the basic HAR-RV model, in turn, obtain upon setting
xt to one of the climate-risk factors. We also consider an extended variant of the HAR-RV
model that includes all five different climate-risk factors as predictors. When we study that
model, we let xt denote a vector of predictors and β4 an appropriately dimensioned vector
of coefficients.

Because we know from our analysis of Figure 1 that the dynamics of the realized
volatilities exhibit time-varying patterns, we use a rolling-estimation window to estimate
the models given in Equation (1). We set the length of the rolling-estimation window to one
year (that is, the window comprises 250 observations). In order to assess the robustness of
our findings, however, we also shall present in Section 3 results for longer rolling-estimation
windows and for a recursive-estimation window. In all cases, we construct the data matrix
in such a way so that the data matrix has the same dimension for all forecast horizons.

In our baseline scenario, we estimate the forecasting models given in Equation (1)
by the OLS technique. In addition, as an extension of our forecasting experiment, we use
three popular shrinkage estimators to estimate the version of the model that includes all
five climate-risk factors as extra predictors. We consider the following three shrinkage
estimators: the Lasso estimator, the Ridge-regression estimator, and an elastic net. The
Lasso estimator uses the L1 norm of the coefficient vector to shrink the dimension of the
estimated forecasting model, the Ridge-regression estimator uses the L2 norm, and our
elastic net uses an equally weighted combination of the two. We use tenfold cross-validation
to trace out the optimal shrinkage parameter that minimizes the mean cross-validated error.

We use the R language and environment for statistical computing [46] to set up
our forecasting experiment. We use the R add-on package “glmnet” [47] to estimate the
Lasso model, where we use 10-fold cross-validation to select the shrinkage parameter that
minimizes the mean cross-validated error.

3. Empirical Findings and Implications
3.1. In-Sample and Out-Of-Sample Predictability Results

In order to set the stage for our forecasting experiments, we first present full-sample
results in Table 1 for the variant of the HAR-RV model that features all five climate-risk
factors as additional predictor variables. The full-sample estimation results witness that,
as one would have expected given the slowly decaying autocorrelation functions plotted
in Figure 2, the coefficients of the core HAR-RV model are always highly significantly
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different from zero, and they have the expected positive sign in all cases. In the case of
natural gas, the coefficient estimated for the monthly realized volatility is only significant
at the 10% level for the long forecast horizon. On balance, however, the full-sample results
demonstrate that the core HAR-RV captures an important element of the dynamics of the
realized volatilities. The evidence that the climate-risk factors are relevant full-sample
predictors, in contrast, is weak. Their estimated coefficients are statistically insignificant
in the majority of cases. The list of few exceptions includes the coefficients estimated for
global warming (h = 1) and international summits (h = 5) in the case of crude oil, U.S.
climate policy and natural disasters (h = 1) and international summits (h = 5, 22) in the
case of heating oil, and natural disasters (h = 5, 22) and the narrative factor (h = 22) in
the case of natural gas. These exceptions, though, do not discount the overall impression
that climate-risk factors do not contribute much to the in-sample predictability of the
realized volatilities. We further observe that the (adjusted) coefficient of determination
increases when we switch from the daily to the weekly forecast horizon, and then decreases
again in the case of crude oil and natural gas when we turn to the analysis of the long
forecast horizon.

Table 1. Full-sample results. The p-values are based on robust heteroskedasticity and autocorrelation
consistent standard errors. The parameter h denotes the forecast horizon (in days).

Energy Source h = 1 h = 1 h = 5 h = 5 h = 22 h = 22

Crude oil
Predictor Coefficient p-value Coefficient p-value Coefficient p-value
Intercept 0.0195 0.0001 0.0285 0.0194 0.0554 0.0649
RV 0.2635 0.0000 0.2159 0.0000 0.1667 0.0000
RV (weekly) 0.3777 0.0000 0.3650 0.0000 0.3069 0.0001
RV (monthly) 0.2881 0.0000 0.3207 0.0000 0.3437 0.0004
U.S. climate policy 0.0023 0.1200 −0.0002 0.8970 −0.0002 0.9046
International summits 0.0031 0.1666 0.0042 0.0482 0.0039 0.2423
Global warming −0.0048 0.0630 −0.0017 0.4438 −0.0021 0.4519
Natural disasters 0.0048 0.1223 0.0031 0.3212 0.0025 0.5391
Narrative factor −0.0004 0.8556 0.0026 0.1411 0.0020 0.3667
Adjusted R2 0.5578 − 0.7263 − 0.7005 −

