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Abstract: The Internet of things (IoT) enables a diverse set of applications such as distribution
automation, smart cities, wireless sensor networks, and advanced metering infrastructure (AMI).
In smart grids (SGs), quality of service (QoS) and AMI traffic management need to be considered
in the design of efficient AMI architectures. In this article, we propose a QoS-aware machine-
learning-based framework for AMI applications in smart grids. Our proposed framework comprises
a three-tier hierarchical architecture for AMI applications, a machine-learning-based hierarchical
clustering approach, and a priority-based scheduling technique to ensure QoS in AMI applications
in smart grids. We introduce a three-tier hierarchical architecture for AMI applications in smart
grids to take advantage of IoT communication technologies and the cloud infrastructure. In this
architecture, smart meters are deployed over a georeferenced area where the control center has remote
access over the Internet to these network devices. More specifically, these devices can be digitally
controlled and monitored using simple web interfaces such as REST APIs. We modify the existing
K-means algorithm to construct a hierarchical clustering topology that employs Wi-SUN technology
for bi-directional communication between smart meters and data concentrators. Further, we develop
a queuing model in which different priorities are assigned to each item of the critical and normal AMI
traffic based on its latency and packet size. The critical AMI traffic is scheduled first using priority-
based scheduling while the normal traffic is scheduled with a first-in–first-out scheduling scheme
to ensure the QoS requirements of both traffic classes in the smart grid network. The numerical
results demonstrate that the target coverage and connectivity requirements of all smart meters are
fulfilled with the least number of data concentrators in the design. Additionally, the numerical results
show that the architectural cost is reduced, and the bottleneck problem of the data concentrator is
eliminated. Furthermore, the performance of the proposed framework is evaluated and validated
on the CloudSim simulator. The simulation results of our proposed framework show efficient
performance in terms of CPU utilization compared to a traditional framework that uses single-hop
communication from smart meters to data concentrators with a first-in–first-out scheduling scheme.

Keywords: advanced metering infrastructure (AMI); aggregator head (AH); CloudSim; cluster head
(CH); first-in–first-out (FIFO); coverage; Internet of things (IoT); latency; K-means; quality of service
(QoS); smart grid (SG)

1. Introduction

The advanced metering infrastructure (AMI) [1–3] is one of the core network infras-
tructures commonly deployed at the customer side in a smart grid (SG) [4–9]. As depicted
in Figure 1, a typical AMI consists of a large number of smart meters (SMs), data concentra-
tors (DCs), and wide-area networks (WANs), together with a metering data management
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system (MDMS) [4–6]. All these new devices, services, standards, and protocols are inte-
grated with the existing power grid, which makes an SG system very complex. Commonly,
communication technologies [5–8] are utilized between the entities of the AMI architecture
to set up a two-way connection in a single-hop or a multi-hop manner, to exchange inter-
active messages such as power usage data, power status, event notifications, and other
control commands between SMs and the control-center server (CCS) of the utility provider.
To fully exploit the benefits of AMI architectures, it is imperative to select suitable communi-
cation standards and appropriate network topologies that will provide two-way end-to-end
communication support for various metering data [10] and other SG applications [11–14]
that have different packet sizes, arrival rates, and latency requirements in the SG.
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The communication methods of the AMI network are mostly similar to those of
the most recently emerged IoT communication models [15–19], utilizing several com-
munication standards (cellular, WiFi, etc.), multi-layered structures (fog, edge, cloud),
and protocols to provide remarkable end-to-end IoT services in the SG system with lower
cost, increased coverage range, and lower power consumption. Recent developments in
the leading LPWAN wireless technologies [9] such as NB-IOT [15] and long-range radio
(LoRa) [16] are specially designed to enable low-power devices (e.g., SMs) to communicate
over a long range with the control center (CC) for Internet-connected applications (e.g.,
metering, monitoring, etc.). In this way, the CC fully exploits the features of the Internet
of things (IoT) to access SMs at customer premises remotely, to obtain accurate energy
consumption data [20]. In particular, the CC should be able to adjust the energy supply
according to the real-time demands of the consumers. Therefore, an intelligent communica-
tion system is required between SMs and the CC that will enable the SG network to handle
the dynamic changes in electricity demand and supply in the electrical network.

However, given the SMs’ geographic information and transmission ranges, there
is a little research in the literature on how to utilize SMs as relay nodes in an n-hop
manner to minimize the DC installation cost and to improve the quality-of-service (QoS)
metrics with minimum communication delay in the AMI network. Several studies on
key device (i.e., DC) placement have been reported which have particularly emphasized
how to minimize the infrastructure cost, further boost network capacity, and extend
the service coverage [21–25]. Alternatively, deploying SMs as relay nodes can provide
a competitive solution to a number of legacy problems in existing AMI networks. Various
AMI applications rely heavily on two stringent requirements in SG communication, namely,
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delivery of a large volume of messages and communication latency. Therefore, in potential
emergency situations (e.g., blackouts, power theft, etc.), the communication network should
be able to handle and deliver a large number of delay-sensitive and bandwidth-intensive
messages to the CC in an efficient and reliable manner. In practice, it is observed that SMs
have very limited resources (i.e., low memory, limited processing capability, and limited
link capacity). Furthermore, it is imperative that the data delivery process between SMs
and the CC is instant and precise for real-time control and monitoring of the SG network.
Hence, if too high a workload (e.g., costly computations) is assigned, traffic congestion can
occur at the SM, which can result in messages being delayed or even dropped on the way
to the CC. In this case, the CC will miss detailed information from the SMs at the user side,
which can result in incorrect decisions being taken by the CC regarding energy supply
and demand.

Motivated by the foregoing discussion, we propose a three-tier hierarchical architec-
ture (detailed in Section 5) which employs a clustering approach to configure the SMs
into clusters of bounded radii and an optimal data delivery route with n hops, established
between the SMs and the DC for major AMI applications in the network topology at the
lower tier in the architecture. In this article, a modified K-means algorithm is proposed in
which the optimal K-value for every cluster is decided based on the size and the number of
nodes (SMs) deployed in the residential area. Further, the geographic coordinates of the
nodes are used in the distance formula (haversine formula) for dual-head selection and
cluster formation. During the cluster formation, dual heads, namely, a cluster head (CH)
and aggregator head (AH), are selected in each cluster. The CH is used in intra-cluster as
well as inter-cluster communication for relaying metering traffic between SMs and the DC,
and this minimizes the number of DCs required in the AMI network. However, due to the
resource-constrained nature of the SM (as CH), an AH is introduced to collect interval meter
readings (IMRs) from the cluster members, aggregate these readings, and send them to the
CH for onward transmission towards the CCS. This eases congestion, provides fault toler-
ance and reduces workload at the CH in each cluster. With this clustering topology in place,
data from SMs traverse three tiers to reach the CCS and vice versa. At the lower tier, SMs
generate two types of AMI traffic [24–27], namely, normal and critical traffic. The normal
traffic, such as IMRs, is sent to the AH for traffic aggregation, while the critical traffic
(delay-sensitive traffic) is sent directly to the CH for onward transmission. At the middle
tier, the CH receives the normal and critical traffic into two different queues, schedules
both types of traffic on a priority basis through the CSMA/CA and TDMA slots in the
IEEE 802.15.4g [28] MAC protocol, and sends the traffic to the DC directly or via other CHs.
Finally, the AMI traffic received at the DC is forwarded to the utility CCS at the upper tier,
over the Internet. For ease of understanding, important notations used in this paper are
summarized in the Abbreviations.

