Applications of 2D MXenes for Electrochemical Energy Conversion and Storage
Abstract
:1. Introduction
- (i)
- The large interlayer spaces within the layered structures could provide abundant ion transport pathways, promote the ions’ intercalation and diffusion, and limit the volume change during the charge/discharge process [18].
- (ii)
- The layered structures could provide high carrier mobility [19], which ensures high electrical conductivities. Thus, 2D materials represent the most intensively and successfully investigated materials for energy storage devices.
2. Synthetic Methods
2.1. Wet-Chemical Etching
2.2. In Situ HF-Forming Method
2.3. Other Synthesis Method
3. Electrochemical Energy Storage Applications
3.1. Supercapacitors (SCs)
3.2. Li Ions Battery (LIB)
3.3. Zn Ions Storage Devices
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jakob, M.; Hilaire, J. Unburnable fossil-fuel reserves. Nature 2014, 517, 150–151. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, S.; Guo, X.; Ruan, L.; Wei, N.; Ma, Y.; Li, J.; Wang, M.; Li, W.; Zeng, W. MXene-reduced graphene oxide aerogel for aqueous zinc-ion hybrid supercapacitor with ultralong cycle life. Adv. Electron. Mater. 2019, 5, 1900537. [Google Scholar] [CrossRef]
- Tian, Y.; An, Y.; Wei, C.; Xi, B.; Xiong, S.; Feng, J.; Qian, Y. Flexible and free-standing Ti3C2Tx MXene@Zn paper for dendrite-free aqueous zinc metal batteries and nonaqueous lithium metal batteries. ACS Nano 2019, 13, 11676–11685. [Google Scholar] [CrossRef] [PubMed]
- Herou, S.; Bailey, J.J.; Kok, M.; Schlee, P.; Jervis, R.; Brett, D.J.L.; Shearing, P.R.; Ribadeneyra, M.C.; Titirici, M. High-density lignin-derived carbon nanofiber supercapacitors with enhanced volumetric energy density. Adv. Sci. 2021, 8, 2100016. [Google Scholar] [CrossRef]
- Ma, X.; Cheng, J.; Dong, L.; Liu, W.; Mou, J.; Zhao, L.; Wang, J.; Ren, D.; Wu, J.; Xu, C.; et al. Multivalent ion storage towards high-performance aqueous zinc-ion hybrid supercapacitors. Energy Storage Mater. 2019, 20, 335–342. [Google Scholar] [CrossRef]
- Rojaee, R.; Shahbazian-Yassar, R. Two-dimensional materials to address the lithium battery challenges. ACS Nano 2020, 14, 2628–2658. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Zhou, T.; Zheng, Y.; Gao, H.; Liua, H.K.; Guo, Z. Two-dimensional nanostructures for sodium-ion battery anodes. J. Mater. Chem. A 2018, 6, 3284–3303. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Lei, W.; Zhang, S.Y.; Liu, G.G.; Wallace, J.C. Two-dimensional transition metal dichalcogenides in supercapacitors and secondary batteries. Energy Storage Mater. 2019, 19, 408–423. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, F.; Li, J.; Tang, Y. Penne-like MoS2/carbon nanocomposite as anode for sodium-ion-based dual-ion battery. Small 2018, 14, 1703951. [Google Scholar] [CrossRef] [PubMed]
- Haseeb, H.H.; Li, Y.; Ayub, S.; Fang, Q.; Yu, L.; Xu, K.; Ma, F. Defective phosphorene as a promising anchoring material for lithium–sulfur batteries. J. Phys. Chem. C 2020, 124, 2739–2746. [Google Scholar] [CrossRef]