Heating oil
Predictor Coefficient p-value Coefficient p-value Coefficient p-value
Intercept 0.0233 0.0003 0.0313 0.0087 0.0520 0.0046
RV 0.1575 0.0000 0.1297 0.0000 0.1155 0.0000
RV (weekly) 0.2827 0.0000 0.2534 0.0017 0.2428 0.0001
RV (monthly) 0.4613 0.0000 0.4943 0.0000 0.4440 0.0000
U.S. climate policy 0.0028 0.0769 −0.0001 0.9644 −0.0007 0.6494
International summits 0.0035 0.1511 0.0044 0.0223 0.0036 0.0609
Global warming −0.0034 0.1998 0.0000 0.9980 0.0012 0.6275
Natural disasters 0.0055 0.0821 0.0019 0.4796 0.0027 0.3946
Narrative factor −0.0019 0.4266 0.0021 0.1984 0.0026 0.1024
Adjusted R2 0.3832 − 0.6300 − 0.6693 −

Natural gas
Predictor Coefficient p-value Coefficient p-value Coefficient p-value
Intercept 0.0709 0.0000 0.0947 0.0000 0.1672 0.0000
RV 0.2297 0.0000 0.1690 0.0000 0.1268 0.0000
RV (weekly) 0.3079 0.0000 0.3201 0.0000 0.3025 0.0002
RV (monthly) 0.2836 0.0000 0.2714 0.0006 0.1628 0.0954
U.S. climate policy 0.0022 0.4015 0.0020 0.3573 −0.0005 0.8041
International summits −0.0006 0.8723 −0.0011 0.6862 0.0033 0.2047
Global warming −0.0020 0.6589 0.0019 0.6282 −0.0003 0.9447
Natural disasters 0.0118 0.1840 0.0136 0.0303 0.0111 0.0218
Narrative factor 0.0028 0.4407 0.0040 0.1281 0.0079 0.0027
Adjusted R2 0.2845 − 0.4720 − 0.4329 −
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It is also interesting to observe that the signs of the climate-risk factors are positive in
some cases, and negative in others. Moreover, the coefficients estimated for international
summits, for example, have a positive sign in the case of crude oil and heating oil, but a
negative sign when we study natural gas (h = 5). The sign of the estimated coefficient for
a given climate-risk factor can even change sign across forecast horizons as, for example,
in the case of global warming and natural gas. While the economic interpretation of sign
switches of the estimated coefficients across forecast horizons should not be stretched too
far given that most estimated full-sample coefficients are not significantly different from
zero, it still is worth noting that, on economic grounds, both a positive and a negative
sign can be rationalized. As [25] observe, a higher incidence of natural disasters and
global warming (operating through increased media coverage of sources of concern) and
international summits (which policymakers typically use to put forward proposals related
to a global tax on pollutants) are likely to signal “bad news” for the economy. The signal
that an increase in media coverage of U.S. climate policy news conveys about potential
transition risks, in turn, is likely to depend upon which of the two major U.S. political
parties holds the power in Washington. In any event, with climate risks affecting the
realized volatility through multiple opposing channels, as outlined in the introduction, the
mixed signs should not come as a surprise.

Against the background of the rather weak and inconclusive full-sample results, we
next turn our attention to our out-of-sample forecasting experiments. In this regard, it
should be noted, as [48] argues, that an out-of-sample analysis is the ultimate test of any
predictive model in terms of the econometric methodology and the predictor(s) under
scrutiny. Table 2 documents our baseline out-of-sample forecasting results. The table
shows the p-values of the test proposed by [49] for an equal mean-squared prediction error.
The classic HAR-RV model is the benchmark model, and the model extended to include
climate-risk factors is the rival model. The alternative hypothesis is that the rival model
has a smaller MSPE than the benchmark model. Hence, the Clark–West test is a one-sided
test. We observe that the test results for the short (that is, daily) forecast horizon are all
insignificant (with only one exception). Similarly, the majority of test results for the weekly
forecast horizon is insignificant. They yield statistically significant results in three cases
when we study natural gas. The evidence that the climate-risk factors have predictive
value for out-of-sample forecasts of realized volatility become stronger when we turn to the
monthly forecast horizon, where 12 out of 18 test results are highly significant. For h = 22,
we find that using all five climate-risk factors as predictors of the realized variances always
yields significant test results. Hence, the key finding from the baseline out-of-sample test
results is that climate-risk factors have predictive value for realized volatility mainly at the
long (monthly) forecast horizon.