1.1. Contributions

Considering the knowledge gap in the literature, there are five main contributions
in this article. Firstly, this study primarily aims to use SMs as relay nodes (CH, AH) to
maximize the coverage and connectivity requirements of all SMs in the AMI network.
Secondly, the proposed heuristic improves the QoS of different AMI applications through
priority-based scheduling schemes. Thirdly, this study intends to mitigate the hotspot
problem of the DC to meet the robustness requirement by uniformly distributing the
workload between the CH and AH to ensure service availability when a DC fails. Fourthly,
the proposed hierarchical topology minimizes the total number of DCs required, which
substantially reduces cost [29] in terms of the purchase and installation of new DCs and
electric poles. Finally, extensive performance evaluation and simulation results obtained
through different scenario-based experiments demonstrate the significance and verification
of the proposed framework for AMI applications.
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1.2. Paper Organization

The rest of the article is structured as follows. Section 2 presents a review of the recent
literature on AMI applications in SGs. Section 3 describes the problem. The proposed
framework is mathematically formulated in Section 4. In Section 5, we describe in detail
the proposed three-tier hierarchical architecture for AMI applications. Section 6 presents
the numerical and simulation results. Finally, Section 7 concludes the paper.

2. Literature Review

This section briefly describes the recent research efforts that are most relevant to our
proposed scheme in this article. Our research work was mainly inspired by two major
concepts in the literature: the QoS requirement of AMI applications and cluster-based
hierarchical routing for increasing the coverage of AMI devices in SGs. However, due to
the resource constraints of AMI devices, designing an efficient routing architecture for AMI
applications in SGs has always presented a challenge for researchers and industry.

In [24–26], an optimal data aggregation point (DAP) placement problem was for-
mulated and solved. The network model in [24] uses modified K-means on electric pole
locations for DAP placement, and all devices communicate over a single hop to extend the
network coverage. However, the QoS for AMI traffic was not considered in this study, and
the one-hop communication limits the transmission ability. The work was extended in [25],
where a greedy algorithm is used to identify pole locations suitable for DAP placement,
and Dijkstra’s algorithm is used to identify reliable routes for SMs in the network. In this
study, the CH works as a DC in the clustering topology, with QoS support for various types
of AMI traffic. However, the CH is fixed and burdened with a heavy workload, which
may lead to the bottleneck problem (i.e., the CH receives more work requests than it can
process at its maximum throughput capacity), because CH rotation is not considered in
the study. Following this work, power line communication (PLC) technology was used
for scheduling the delay-sensitive data of SMs in [26], using priority-based carrier sense
multiple access/collision avoidance (CSMA/CA) and queuing analysis, such that mini-
mum installation costs are guaranteed, together with traffic reliability. However, PLC has
significant technical issues (channel distortion, noise, interference, and a low data rate)
which limit its adoption in SG networks.

The authors in [27,30] addressed the DAP placement problem together with the QoS
requirements for the AMI scenario. In [27], the author considered a wireless neighborhood
area network (NAN) where a large number of SMs are divided into groups to communicate
over a single hop to a DC that is connected via wired backhaul to the CC. The proposed
analytical model ensures certain QoS metrics for demand–response applications in the
communication network. However, the work presented needs to ensure certain latency
requirements for different types of AMI traffic. Similarly, in [30], the optimization problem
is formulated to minimize the cost of DAP by grouping SMs into clusters such that the risk
of inter-network cascading failures due to DAP failure is avoided in the power network.

The authors in [31] developed a K-means-based method to select poles to deploy
a fixed number of DCs in a multi-hop radio-frequency mesh AMI network. The objective
was to minimize the transmission delays by limiting the number of hops that the SM
traffic needs to traverse through to reach the selected DCs. However, their work ignores
the congestion delay occurring at each hop. The studies presented in [32,33] developed
optimization models that focus on design parameters such as coverage and capacity in
a cost-effective manner. The heuristic in [32] uses a near-optimal clustering topology for
the deployment of SMs with a bi-directional hybrid communication (wireless–fiber) system
for the integration of smart microgrids. The authors in [33] proposed an evolved network
architecture considering SMs, universal DAPs, BS, and an optimal route map based on
wireless heterogeneous networks (WHNs) to achieve connectivity and coverage of SMs
with the optimum use of technological resources.

In [34], an optimization problem is formulated to assist device-to-device (D2D) cellular
communications in clusters and to efficiently allocate resources to guarantee QoS and
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maximize spectral efficiency in the AMI. Since cellular service (bandwidth) is shared with
mobile users, this may affect the network performance and may create congestion in the
network. The authors in [35,36] investigated the DAP placement problem and analyzed
it using cluster-based algorithms aimed at reducing the maximum and average distance
between SMs and the DAP. A stochastic geometry-based model was applied to power grids
in [37,38], in order to achieve two objectives: optimized phasor measurement units (PMUs)
allocation and interdependent communication power networks. The power grid in [37]
is clustered using a K-means algorithm to construct trees based on the physical buses,
such that redundant SM allocations are avoided and certain financial budget and technical
constraints are met. The work in [38] demonstrates tight coupling between the power grid
and the communication network using stochastic geometry. The mathematical formulation
satisfies the packet-drop-ratio and queuing-delay constraints on communication nodes
(CNs) by using a dynamic priority-based queuing model.

In [39], a proportioned strategy was adopted to optimize collectors and router po-
sitions jointly in multi-hop radio-frequency mesh networks, to reduce the running time
for highly dense networks as well as to minimize the effect on QoS metrics. The authors
in [40] developed a two-hop evolutionary aggregation approach (EAA) using a clustering
technique for a wireless remote-metering network. The model aims at full coverage and
connectivity of SMs, while the infrastructure cost is minimized by reducing the number
of local data aggregation centers. The model proposed in [41,42] exchanges metering
and control information between SMs and the CC using a multi-hop method with hybrid
communication technologies in a NAN to achieve message integrity and minimize the
communication and computational overhead incurred during SG communication. Finally,
the proposed approach in [43] divides the data reporting process into two stages: online
and offline. Considering that SMs have limited computational and bandwidth ability, most
of the costly computations are pre-processed in the offline phase to avoid the efficiency
bottleneck of SMs in SG communications. In addition, the authors improved the communi-
cation efficiency by performing dynamic cluster formation such that the online electricity
usage reports of all SMs could be received by the CC in a fast and secure manner.