- Leng, K.; Li, G.; Guo, J.; Zhang, X.; Wang, A.; Liu, X.; Luo, J. A safe polyzwitterionic hydrogel electrolyte for long-life quasi-solid state zinc metal batteries. Adv. Funct. Mater. 2020, 30, 2001317. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Q.; Fang, Y.; Teng, C.; Liu, X.; Fang, P.; Tong, Y.; Lu, X. Boosting Zn-ion energy storage capability of hierarchically porous carbon by promoting chemical adsorption. Adv. Mater. 2019, 31, 1904948. [Google Scholar] [CrossRef]
- Xiao, Z.; Li, Z.; Meng, X.; Wang, R. MXene-engineered lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 22730–22743. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Z.; Zhou, Z. MXene-based materials for electrochemical energy storage. J. Energy Chem. 2018, 27, 73–85. [Google Scholar] [CrossRef] [Green Version]
- Lei, J.C.; Zhang, X.; Zhou, Z. Recent advances in MXene: Preparation, properties, and applications. Front. Phys. 2015, 10, 276–286. [Google Scholar] [CrossRef]
- Jiang, Q.; Lei, Y.; Liang, H.; Xi, K.; Xia, C.; Alshareef, H.N. Review of MXene electrochemical microsupercapacitors. Energy Storage Mater. 2020, 27, 78–95. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhu, Q.; Liu, Y.; Xu, B. Status and prospects of MXene-based lithium–sulfur batteries. Adv. Funct. Mater. 2021, 31, 2100457. [Google Scholar] [CrossRef]
- Tian, Y.; An, Y.; Feng, J. Flexible and freestanding silicon/MXene composite papers for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 10004–10011. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wu, Y.; Yuan, X.; Zeng, G.; Zhou, J.; Wang, X.; Chew, J.W. Clay-inspired MXene-based electrochemical devices and photo-electrocatalyst: State-of-the-art progresses and challenges. Adv. Mater. 2018, 30, 1704561. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Wang, Y.; Jing, Y.; Ma, J.; Du, C.F.; Yan, Q. Surface modified MXene-based nanocomposites for electrochemical energy conversion and storage. Small 2019, 15, 1901503. [Google Scholar] [CrossRef]
- Gogotsi, Y.; Anasori, B. The rise of MXenes. ACS Nano 2019, 13, 8491–8494. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Xu, Z.; Fang, B.; Huang, T.; Cai, S.; Chen, H.; Liu, Y.; Gopalsamy, K.; Gao, W.; Gao, C. MXene/graphene hybrid fibers for high performance flexible supercapacitors. J. Mater. Chem. A 2017, 5, 22113–22119. [Google Scholar] [CrossRef]
- Li, X.; Ma, Y.; Shen, P.; Zhang, C.; Yan, J.; Xia, Y.; Luo, S.; Gao, Y. Self-healing microsupercapacitors with size-dependent 2D MXene. ChemElectroChem 2020, 7, 821–829. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, H.B.; Sun, R.; Liu, Y.; Liu, Z.; Zhou, A.; Yu, Z.Z. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 2017, 29, 1702367. [Google Scholar] [CrossRef] [PubMed]
- Zha, X.-H.; Zhou, J.; Zhou, Y.; Huang, Q.; He, J.; Francisco, J.S.; Luoa, K.; Du, S. Promising electron mobility and high thermal conductivity in Sc2CT2 (T = F, OH) MXenes. Nanoscale 2016, 8, 6110–6117. [Google Scholar] [CrossRef]
- Xu, N.; Li, H.; Gan, Y.; Chen, H.; Li, W.; Zhang, F.; Jiang, X.; Shi, Y.; Liu, J.; Wen, Q.; et al. Zero-dimensional MXene-based optical devices for ultrafast and ultranarrow photonics applications. Adv. Sci. 2020, 7, 2002209. [Google Scholar] [CrossRef]
- Wu, Y.; Hu, H.; Yuan, C.; Song, J.; Wu, M. Electrons/ions dual transport channels design: Concurrently tuning interlayer conductivity and space within re-stacked few-layered MXenes film electrodes for high-areal-capacitance stretchable micro-supercapacitor-arrays. Nano Energy 2020, 74, 104812. [Google Scholar] [CrossRef]