Table 2. Baseline test results. Results (p-values; robust heteroskedasticity and autocorrelation
consistent standard errors) of the Clark–West tests for an equal mean-squared prediction error are
based on robust standard errors. The classic HAR-RV model is the benchmark model , and the model
extended to include climate-risk factors is the rival model. The alternative hypothesis is that the rival
model has a smaller MSPE than the benchmark model. The parameter h denotes the forecast horizon
(in days). The models are estimated using a rolling-estimation window of length 250 observations.

Energy Source/Model h = 1 h = 5 h = 22

Crude oil
HAR-RV vs. U.S. climate policy 0.4741 0.1078 0.1846
HAR-RV vs. International summits 0.4905 0.0639 0.0038
HAR-RV vs. Global warming 0.3706 0.8058 0.0066
HAR-RV vs. Natural disasters 0.1083 0.6754 0.0672
HAR-RV vs. Narrative factor 0.1834 0.2604 0.1219
HAR-RV vs. All 0.2220 0.2027 0.0000
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Table 2. Cont.

Energy Source/Model h = 1 h = 5 h = 22

Heating oil
HAR-RV vs. U.S. climate policy 0.5905 0.2893 0.1783
HAR-RV vs. International summits 0.5551 0.1023 0.0107
HAR-RV vs. Global warming 0.3307 0.1733 0.0163
HAR-RV vs. Natural disasters 0.3155 0.7115 0.1534
HAR-RV vs. Narrative factor 0.2643 0.1088 0.0042
HAR-RV vs. All 0.3032 0.2807 0.0001

Natural gas
HAR-RV vs. U.S. climate policy 0.0624 0.1417 0.0013
HAR-RV vs. International summits 0.5161 0.0329 0.0020
HAR-RV vs. Global warming 0.5930 0.3016 0.0014
HAR-RV vs. Natural disasters 0.1719 0.0362 0.1052
HAR-RV vs. Narrative factor 0.7402 0.4161 0.5167
HAR-RV vs. All 0.1921 0.0028 0.0000

In order to shed light on the robustness check of our key finding, we document in
Table 3 test results for the square root of RV. Such a robustness check is in order given that
Figure 1 witnesses that the realized volatilities exhibited occasional large peaks during our
sample period. The main finding of this robustness check is that we observe significant test
results predominantly when we study the monthly forecast horizon, even though there are
a few significant test results also for the weekly forecast horizon. Hence, the main finding
of this robustness test is consistent with the finding from the baseline test results that we
lay out in Table 2.

Table 3. Test results for
√

RV. Results (p-values; robust heteroskedasticity and autocorrelation
consistent standard errors) of the Clark–West tests for an equal mean-squared prediction error are
based on robust standard errors. The classic HAR-RV model is the benchmark model, and the model
extended to include climate-risk factors is the rival model. The alternative hypothesis is that the rival
model has a smaller MSPE than the benchmark model. The parameter h denotes the forecast horizon
(in days). The models are estimated using a rolling-estimation window of length 250 observations.

Energy Source/Model h = 1 h = 5 h = 22

Crude oil
HAR-RV vs. U.S. climate policy 0.5024 0.0770 0.1305
HAR-RV vs. International summits 0.3941 0.0781 0.0026
HAR-RV vs. Global warming 0.3364 0.7645 0.0025
HAR-RV vs. Natural disasters 0.0510 0.7495 0.0750
HAR-RV vs. Narrative factor 0.3911 0.2528 0.1330
HAR-RV vs. All 0.1910 0.2716 0.0001

Heating oil
HAR-RV vs. U.S. climate policy 0.5521 0.4092 0.1720
HAR-RV vs. International summits 0.5507 0.1470 0.0149
HAR-RV vs. Global warming 0.3890 0.1667 0.0044
HAR-RV vs. Natural disasters 0.2715 0.6915 0.2374
HAR-RV vs. Narrative factor 0.3333 0.1447 0.0036
HAR-RV vs. All 0.2610 0.3759 0.0002