We summarize the above discussion in two main parts. Firstly, most of the recent
studies have specifically addressed the DAP placement problem as a communication
problem. Secondly, this problem can be solved through optimal workload partitioning
based on a clustering algorithm to improve the performance of the AMI network. We
present a generalized classification and comparison of recently proposed AMI schemes in
Table 1.

Table 1. Comparison of existing AMI schemes.

Schemes
(Year)

Problem
Specification

Virtual Structure
(Topology)

Algorithm
(Technique)

Communication
Technology

AMI
Applications Objectives

[24–26]
(2014, 2018, 2018)

DAP placement
problem

Single-hop,
multi-hop
clustering

Modified
K-means,

Greedy and
Dijkstra’s

IEEE 802.15.4g,
WiMAX relay,
Fiber Optics,
PRIME PLC

IMR, ODMR
Alert

Notifications,
SCADA, Alarm

Minimize installation, maintenance,
and transmission cost; maximize

coverage and connectivity; QoS and
latency is ensured

[27,30]
(2015, 2017)

Concentrator
placement
problem

Single-hop
clustering

wireless NAN

Analytical model,
DAP-CSA

IEEE 802.15.4g,
WiFi, ZigBee,
Fiber Optics

DR, control
commands and

sensor data

Optimize DC density to support a
given SMs density; ensure QoS;

minimize
installation cost and DAP failures

[31]
(2013)

Optimal
positioning of
concentrators

(GPRS)

Multi-hop
RF Mesh

K-means, BFS,
Dijkstra’s

IEEE802.15.4
(ZigBee), GPRS IDR Reduce hops and average delay;

improve network throughput

[32]
(2018)

Optimal
deployment of
SM networks

Multi-hop
tree-based
clustering

N-NST, ODB,
Dijkstra’s

WiFi, Cellular,
Fiber Optics

Electricity
consumption

Identify supply and demand;
maximize

coverage and capacity; minimize
end-to-end delay and data

aggregation cost

[33]
(2017)

Optimal routing
of WHN

Single-hop
wireless HWN OPDWHN-AMI LTE cellular

Consumption
reading and

VoIP

Maximize coverage and capacity;
minimize cost
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Table 1. Cont.

Schemes
(Year)

Problem
Specification

Virtual Structure
(Topology)

Algorithm
(Technique)

Communication
Technology

AMI
Applications Objectives

[34]
(2019)

Cluster-based
D2D

cellular
communication

Single-hop
clustering

Cluster
formation,

channel
allocation

Cellular and
Wired Link ODR and IDR

Guarantee throughput and data
aggregation; ensure QoS and

spectral
efficiency

[35,36]
(2018, 2017)

DAP-placement
problem

Multi-hop
clustering
topology

K-means and
fuzzy c-means Wireless Collect

information

Minimize the average and
maximum distance between SMs

and DAPs

[37,38]
(2019, 2020)

Optimal PMUs
allocation and

interdependent
cyber-physical

networks

Multi-hop
tree-based
clustering

K-means IEEE 123-bus
Load and

connectivity
data

Minimize financial budget and
technical constraint

[39]
(2020)

Optimize key
devices positions

Multi-hop
RF Mesh K-means IEEE 802.15.4 Real dataset of

meters

To ensure QoS, i.e., improve packet
delivery ratio and minimize

end-to-end delay

[40]
(2020)

Optimize number
and location of

DAC

Two-hop
clustering Improved EAA Wireless Metering data

Ensure full coverage and
connectivity;

minimize infrastructure cost

[41,42]
(2021, 2016)

Secure SG
communication

Multi-hop hybrid
NAN

ECC and hybrid
Diffie–Hellman

ZigBee, WiMAX
and Fiber Optic

Metering and
control data

Achieve message integrity;
minimize

communication and computation
cost

[43]
(2016)

Processes
bottleneck in SM

Multi-hop
cluster-based tree N/A N/A Electricity

usage data
To improve efficiency; ensure data

integrity and privacy

Proposed
(2021)

Coverage
Maximization

dual-head
placement

Fixed-hop
clustering
topology

Modified
K-means Wi-SUN, LoRa

Both normal
and critical

traffic

Maximize coverage, reduce cost,
improve QoS and efficiently utilize

CPU resources using IoT
technologies

3. Problem Description

In this article, we consider the coverage and QoS issues of AMI applications in an SG
network. The optimization problem is described as follows.

In an AMI network, the DC has limited transmission range and a capacity constraint
that allows connection of up to a maximum of 2000 [44] SMs. When the residential area
(RA) becomes too large, there will be some SMs outside the radio range of a single DC
centered at the RA. Since data from all SMs are routed towards a single DC, it suffers from
a higher workload, leading to a hotspot in the SG network. Further, to satisfy the need for
full coverage of all SMs and to transfer an optimum percentage of metering traffic to the
utility CC within the recommended latency range [4,5] while ensuring stringent QoS and
robustness requirements, a reliable and cost-efficient AMI infrastructure is required.

For instance, AMI applications such as interval meter reading may tolerate a de-
lay of up to a few minutes, whereas remote control commands have stringent latency
requirements, especially during peak hours. Therefore, data from these delay-sensitive
applications need prioritization and availability of the communication network between
SMs and the CCS. Furthermore, the DC and SMs have limited resources (e.g., processing,
storage, and bandwidth), and thus high resource utilization in these devices will cause
congestion and communication interference during peak hours. In such situations, device
shutdown or failure (bottleneck) occurs due to which packets (data) may be delayed or
even dropped in the communication network. Therefore, a uniform workload distribution
strategy is needed to mitigate the hotspot (bottleneck) problem in case of communication
failures and defects in SMs and DCs, to maintain the robustness in the network, and to
maintain the QoS requirement of AMI applications.

We attempted to solve the optimization problem by logically partitioning the RA into
a set of disjoint clusters with bounded radii, to fulfill the connectivity and coverage require-
ments of AMI applications in the SG communication network. We defined algorithms to
construct a hierarchical clustering topology and to fulfill the robustness requirements for
dual-head (CH and AH) selection and rotation. Further, we developed a queuing model in
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which different priorities are assigned to each item of the critical and normal AMI traffic
based on its latency and packet size, to ensure the QoS requirement in the AMI network.

4. Problem Formulation

As discussed earlier, the optimization problem is formulated as follows.
Given the geographic locations, the latency requirements of different types of AMI

traffic, and the radio range of the DC and SMs, the coverage maximization dual-head
placement (CMDP) problem is to fully extend the coverage and connectivity of AMI
network, denoted as C, by selecting a set of dual heads (NDH ⊂ NSM) in each cluster,
subject to the QoS and robustness constraints.