Natural gas
HAR-RV vs. U.S. climate policy 0.0467 0.1738 0.0026
HAR-RV vs. International summits 0.8555 0.2008 0.0054
HAR-RV vs. Global warming 0.3717 0.1099 0.0016
HAR-RV vs. Natural disasters 0.1760 0.0232 0.1490
HAR-RV vs. Narrative factor 0.5821 0.2369 0.3314
HAR-RV vs. All 0.1390 0.0013 0.0000
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Eyeballing Figure 1 further reveals that the dynamics of the realized volatilities
changed at roughly observation 1500. In order to account for this observations, we report
in Table 4 results for a shorter sample period, that is, we delete the first 1500 forecasts
before setting up the Clark–West test. The results are broadly in line with our baseline test
results. We observe strong evidence of predictive value of the climate-risk factors at the
monthly forecast horizon for crude oil and heating oil and, to a somewhat lesser extent, for
natural gas. For natural gas, we further observe that half of the test results at the weekly
forecast horizon are significant. We also observe, corroborating the results of our baseline
forecasting experiment that we summarize in Table 2, that the test results for the full model
that features all five climate-risk factors are significant at the monthly forecast horizon.

Table 4. Test results for a shorter sample period. Results (p-values; robust heteroskedasticity
and autocorrelation consistent standard errors) of the Clark–West tests for an equal mean-squared
prediction error are based on robust standard errors. The classic HAR-RV model is the benchmark
model, and the model extended to include climate-risk factors is the rival model. The alternative
hypothesis is that the rival model has a smaller MSPE than the benchmark model. The parameter h
denotes the forecast horizon (in days). The models are estimated using a rolling-estimation window
of length 250 observations. The first 1500 forecasts are excluded.

Energy Source/Model h = 1 h = 5 h = 22

Crude oil
HAR-RV vs. U.S. climate policy 0.4179 0.8580 0.6417
HAR-RV vs. International summits 0.5672 0.6027 0.0375
HAR-RV vs. Global warming 0.7781 0.9279 0.2166
HAR-RV vs. Natural disasters 0.4918 0.1456 0.0069
HAR-RV vs. Narrative factor 0.8732 0.4018 0.0419
HAR-RV vs. All 0.5897 0.3955 0.0041

Heating oil
HAR-RV vs. U.S. climate policy 0.5304 0.9520 0.5703
HAR-RV vs. International summits 0.3319 0.4189 0.1978
HAR-RV vs. Global warming 0.9795 0.2689 0.0344
HAR-RV vs. Natural disasters 0.3399 0.1456 0.0039
HAR-RV vs. Narrative factor 0.6495 0.0626 0.0029
HAR-RV vs. All 0.6820 0.1938 0.0013

Natural gas
HAR-RV vs. U.S. climate policy 0.0335 0.0567 0.0672
HAR-RV vs. International summits 0.6202 0.1076 0.0294
HAR-RV vs. Global warming 0.0593 0.0155 0.2473
HAR-RV vs. Natural disasters 0.3957 0.7876 0.9230
HAR-RV vs. Narrative factor 0.6737 0.3192 0.3637
HAR-RV vs. All 0.0875 0.0774 0.0439

In Table 5, we report test results that we obtain when we use three popular shrinkage
estimators to estimate the HAR-RV cum all climate-risk factors model. The three shrinkage
estimators are interesting for the purpose of our forecasting experiments because they
identify a parsimonious forecasting model in a completely data-driven way. We consider
the following three shrinkage estimators: the Lasso estimator, the Ridge-regression esti-
mator, and an elastic net. The latter can be interpreted as a combination of the Lasso and
Ridge-regression estimators. The test results show again that the climate-risk factors help
to improve the accuracy of forecasts of the realized volatilities at the monthly forecast
horizon relative to the accuracy of forecasts that we obtain from the benchmark HAR-RV
model (estimated by ordinary-least squares). For crude oil and heating oil, all test results
are significant (h = 22), while the evidence of an improvement in forecast accuracy is
weaker for natural gas. Moreover, the Ridge-regression estimator in particular tends to
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yield significant test results at the short and intermediate forecast horizons (h = 1, 5) even
for the daily and weekly forecast horizon.

Table 5. Shrinkage results. Results (p-values; robust heteroskedasticity and autocorrelation consistent
standard errors) of the Clark–West tests for an equal mean-squared prediction error are based on
robust standard errors. The classic HAR-RV model is the benchmark model, and the model extended
to include all climate-risk factors and estimated by the Lasso, Ridge, and elastic-net estimator is
the rival model. The alternative hypothesis is that the rival model has a smaller MSPE than the
benchmark model. The parameter h denotes the forecast horizon (in days). The models are estimated
using a rolling-estimation window of length 250 observations.

Panel A: Results for RV
Energy Source/Models h = 1 h = 5 h = 22

Crude oil
HAR-RV vs. Lasso 0.0267 0.0187 0.0000
HAR-RV vs. Ridge 0.0241 0.0098 0.0000
HAR-RV vs. Elastic net 0.1101 0.0175 0.0000

Heating oil
HAR-RV vs. Lasso 0.2876 0.2832 0.0000
HAR-RV vs. Ridge 0.0695 0.0759 0.0000
HAR-RV vs. Elastic net 0.1286 0.2807 0.0000

Natural gas
HAR-RV vs. Lasso 0.0972 0.1982 0.0761
HAR-RV vs. Ridge 0.0490 0.0231 0.1187
HAR-RV vs. Elastic net 0.1856 0.1332 0.0830

Panel B: Results for
√

RV
Energy Source/Models h = 1 h = 5 h = 22

Crude oil
HAR-RV vs. Lasso 0.1660 0.1828 0.0001
HAR-RV vs. Ridge 0.0567 0.0271 0.0000
HAR-RV vs. Elastic net 0.2149 0.0986 0.0000

Heating oil
HAR-RV vs. Lasso 0.2901 0.5648 0.0000
HAR-RV vs. Ridge 0.1368 0.0638 0.0000
HAR-RV vs. Elastic net 0.2370 0.3025 0.0000

Natural gas
HAR-RV vs. Lasso 0.1745 0.0610 0.0708
HAR-RV vs. Ridge 0.1303 0.0142 0.0815
HAR-RV vs. Elastic net 0.2259 0.0453 0.1316

Table 6 reports the results we obtain when we use somewhat longer rolling-estimation
windows (500 and 1000 observations) to estimate our forecasting models. The message
to take home from the results summarized in Table 6 is that, on balance, there is evi-
dence (somewhat stronger for the window that uses 500 than for the window that uses
1000 observations) that considering climate-risk factors as predictors of realized volatilities
at a monthly forecast horizon yields forecasts that are superior relative to the forecasts
computed by means of a benchmark HAR-RV model. For the monthly forecast horizon,
we observe that the test results for the forecasting model that features all five climate-risk
factors in its array of predictors are significant for both rolling-estimation windows.
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Table 6. Results for longer rolling-estimation windows. Results (p-values; robust heteroskedasticity
and autocorrelation consistent standard errors) of the Clark–West tests for an equal mean-squared
prediction error are based on robust standard errors. The classic HAR-RV model is the benchmark
model, and the model extended to include all climate-risk factors and estimated by the Lasso, Ridge,
and elastic-net estimator is the rival model. The alternative hypothesis is that the rival model has a
smaller MSPE than the benchmark model. The parameter h denotes the forecast horizon (in days).

Energy Source/Model Window h = 1 h = 5 h = 22

Crude oil
HAR-RV vs. U.S. climate policy 500 0.8125 0.2109 0.1914
HAR-RV vs. International summits 500 0.5454 0.0930 0.0318
HAR-RV vs. Global warming 500 0.7039 0.0549 0.0021
HAR-RV vs. Natural disasters 500 0.3065 0.5165 0.0554
HAR-RV vs. Narrative factor 500 0.2015 0.2491 0.2085
HAR-RV vs. All 500 0.4081 0.0722 0.0002
HAR-RV vs. U.S. climate policy 1000 0.4376 0.7463 0.6232
HAR-RV vs. International summits 1000 0.0773 0.0181 0.0007
HAR-RV vs. Global warming 1000 0.7181 0.6931 0.4861
HAR-RV vs. Natural disasters 1000 0.8546 0.1863 0.1417
HAR-RV vs. Narrative factor 1000 0.7928 0.3893 0.9182
HAR-RV vs. All 1000 0.6716 0.1587 0.0290