The decision variables xi,j, yk
i,j, zi are introduced in the optimization problem. The binary

variable xi,j indicates that each SM i ∈ NSM is connected to a single DC j ∈ NDC. The binary
variable yk

i,j indicates that metering data of each SM i are passed through a dual head k
towards DC j, where zi represents the fact that SM i is assigned to at least one dual head in
a cluster. Recall that RT, Hmax and CUB are the upper bounds on the transmission radius,
the maximum number of hops allowed to reach the DC, and the capacity constraint of the
DC and cluster, respectively. The notations in the problem formulation are described in the
Abbreviations. The CMDP problem is mathematically formulated as follows.

(CMDP) maximize C = ∑K
k=1 ∑NDC

j=1

NSM

∑
i=1

yk
i,j (1)

subject to:
NDC

∑
j=1

NSM

∑
i=1

xi,j ≤ NSM + NDC ∀ i ∈ NSM, ∀ j ∈ NDC (2)

di,j ≤ RT ∀ i ∈ NSM, ∀ j ∈ NDH or NDC (3)

K

∑
k=1

CK

∑
i=1

yk
i,j = NDC ∀ i ∈ NSM, ∀ j ∈ NDC, ∀ k ∈ NDH (4)

NSM

∑
i=1

zi = NDH ∀ i ∈ NSM (5)

n−1

∑
i=1

Hi,i+1. xi,j ≤ Hmax ∀ i ∈ NSM, ∀ j ∈ NDC (6)

NSM

∑
i=1

yk
i,j.λi ≤ µj ∀ i ∈ NSM, ∀ k ∈ NDH, ∀ j ∈ NDC (7)

NSM

∑
i=1

xi,j ≤ CUB ∀ i ∈ NSM, ∀ j ∈ NDC (8)

xi,j, yk
i,j, zi ∈ {0, 1} ∀ i ∈ NSM, ∀ k ∈ NDH, ∀ j ∈ NDC (9)

The objective function in Equation (1) describes the coverage and connectivity require-
ments of each SM in the AMI network that are fulfilled with multiple dual heads in order
to relay traffic between SMs and the DC such that the network coverage is maximized.
In Equation (2), optimal deployment of the georeferenced SMs and DC is ensured at the
RA. Equation (3) fulfills the connectivity requirement such that the haversine distance di,j
between any two devices is less than or equal to the allowable wireless transmission range
(RT). Equation (4) ensures that each SM is exclusively connected to one DC via a CH or
AH. Equation (5) specifies that dual heads are allocated to SMs in each cluster. Equation (6)
restricts the maximum number of hops to Hmax in the route of the topology. With a limit on
the hopping depth, the packet loss and n-hop delay [6] are minimized. Equation (7) ensures
that the AMI traffic received with an average λi [5] from SMs is less than the offered µj of
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the DC. Equation (8) ensures that maximum connections do not exceed the capacity limit
(CUB) of the DC. The last condition indicates that xi,j, yk

i,j, zi are binary variables.

5. Proposed Three-Tier Hierarchical Architecture

In this section, a three-tier hierarchical architecture is proposed that is different from
the current schemes in the literature and represents a realistic AMI scenario, as depicted in
Figure 2. The tree-tier architecture comprises a lower tier, a middle tier, and an upper tier.
To maximize the design efficiency with regard to the context, a cooperative relaying strategy
(dual head) is adopted in the clustered view of the AMI network such that the coverage
is maximized, and the required QoS and robustness are ensured using different channel
and queuing scheduling schemes. The network model and the proposed algorithms in this
study are discussed in detail in the following subsections.
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5.1. Network Model

In the proposed AMI architecture, the network model needs four main components
(IoT nodes) in the deployment of the network topology: the SMs, the DC, the central
gateway (acting as a router), and the CCS at the CC’s premises, all provided with an
uninterrupted power supply. To model the network, we consider square-shaped georefer-
enced RAs where NSM homogeneous SMs are evenly distributed and randomly deployed
at low altitudes in homes, building the targeted AMI scenario. Further, we assume that
a DC is installed by the utility provider at the center of the RA that is connected through
bi-directional wireless links to a subset of SMs and to the utility CCS at the CC through
a central gateway. The CCS has up-to-date information on all registered devices in the
AMI network, stored in a database. The RA is partitioned into logically non-overlapping
clusters that employ a dual-head method, where the cluster head (CH) is mainly used for
relaying traffic and the aggregator head (AH) is used for traffic aggregation. Using SMs as
intermediate heads, a near-optimal route map for SMs–CH–DC and SMs–AH–CH–DC is
obtained in the clustering topology towards the utility CC gateway over the Internet. The
proposed clustering topology is modeled over an adjacency matrix G = (V, E), also called
a direct connectivity graph, where each v ∈ V denotes the set of all vertices (SMs, DC)
having a symmetric transmission range RT, while a wireless link between any two vertices
(u, v) ∈ V is denoted by an edge e (u, v) ∈ E. Subsequently, this model uses the haversine
formula [32] to calculate the single-hop distance denoted by du,v between each pair of
vertices at the lower tier that is represented by a distance matrix D. Hence, two neighbors
u, v ∈ V are a single hop away in a cluster if and only if Ru ≥ du,v ∧Rv ≥ dv,u. In addition,
a maximum of Hmax hops are allowed in the route map towards the DC, to ensure the
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connectivity requirements of all SMs in the network are met. Further, each vertex v ∈ V
is equipped with IEEE 802.15.4g [28]. Similarly, the DC supports two interfaces: IEEE
802.15.4g for internal traffic and LoRa for the outbound traffic towards the centralized
gateway of the CC. The Walfisch–Ikegami model [45] is used as the propagation model
best suited to outdoor transmission in urban areas.

We make the following few reasonable assumptions to simplify our network model:

• All devices are georeferenced and pre-configured with a unique ID;
• All SMs are restricted so that data are not sent directly to the DC;
• Each SM is aware of the identity of the cluster to which it belongs;
• All devices are fully synchronized with the utility CCS;
• Security aspects are not considered here.

5.2. Hierarchical Cluster Formation

In this section, we describe the design methodology adopted in this article to construct
the proposed hierarchical clustering topology at the lower tier for AMI applications in an
SG. In addition, to ensure full coverage of all SMs in the AMI network, we must consider
the capacity constraint and transmission radius RT of the DC. However, due to the limited
transmission radius, there will be some SMs outside the transmission circle of the DC if
RT < RRA, and then the RA needs to be partitioned into a number of uniform-sized disjoint
kxk cells, each referred to as a cluster. Here, k is a predefined square number [46] obtained
using knowledge of NSM, RT, RRA, and the dimensions (L ×W) of the RA. As well as
addressing the coverage requirement, the reason behind such partitioning is to effectively
reduce the number of data transmissions towards the DC and uniformly distribute the
workload of the DC between the CH and AH such that the QoS and robustness require-
ments are met. Once the formation of cells is completed, Algorithm 1 proceeds to select
a set of header nodes (here, SMs) in each cell using a modified K-means algorithm based
on the optimization formulation. Initially, the SM closest to the centroid in each cell is
selected as the CH. The criterion for the selection of the AH is an SM in the vicinity of the
CH. Further, only those SMs in each cell will be selected as the CH and AH whose distance
to the centroid is less than or equal to a certain distance threshold DTH, appropriately
set to achieve optimal performance. To improve the robustness at the lower tier, when
unexpected failure of the dual head is detected or its timer expires, the role of the dual
head is rotated among the SMs relatively close to the mid-point based on DTH in every
cell. The information on the newly selected dual head is shared among all cluster mem-
bers and the adjacent neighborhood CHs. Finally, the set of CHs, together with the DC,
constructs an optimal route map towards the CCS central gateway, as shown in Figure 2.
We modified the traditional K-means algorithm to use the haversine distance metric to
efficiently partition the residential area under consideration with regard to dual-head
selection and to construct the optimal route map for AMI applications in the SG network.
Our modified K-means clustering technique yields promising results compared to the
previously proposed methods in the literature, achieving full coverage, robustness and
the QoS requirements of the AMI applications. Furthermore, our proposed framework
can also be adapted to other communication technologies (either wired or wireless). The
pseudocode for Algorithm 1 is given below.
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Algorithm 1 for dividing the residential area into virtual clusters.

Input: K, RRA, RT, L, W, V, CUB, DC
1: Begin
2: set l = w = 0; NSM ⊆ |V|; CUB = 2000; CK ⊂ NSM ; i = 1;
3: if (RRA > RT && L == W && NSM > DC.CUB then
4: l = w← sqrt

(
R2

RA/K
)

5: Nrow(w)←W/w
6: Ncol(l)← L/l
7: if Nrow(w) ∗Ncol(l) == K then
8: for k = 1 to K then
9: set randomly− uniformly select k SMs from each CK to initialize ck centers

10: Run modified K−means algorithm such that to maximize CDMP in (1)
11: Update until ck centroids of CK clusters are chosen
12: CK ← ck
13: repeat SMi ∈ CK do
14: if i ≤ ck.CUB then
15: d(SMi, ck)← haversine (SMi, ck)
16: if d(SMi, ck) < d(SMi, ck+1) then
17: SMi � ck
18: else
19: SMi � ck+1
20: endif
21: endif
22: i ++
23: until i ≤ CK.length− 1
24: endfor
25: endif
26: return CK, ck
27: else
28: return Display “The RA needs no partitioning and is already optimal”
29: endif
30: End

Output: Save cluster to CK, centroid to ck

In Algorithm 1 above, the first step that the DC performs in lines 3–6, is to partition
the RA into K clusters in order to achieve the objective function expressed in (1), based
on the upper-bound capacity (DC.CUB), that is, to fulfill the constraint of Equation (8) and
the transmission radius (RT) constraint (Equation (3)) of the DC to ensure that all the SMs
are connected to at least one DC in the AMI network, that is, to fulfill the constraint of
Equation (4). Next, in lines 7–25, the modified K-means algorithm is used, ck centroids (as
CHs) in all clusters CK are chosen, and the SMs are associated based on the shortest distance
to the closest centroid of the cluster, to satisfy the constraints of Equations (2) and (5). The
output of the Algorithm 1 is obtained in line 26 and includes the clusters (CK) along with
their corresponding centroids (ck). The else lines 27–29 show that the network configuration
already meets the optimal connectivity requirement. In order to ensure QoS and reduce the
AMI traffic in the network, we propose Algorithm 2, whose pseudocode and other details
are given below.

Algorithm 2 for dual-head selection and rotation for optimal route formation.

Input: K, DTH, Hmax, maxTime, CK, DC, CCS
1: Begin
2: set i = 1; m = n = 0; HK

v, u = ϕ; PQ[][] = ϕ; timer = 0;
3: for k = 1 to K then
4: Determine the ck by calling Algorithm 1
5: repeat SMi ∈ CK do
6: d(SMi, ck)← haversine (SMi, ck)
7: if d(SMi, ck) < DTH then
8: PQ.add(SMi, ck)
9: end if

11: i ++
12: until i ≤ CK.length− 1
13: while m > PQ.size()− 1do
14: if d(PQ[m][n], PQ[m][n + 1] > d(PQ[m + 1][n], PQ[m + 1][n + 1]) then
15: swap ((PQ[m][n], PQ[m][n + 1]), (PQ[m + 1][n], PQ[m + 1][n + 1]))
16: end if
17: m ++
18: end while
19: end for
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Algorithm 2 for dual-head selection and rotation for optimal route formation.

20: for k = 1 to K then
21: if PQ.isEmpty() = false then
22: ak.AH ← PQ[m][n]; ck.CH ← PQ[m][n + 1]
23: timer← sysClock.now()
24: start timer ++
25: Broadcast CH and AH NotifyMSG to CK members
26: Wait and receive JoinMSG to CK membersto complete Tier− 1
27: Link CH to DC directly or via nearest CH to complete Tier− 2
28: Update the route HK

v, u of the proposed hierarchical topology
29: if HK

v, u.length ≤ Hmax then
30: Find the minimum route between DC and CCS to complete Tier− 3
31: else
32: HK

v, u = ϕ and Goto line 20
33: end if
34: endif
35: endfor
36: if timer == maxTime then
37: stop timer; ck.CH = ϕ; ak.AH = ϕ; Hk

v, u = ϕ;
38: PQ[m][n].remove (); PQ[m][n + 1].remove ();
39: Go to line 20
40: else
41: timer ++
42: Goto line 37
43: endif
44: return ck.CH, ak.AH, Hk

v, u
45: End

Output : Save dual− heads to ck.CH, ak.AH and optimal route−map to Hk
v, u

In Algorithm 2 above, a subset of SMs from all cluster members (CK.length) based
on a threshold distance (DTH) from each centroid (ck) is calculated, added to a priority
queue (PQ), and then sorted (lines 2–18). Only SMs from the PQ take part in CH and
AH selection. The newly selected CH (ck) and AH (ak) information is shared with cluster
members through a NotifyMSG message, and cluster members send JoinMSG messages
to dual heads to obtain the optimal route map in each round (lines 20–28). Further,
the maximum-hops constraint in Equation (6) is checked in lines 29–35. To meet the
robustness requirement in the network topology, lines 37–44 are used to rotate the role of
the dual head in cases of unexpected failures or once the maxTime expires for each round.
In line 45, Algorithm 2 returns the output that includes the sets of dual heads (CH, AH) and
the optimal valid route map for each cluster. Finally, once the cluster formation, dual-head
selection and a near-optimal route map are obtained, we move on to the transmission phase
of AMI applications.