Heating oil
HAR-RV vs. U.S. climate policy 500 0.1970 0.1188 0.0021
HAR-RV vs. International summits 500 0.7393 0.3008 0.0001
HAR-RV vs. Global warming 500 0.9930 0.9824 0.0001
HAR-RV vs. Natural disasters 500 0.3774 0.3479 0.0001
HAR-RV vs. Narrative factor 500 0.0334 0.1651 0.1616
HAR-RV vs. All 500 0.5975 0.4760 0.0000
HAR-RV vs. U.S. climate policy 1000 0.1026 0.0171 0.0351
HAR-RV vs. International summits 1000 0.0152 0.0019 0.0189
HAR-RV vs. Global warming 1000 0.0403 0.0080 0.0204
HAR-RV vs. Natural disasters 1000 0.8252 0.1242 0.0923
HAR-RV vs. Narrative factor 1000 0.5719 0.0712 0.2767
HAR-RV vs. All 1000 0.0961 0.0006 0.0059

Natural gas
HAR-RV vs. U.S. climate policy 500 0.1416 0.1903 0.1404
HAR-RV vs. International summits 500 0.2097 0.0478 0.0001
HAR-RV vs. Global warming 500 0.7952 0.5049 0.0000
HAR-RV vs. Natural disasters 500 0.4839 0.0500 0.0061
HAR-RV vs. Narrative factor 500 0.4007 0.4357 0.4119
HAR-RV vs. All 500 0.2878 0.0185 0.0000
HAR-RV vs. U.S. climate policy 1000 0.1256 0.0154 0.1264
HAR-RV vs. International summits 1000 0.0934 0.0407 0.0005
HAR-RV vs. Global warming 1000 0.6997 0.5893 0.1352
HAR-RV vs. Natural disasters 1000 0.7563 0.5389 0.7422
HAR-RV vs. Narrative factor 1000 0.6663 0.8124 0.3467
HAR-RV vs. All 1000 0.4207 0.0649 0.0032

As a further variant of our forecasting experiment, we report in Table 7 results that
we obtain when we study a recursive-estimation window. The changing dynamics of the
realized volatilities documented in Figure 1 imply that a recursive-estimation window is
not our preferred choice for the analysis of our data. Notwithstanding, it is interesting
briefly to sketch the results for a recursive-estimation window. As in the case of a rolling-
estimation window, we observe several significant test results for the monthly forecast
horizon. The forecast model that uses all five climate-risk factors as predictors yields
always significant test results at the long forecast horizon.
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Table 7. Test results for a recursive-estimation window. Results (p-values; robust heteroskedasticity
and autocorrelation consistent standard errors) of the Clark–West tests for an equal mean-squared
prediction error are based on robust standard errors. The classic HAR-RV model is the benchmark
model, and the model extended to include climate-risk factors is the rival model. The alternative
hypothesis is that the rival model has a smaller MSPE than the benchmark model. The parameter
h denotes the forecast horizon (in days). The models are estimated using a recursive-estimation
window, where we use 250 observations as a training period to initialize the estimations.

Energy Source/Model h = 1 h = 5 h = 22

Crude oil
HAR-RV vs. U.S. climate policy 0.3419 0.1665 0.2965
HAR-RV vs. International summits 0.5830 0.1402 0.0417
HAR-RV vs. Global warming 0.2578 0.5709 0.0725
HAR-RV vs. Natural disasters 0.1645 0.5830 0.0912
HAR-RV vs. Narrative factor 0.4531 0.2506 0.5766
HAR-RV vs. All 0.1050 0.1240 0.0426

Heating oil
HAR-RV vs. U.S. climate policy 0.2662 0.1837 0.1200
HAR-RV vs. International summits 0.7032 0.0952 0.0250
HAR-RV vs. Global warming 0.3849 0.2267 0.0162
HAR-RV vs. Natural disasters 0.2209 0.5308 0.1594
HAR-RV vs. Narrative factor 0.2220 0.1542 0.2041
HAR-RV vs. All 0.1114 0.0976 0.0215

Natural gas
HAR-RV vs. U.S. climate policy 0.2632 0.2250 0.2309
HAR-RV vs. International summits 0.5317 0.3901 0.0693
HAR-RV vs. Global warming 0.6952 0.2123 0.1622
HAR-RV vs. Natural disasters 0.6785 0.0174 0.0012
HAR-RV vs. Narrative factor 0.2777 0.1704 0.0220
HAR-RV vs. All 0.5941 0.0132 0.0003