5.3. Transmission of AMI Applications

In this section, we give details of the AMI application’s transmission in the proposed
IoT-based three-tier hierarchical architecture which consists of a lower tier (intra-cluster),
a middle tier (inter-cluster), and an upper tier where the metering data is forwarded by the
DC towards the CCS and vice versa. In this article, we consider two traffic classes in AMI
applications [4,5], generally categorized as normal and critical classes. The normal traffic
consists of IMRs, on-demand meter readings (ODMRs), and on-demand reading responses
(ODRRs). The IMR represents the customer electricity consumption typically captured at
every fixed-length interval (e.g., 5–60 min). The ODMR is the meter-reading demand for the
customer SM sent by the utility CCS that may be used for load forecasting and a demand–
response program. The ODRR is the SM response sent to the CCS. Similarly, the critical
traffic consists of remote-control commands (RCCs), power-control commands (PCCs),
and alert notifications (ANs). Moreover, RCCs include remote disconnect/reconnect, PCCs
include load-control signals, and ANs comprise meter tampering and similar messages.
Table 2 shows the characteristics of AMI applications that require a reliable and priority-
based transmission based on their latency requirement in the SG communication network.
In Table 2, ToT stands for type of traffic, ToA for type of AMI application, Pkt-Size for
packet size, LR for recommended latency, and FG for data generation frequency per day.
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Table 2. Classification of AMI traffic types and their characteristics in SG.

SNO ToT ToA Pkt_Size LR FG

1 Normal
IMR 250 Bytes 5–60 min 12–24 (Residential)

ODMR 50 Bytes 30 s as per need
ODRR 100 Bytes 30 s 5 days

2 Critical
RCC 100 Bytes 1 s as per need
PCC 100 Bytes 1 s as per need
AN 50 Bytes 3 s as per need

In the lower-tier transmission, each cluster member is aware of the AMI applications,
and the ToT and ToA fields in the outgoing packets P = {1, 2, ... n} are set for each
destination head (CH, AH). The destination head receives one or more packets; each
follows a Poisson arrival process [26]. The CH places the normal traffic into the low-
priority normal queue (NQ) and the critical traffic into the high-priority critical queue (CQ),
as shown in Figure 2. The CH assigns a TP to each packet in these queues based on the
packet size and recommended latency, using the following equation.

Traffic_Prioritization (TP) =
Pkt_Size × LR

TG
, (10)

where TG denotes the generation time (recent or early) of the metering application. It should
be noted that the critical-class-related data must be transmitted within the recommended
latency range of the AMI application for immediate response in the SG communication
network. The CH will check and compare the TP values of the packets in both queues,
and the highest-priority packet is forwarded first to the nearest CH or directly to the DC
for further processing at the middle tier, assuming that the service rate is higher than the
arrival rate to satisfy Equation (7). Similarly, the IEEE 802.15.4g standard [28] uses two
types of channel-access periods within each frame, namely, a contention access period
(CAP) and contention-free periods (CFPs), to avoid traffic congestion and co-channel
interference between the CH and DC, to further improve the QoS and avoid unnecessary
packet dropping in the network. The normal traffic is scheduled through the CAP slots
using the CSMA/CA schedule while the critical traffic is sent via the CFPs slots using the
TDMA schedule, to avoid channel allocation conflict. The available time slots per frame in
the CAP and CFP periods of the MAC protocol, which are denoted by NCSMA and NTDMA,
respectively, can be computed using the following equations:

NCSMA =
βf − 2× βg

βc
, (11)

NTDMA =
NK × (βf − 2× βg)

βc
, (12)

where βf is the total available spectrum, βg is the guard band used to separate the channels,
that is, to avoid channel overlapping, NSM is the number of SMs (users) separated according
to time, and βc is the bandwidth of a channel in the spectrum. Finally, in the upper-tier
transmission, the DC forwards the pre-processed classified AMI data through the SG
communication core network (Internet) to the CCS. After the metering data is further
classified, processed, and analyzed, relevant responses, e.g., commands, are sent back to the
SMs in the manner established by Algorithms 1 and 2, using the IoT-based communication
network in the SG.

6. Design and Implementation

This section gives details of our three-tier hierarchical architecture and its design
and implementation for the SM infrastructure. In the following subsections, we discuss
the geographical area assumed for our network model and the simulation setup details,
and discuss the numerical and simulation results obtained for the considered scenarios.
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6.1. Geographical Area Assumption

We designed our network model using realistic geographic information over the
map of Mansehra, KPK, Pakistan, where each residence is considered as a single SM
and a transformer pole is at the center of the RA for the DC location. The geographic
coordinates (longitude and latitude) of each device were found by visual search using
OpenStreetMap [47] and cross-checked by comparing with the dataset taken from Google
Maps [48]. In addition, the dataset was stored in the MS SQL server database at the
cloud server, which is a key requirement in Algorithms 1 and 2 to configure the proposed
clustering topology at the lower tier. The communication technology (Wi-SUN) adopts
PHY layer multi-rate and multi-regional frequency shift keying (MR-FSK), which operates
in the frequency band 902–928 (US) [28] with 129 channels and is compatible with the
2.4 GHz industrial, scientific, and medical (ISM) band (Wi-SUN router) with a maximum
transmission rate of 50–200 kbps. The transmission radius of all SMs and the DC is set to
500 m in the configured topology. These devices are deployed in an area of approximately
1 km2. For those SMs which cannot communicate directly with the DC, their metering
data is relayed via CHs to the DC with the limit on the maximum number of wireless hops
(Hmax) set to 2 or 3. We adopted the traffic specifications listed in Table 2 both for normal
and critical traffic.

6.2. Simulation Setup

The Eclipse IDE and the CloudSim simulator [49] were used to model both the hard-
ware entities (hosts, network topology, data centers) and software entities (virtual machines
(VMs), brokers, cloudlets) in the cloud infrastructure for real-time AMI applications in
the SG. This was accomplished by extending the Java classes offered in CloudSim for
the mentioned entities, according to the simulation requirements. The events are fired
for communication at specified time intervals and randomly, that is, the simulation is
event-driven according to the real case scenarios. Cloudlets are created by data center
brokers and AMI traffic is managed between SMs and the cloud applications by these
message brokers using publish/subscribe protocols. In addition, these brokers control
the VMs and execute each cloudlet on the VMs according to the selection algorithm (e.g.,
spaced–shared policy), considering the resources of the physical hosts in the data center. In
this simulation, we used a two-tier broker architecture: the first tier receives the incoming
traffic from the local SMs network at the DC and the second tier receives the incoming
traffic from the connected DCs at the cloud gateways. The details of the network nodes are
given in the Topology.brite file at the data center, as listed in Table 3, and are similar to the
network model in Section 5.1.