Based on the suggestion of an anonymous referee to better understand the possible
statistical reasons behind the weak in-sample evidence relative to the stronger out-of-
sample performance of the climate risks variables, we conducted the multiple structural
break tests of [50] on the augmented HAR-RV model that involves all the five predictors of
climate risks. We found five breaks (specific dates of which are available upon request from
the authors) each at h = 1, 5 and 22 for all three of the energy prices. Given the evidence of
structural breaks, it is not surprising that the full-sample regressions provide only weak
evidence that the climate-risk factors matter for in-sample predictability.

In this regard, it is also worth mentioning that plots (complete details of which are
available upon request from the authors) of the time-varying coefficients of the climate-risk
factors estimated by means of a rolling-estimation window indicate that the signs of the
estimated coefficients changed over time, possibly reflecting that the relative importance of
the multiple opposing channels through which climate risks affect the realized volatility
was not constant over time. The full-sample regressions capture the “average sign” of the
coefficients and, thereby, recover only a weak predictive value of the climate-risk factors
for realized volatility. An out-of-sample analysis, in contrast, is better suited to recover
such changing patterns in the link between realized volatility and the climate-risk factors,
as it is based on time-varying parameter estimates of the models derived from rolling
and recursive windows. Intuition, thus, suggests that an out-of-sample analysis can be
expected to yield stronger evidence of predictability than a full-sample analysis, which, in
turn, is vindicated by our out-of-sample forecasting results.

Finally, we consider the possibility that policymakers and forecasters are interested in
forecasts for horizons that extend beyond one month. Moreover, one can conceive situations
in which policymakers and forecasters differentiate between positive and negative forecast
errors. An underestimation of energy-price volatility in the wake of an energy crisis that
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gathers steam, for example, might be costlier for a policymaker in terms of approval
rates than a corresponding overestimation of the same absolute seize. Overestimation
of energy-price volatility, in turn, may result in excessive storage and high opportunity
costs. In order to model a potential differential weighting of under- and over-estimations
of realized volatility, we use the loss function studied by [51,52]. The loss function is given
by L = (α + (1− 2α)I f e<0)| f e|p, where f e denotes the forecast error and I f e<0 denotes the
indicator function. Setting p = 1 results in a quasi-linear function that depends on the
absolute forecast error (L1 loss), while setting p = 2 restricts the loss function to be of the
quadratic type (L2 loss). The (as-)symmetry parameter, α ∈ (0, 1) governs the relative loss
from an under-or overestimation of realized volatility. For α = 0.5, we obtain a symmetric
loss function. For α 6= 0.5, we obtain α > 0.5 (α < 0.5), the loss from under-estimating (over-
estimating) realized volatility exceeds the loss from an overestimation (underestimation) of
the same (absolute) size.

Figure 4 summarizes the results for this loss function. We report results for forecast
horizons from one day to three months (that is, 66 days). The figure displays the loss ratio
that we obtain by dividing the sum of the loss from the out-of-sample forecast errors as
computed by means of the HAR-RV benchmark model by the the sum of the loss from the
out-of-sample forecast errors as computed by means of the HAR-RV model extended to
include all climate-risk factors. A ratio exceeding unity, thus, indicates that the extended
model has a better out-of-sample forecasting performance than the benchmark model,
given the (as-)symmetry parameter, α. The results show that the forecasting gains from
using the climate-risk factors as predictors tend to increase in the forecast horizon for the
case of a symmetric loss function. In the asymmetric case, in turn, the forecasting gains for
long forecast horizons are mainly concentrated in the region where α > 0.5 when we study
crude oil and a L2 loss function. For a L2 loss function, the forecasting gains are more
evenly distributed across the interval of the asymmetry parameter. For heating oil and
natural gas, in turn, the forecasting gains in the case of long forecast horizons are strongest
in the region where α < 0.5.

3.2. Implications for Economic Agents

At this stage, it is important to highlight the implications of our findings for various
groups of economic agents. From the perspective of a policymaker, given that energy-
price volatility is associated with movements in global economic growth [18,19], the high-
frequency forecasts of the path of variability of the energy market emanating from climate
risks can be fed into MIDAS models to obtain nowcasts of low-frequency economic activity-
related variables [40]. This, in turn, will allow policy authorities to design appropriate
decisions well-ahead of time before data on low-frequency variables become available, and
prevent possible recessions in the wake of heightened energy-market volatility resulting
from climate risks. Moreover, because investments in energy markets are now considered
as alternative opportunities to traditional financial assets due to the financialization of the
energy sector [12–14], having available accurate forecasts of the future path of the realized
volatility of energy-price returns is of paramount importance for market participants,
who need volatility forecasts as key inputs to their investment decisions and portfolio
choices [20]. In this regard, it is also important to note that daily volatility forecasts feature
prominently in the context of VaR estimates [39].

Additionally, given that our empirical findings indicate that climate risks can forecast
energy-market volatility, particularly in the longer-run, models need to be developed by
academics to theoretically conceptualize such a relationship. In other words, one would
need to go beyond the existing models depicting the impact of climate risks on the first-
moment of energy-price returns. While doing this, given relatively weak in-sample, but
stronger out-of-sample, forecasting results, theoretical energy economists would need to
keep in mind the fact that the structural parameters of the models should in fact be evolving
over time, and not constant, along the lines of time-varying Dynamic Stochastic General
Equilibrium Models (see for example, [53–55]).
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Figure 4. Loss ratios for longer forecast horizons. The parameter α captures the (as-)symmetry of the
loss function. The loss function is of the L = (α + (1− 2α)I f e<0)| f e|p, where f e denotes the forecast
error and the parameter p governs whether the loss function is of the L1 (quasi-linear function that
depends on the absolute forecast error) or L2 (quadratic loss) type. The nominator of the loss ratio
is given by the sum of the loss from the out-of-sample forecast errors as computed by means of
the HAR-RV benchmark model. The denominator of the loss ratio is given by the sum of the loss
from the out-of-sample forecast errors as computed by means of the HAR-RV model extended to
include all climate-risk factors. A ratio exceeding unity indicates that the extended model has a
better out-of-sample forecasting performance than the benchmark model, given the (as-)symmetry
parameter, α. It should be noted that the representation of the numerical values of the loss ratio by
colors is not identical across the three panels of this figure.

4. Concluding Remarks

The current European energy-price crisis is a reminder that the prices of crude and
heating oil as well as of natural gas play a prominent role not only in discussions of the
economic consequences of large swings in energy prices, but also in debates in policy
circles of key issues related to energy security. Our empirical research aims to inform such
debates by analyzing the role of climate-risk factors for forecasting future realizations of
the realized volatilities of the returns of the prices of three key energy sources: crude oil,
heating oil, and natural gas. The importance of climate-risk factors for energy security
most likely will increase in the future and for this reason, it is of utmost importance for
policymakers to better understand whether climate-risk factors contain useful information
for large swings in energy prices.
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The empirical findings that we have reported in this research can help to develop a
better understanding of the link between climate risks and volatile energy prices. We have
documented strong evidence that the five climate-risk factors that we have considered in
our out-of-sample forecasting experiments tend to add to the accuracy of out-of-sample
forecasts of the realized volatilities of the returns of the prices of crude oil, heating oil, and
natural gas at a monthly and, in some cases, also at a shorter forecast horizon. Moreover,
we have also studied longer forecast horizons of up to three months, where we have taken
into account that policymakers and forecasters encounter a loss from an underestimation of
realized volatility that differs from the cost of an overestimation of the same absolute size.

As an avenue for future research, it is interesting to shed light on how climate-risk fac-
tors contribute to the performance of out-of-sample forecasting of energy-price movements
relative to other sources of risk like, for example, geopolitical risks. This is important, given
the evidence that geopolitical risks have tended to drive the movements in energy prices
historically (see, for example, [56]). It is also interesting to study whether the evidence we
have reported in this research extends to markets for other natural resources. In this regard,
the link between climate-risk factors and the volatility of movements of prices of important
agricultural commodities is particularly important, as might also be the case of precious
metals which have been considered as traditional safe-havens in the wake of global risks
and uncertainties [57]. We hope that our research will set the stage for such future empirical
analyses. Moreover, while there exist theoretical models relating energy prices to climate
risks, in the future, a theory should be developed to explain not only variance, but the
overall energy market volatility directly due to the effects of climate-related uncertainties.
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