Table 3. Details of IoT nodes used in simulation for the proposed three-tier hierarchical architecture.

IoT Node Field Study Node Location Number Specification

Node Fixed SMs RA (Urban) 100–400 Residential SMs with short-range
communication technology [28]

Relay node SMs
(as CH, AH) RA (Urban) 8 Aggregate and forward metering

data on priority-basis to the DC

Gateway DC center of RA 1 Receive and forward data with short-
[28] and long-range technology [16]

Router Router On CC premises 1 Receive traffic from the DC and
forward it to the CCS and vice versa

Server
(Physical Host)

CCS
(Data Center) CC of the Utility 1

Server running VM with database
and has high-speed Internet

connection

In addition, the detailed configuration of the cloud server is given below in Table 4.
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Table 4. Configuration details of cloud server.

Cloud Server Configuration

Virtual Machine (VM) Xen
Architecture X86

Processor Intel(R) Core™ i3-3110M CPU@ 2.40 GHz, 3 MB cache
Processor Rate 250 MIPS

RAM 4 GB
Hard Disk 500 GB
Bandwidth 1 Gbps

Operating System Windows 7 Professional SP 1

Similarly, web interfaces were implemented using VS code (Java script) and node.js,
relying on a set of REST APIs (CustomerInfo, MeterInfo, BlackListMeters, MeterRead,
BillInfo, etc.), which enabled all the IoT nodes to communicate and allowed remote access
to IoT applications. Here, we used REST APIs to pass (push) all the metering data in JSON
format between the SMs and the remote CCS (cloud REST server) over the Internet, using
HTTP 1.1 POST methods. The simulation was run for 60 min (i.e., 1 h) and we took an
average of 10 simulation runs. Thus, the IMR data was sampled four times, whereas the
other metering data was assumed to be sent only once in the simulation period.

6.3. Scenario Description

In this simulation, we considered two different scenarios for AMI applications with
different network topologies and queuing models. Scenario-1 was based on our proposed
network model with a priority-based scheduling scheme. In Scenario-2, we considered
a clustering topology with single-hop communication to the DCs based on Wi-SUN tech-
nology and a FIFO scheduling scheme (default).

6.4. Performance Evaluation

The performance of our simulation model was analyzed and compared in two sce-
narios for satisfying the stringent QoS requirement of AMI applications. In the simulation
model, the incoming REST API requests (e.g., HTTP POST requests) were routed dynami-
cally in the form of cloudlets to the cloud for accessing cloud applications. Furthermore, the
cloud server dynamically allocated the available resources (i.e., VMs, RAM, BW, and CPU)
to these incoming cloudlets. To compare the performance of the two scenarios (Section 6.3)
based on allocation policies (FIFO and priority-based), we evaluated a varying number of
cloudlets (40–120) and measured the resources (computation time) utilized by each cloudlet
in the simulation environment.

6.5. Numerical and Simulation Results

Prior to all the simulation experiments, we studied the impact of the required number
of DCs on the clusters in each scenario to cover all the SMs. The numerical results obtained
from the network model are shown in Figures 3 and 4. In order to achieve 100% coverage
of the AMI network in both scenarios, we can observe that the required number of DCs is
lower for the dual-head relaying strategy in Scenario-1. In contrast, the number of required
DCs is substantially higher in Scenario-2, due to the traditional non-cooperative relaying
strategy for AMI applications.

Furthermore, the results demonstrate that the network model in Scenario-1 satisfies
the target coverage of the SMs and contributes substantially to reducing the overall cost
in terms of deployment and purchase of DCs in the AMI network, as shown in Figure 4.
For example, for K = 16, Scenario 1 requires only 20% of the number of DCs required by
Scenario 2; that is, Scenario-1 consistently utilizes a lower number of DCs than Scenario-
2, due to our proposed Algorithms 1 and 2. Hence, the comparison here shows that
the proposed three-tier architecture in Scenario-1 with a cooperative relaying strategy
(dual-head strategy) decreases the number of DCs required and offers more benefits than
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Scenario-2 with a non-cooperative relaying mode. It also achieves 100% coverage of SMs
for AMI applications in the SG.
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In addition, Figure 4 compares the purchase cost of DCs in each scenario. For instance,
we can see that as the number of DCs increases, the purchase cost in Scenario-2 is five
times higher than in Scenario-1. Thus, the cost reduction is 80% in Scenario-1, clearly
outperforming Scenario-2 in the deployment cost of DCs. Next, the performances of the
two scenarios were evaluated by five simulation experiments, with parameters summarized
in Table 5.

Table 5. Detailed configuration of simulation experiments.

No. of
SMs

Req.
per SM

No. of
Brokers

Data
Transfer

No. of
VMs

No. of
Cloudlets

Simulation
Time (min)

Simulation
Experiment No.

20 1–5 2 1 MB 2 40 60 1
30 1–5 2 1 MB 2 60 60 2
40 1–5 2 1 MB 2 80 60 3
50 1–5 2 1 MB 2 100 60 4
60 1–5 2 1 MB 2 120 60 5

Total 5
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Figure 5 shows the simulation results of Experiment 1 for the first scenario in terms of
computation time (milliseconds) utilized for scheduling the critical traffic items based on their
priorities. These results were obtained from the data center using the CloudSim simulator.
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Figure 5. Simulation results of Experiment 1 in terms of computation time for Scenario-1.

All the experimental results of the two scenarios obtained by CloudSim are shown
in Table 6. Table 6 presents the total time taken by all cloudlets in a given experiment by
summing the start time and finish time for all cloudlets in the experiment and calculating
the total computation time and waiting time from the measurements presented in Figure 5.
The sum of the computation time and waiting time in each experiment is used to evaluate
the performances of the two scenarios.

Figure 6 shows the total computation time with a varying number of cloudlets in the
two scenarios. We see that the total computation time in Scenario-2 increases dramatically
as the number of cloudlets increases. However, the total computation time incurred
in Scenario-1 shows that the critical traffic is processed in less time, demonstrating its
computational efficiency and scalability in large-scale networks.

Similarly, Figure 7 shows the total waiting time for different numbers of cloudlets
in each experiment in the two scenarios. We note that when the number of cloudlets
increases from 40 to 120, as shown in Table 5, based on the number of requests per SM
made in each experiment, the total waiting time of Scenario-2 increases significantly
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compared to the waiting time of Scenario-1. The comparison reveals that the tasks in
Scenario-1 are processed at a very high speed and spend less time in the queue, due to the
priority-based scheduling.

Table 6. Total computation time (ms) and waiting time (ms) in Scenario-1 and Scenario-2.

Experiment
No.

Scenario-1 Scenario-2

Start
Time

Finish
Time

Comp.
Time

Wait.
Time

Start
Time

Finish
Time

Comp.
Time

Wait.
Time

1 651 732.73 81.73 1334.38 52,543.64 59,922.84 7379.2 7061.99

2 1495.79 1617.8 122.01 3040 158,288.91 173,246.48 14,957.57 14,516.36

3 2496.56 2653.19 156.63 5055.93 351,483.98 376,607.97 25,123.99 24,554.38

4 4045.32 4245.19 199.87 8170.01 657,969.85 695,843.94 37,874.09 37,176.07

5 6075.92 6318.73 242.81 12102.3 1,103,842.49 1,157,060.33 53,217.84 52,381.41
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The computation and waiting times of the simulation experiments are averaged in Table 7
to give the average computation and waiting time per cloudlet for a comparative analysis of
the two scenarios. For example, 40 cloudlets are used in Experiment 1 (refer Table 5), hence
we divide the computation and waiting times in Table 6 to obtain the average computation
and waiting times per cloudlet, that is, for Scenario-1 Experiment 1, average computation
time = 81.73/40 = 2.04325 ms, and average waiting time = 1334.38/40 = 33.3595 ms.

Table 7. Comparative analysis based on computation time (ms) and waiting time (ms).

Experiment
No.

Avg. Computation Time Avg. Waiting Time Avg. Computation Time + Avg.
Waiting Time

Scenario-1 Scenario-2 Scenario-1 Scenario-2 Scenario-1 Scenario-2

1 2.04325 184.48 33.3595 176.54975 35.40275 361.02975

2 2.0335 249.2928333 50.66667 241.9393333 52.70017 491.2321666

3 1.957875 314.049875 63.199125 306.92975 65.157 620.979625

4 1.9987 378.7409 81.7001 371.7607 83.6988 750.5016

5 2.023416667 443.482 100.8525 436.51175 102.8759 879.99375

Figure 8 plots the effect on the average computation time in the two scenarios when
the number of cloudlets varies. We see a linear increase in the average computation time
for different numbers of cloudlets in Scenario-1. In contrast, the average computation time
is significantly increased in Scenario-2 for cloudlet completion. The numerical results in
Table 7 obtained in the simulation experiments show that the sum of the average computa-
tion and waiting times for Scenario-1 is almost 10 times better for time of execution and
completion of tasks than that for Scenario-2, demonstrating the computational efficiency of
Scenario-1, especially in large-scale AMI networks.
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Figure 9 plots the effect of the number of cloudlets on the average waiting time in
the two scenarios. We note that the Scenario-1 gives better performance compared to
the average waiting time for the tasks in Scenario-2. The main reason is that Scenario-2
schedules the heavy cloudlets first and queues the high-priority cloudlets with a small size,
which are scheduled afterwards, and this greatly affects the average waiting time. In short,
we can see from Figure 9 that as the number of cloudlets increases, the average waiting
time drops by 84% in our proposed model, compared with Scenario-2.
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7. Conclusions

In this article, we proposed a QoS-aware machine-learning-based framework for
AMI applications in SGs. The proposed framework incorporates a three-tier hierarchical
architecture based on IoT technology and a cloud environment that enables the control
center to remotely access and monitor the SMs in residential areas. In order to satisfy the
stringent QoS and coverage requirements, we formulated a mathematical optimization
problem. We modified the existing K-means algorithm to construct a hierarchical clustering
topology for bi-directional communication between SMs and DCs. We proposed algorithms
for defining the network topology and dividing the residential area into virtual clusters,
and for dual-head (CH and AH) selection and rotation for optimal route formation. It was
observed that the modified K-means algorithm provided a near-optimal solution within
the proposed framework for AMI applications in the SG network.

Further, we developed a queuing model in which different priorities were assigned
to each item of critical and normal AMI traffic based on its latency and packet size.
The network model clearly defines the coverage area, clustering technique, the number
of DCs required, and the fixed number of hops between SMs and the DC that finally
connects over the Internet to the utility provider’s control server. Furthermore, we used
a queuing model for transmission of AMI applications and used two different scheduling
schemes in two scenarios (corresponding to two frameworks) with contrasting features
in the simulation. The first scenario/framework was based on our proposed network
model with a priority-based scheduling scheme, while the second scenario/framework
considered a clustering topology with single-hop communication to the DCs and a FIFO
scheduling scheme. The numerical results showed that our proposed framework with
a three-tier hierarchical architecture utilized a smaller number of DCs, which contributes
substantially to reducing the overall purchase cost by up to 80%, while still providing full
coverage and connectivity between SMs and DCs.

Furthermore, we described a set of simulation experiments for different configurations
to estimate and analyze the performance of the two scenarios using the CloudSim simulator.
The simulation results obtained in all five experiments showed that our proposed model
efficiently utilized the CPUs in terms of processing time, due to the priority-based schedul-
ing scheme. In summary, the proposed framework performed better than the traditional
framework (Scenario-2). These results show the suitability of our proposed framework for
AMI applications in an SG network.

Our future work will focus on developing lightweight security schemes to ensure the
privacy, integrity, and confidentiality of metering data in the SG.
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Abbreviations

Notation Description
RA Georeferenced residential area
DC Data concentrator
CC Control center
CCS Control center server
WANs Wide-area networks
MDMS Metering data management system
BS Base station
PMUs Phasor measurement units
IDi Unique identity of ith device
SMX, Y Smart meter with longitude and latitude
NSM Total number of installed SMs in RA
cK Cluster head of Kth cluster
aK Aggregator head of Kth cluster
CK Number of SMs in Kth cluster
NDC Number of DCs
DH Dual head
NDH Number of dual heads
TP Transmission priority
LR Recommended latency
Hmax Number of hops allowed to reach DC
xi,j True if ith SM connects to jth DC

yk
i,j True if data is routed through kth DH

λi Data generation rate of ith SM
µj Packet service rates of jth DC

K Number of clusters in RA
LPWAN Low-power wide-area networks
LoRa Long-range radio
NB-IOT Narrow band IoT
DAP Data aggregation point
PLC Power line communication
WHN Wireless heterogeneous networks
CNs Communication nodes
DAC Data aggregator centers
D2D Device to device
NAN Neighborhood area network
Wi-SUN Wireless smart utility network
Hi, j Hop between ith and jth device

CUB Capacity upper bound
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L, W Length and width of RA
RRA Diagonal distance of RA
RT Transmission radius of DC and SM
di, j Distance between ith and jth device
DTH Threshold distance from centroid
CQK Critical queue of kth CH
PQ Priority queue
NQK Normal queue of Kth CH
maxTime Maximum time of CH and AH
zi At least one DH is assigned to ith device
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