- Pan, Z.; Ji, X. Facile synthesis of nitrogen and oxygen co-doped C@Ti3C2 MXene for high performance symmetric supercapacitors. J. Power Sources 2019, 439, 227068. [Google Scholar] [CrossRef]
- Li, M.; Li, X.; Qin, G.; Luo, K.; Lu, J.; Li, Y.; Liang, G.; Huang, Z.; Zhou, J.; Hultman, L.; et al. Halogenated Ti3C2 MXenes with electrochemically active terminals for high-performance zinc ion batteries. ACS Nano 2021, 15, 1077–1085. [Google Scholar] [CrossRef]
- Zhou, Y.; Maleski, K.; Anasori, B.; Thostenson, J.O.; Pang, Y.; Feng, Y.; Zeng, K.; Parker, C.B.; Zauscher, S.; Gogotsi, Y.; et al. Ti3C2Tx MXene-reduced graphene oxide composite electrodes for stretchable supercapacitors. ACS Nano 2020, 14, 3576–3586. [Google Scholar] [CrossRef]
- Lu, M.; Han, W.; Li, H.; Li, H.; Zhang, B.; Zhang, W.; Zheng, W. Magazine-bending-inspired architecting anti-T of MXene flakes with vertical ion transport for high-performance supercapacitors. Adv. Mater. Interfaces 2019, 6, 1900160. [Google Scholar] [CrossRef]
- Meng, J.; Zhang, F.; Zhang, L.; Liu, L.; Chen, J.; Yang, B.; Yan, X. Rolling up MXene sheets into scrolls to promote their anode performance in lithium-ion batteries. J. Energy Chem. 2020, 46, 256–263. [Google Scholar] [CrossRef]
- Shi, H.; Yue, M.; Zhang, C.J.; Dong, Y.; Lu, P.; Zheng, S.; Huang, H.; Chen, J.; Wen, P.; Xu, Z.; et al. 3D flexible, conductive, and recyclable Ti3C2Tx MXene-melamine foam for high-areal-capacity and long-lifetime alkali-metal anode. ACS Nano 2020, 14, 8678–8688. [Google Scholar] [CrossRef]
- Fan, Z.; Wei, C.; Yu, L.; Xia, Z.; Cai, J.; Tian, Z.; Zou, G.; Dou, S.X.; Sun, J. 3D printing of porous nitrogen-doped Ti3C2 MXene scaffolds for high-performance sodium-ion hybrid capacitors. ACS Nano 2020, 14, 867–876. [Google Scholar] [CrossRef]
- Dong, Y.; Shi, H.; Wu, Z.S. Recent advances and promise of MXene-based nanostructures for high-performance metal ion batteries. Adv. Funct. Mater. 2020, 30, 2000706. [Google Scholar] [CrossRef]
- Huang, H.; Jiang, R.; Feng, Y.; Ouyang, H.; Zhou, N.; Zhang, X.; Wei, Y. Recent development and prospects of surface modification and biomedical applications of MXenes. Nanoscale 2020, 12, 1325–1338. [Google Scholar] [CrossRef] [PubMed]
- Pang, J.; Mendes, R.G.; Bachmatiuk, A.; Zhao, L.; Ta, H.Q.; Gemming, T.; Liu, H.; Liu, Z.; Rummeli, M.H. Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 2019, 48, 72–133. [Google Scholar] [CrossRef]
- Nan, J.; Guo, X.; Xiao, J.; Li, X.; Chen, W.; Wu, W.; Liu, H.; Wang, Y.; Wu, M.; Wang, G. Nanoengineering of 2D MXene-based materials for energy storage applications. Small 2021, 17, 1902085. [Google Scholar] [CrossRef] [PubMed]
- Xiong, D.; Li, X.; Bai, Z.; Lu, S. Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small 2018, 14, 1703419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633–7644. [Google Scholar] [CrossRef]
- Barsoum, B.M.W. MAX Phases: Properties of Machinable Ternary Carbides and Nitrides; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013. [Google Scholar]
- Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halim, J.; Lukatskaya, M.R.; Cook, K.M.; Lu, J.; Smith, C.R.; Naslund, L.A.; May, S.J.; Hultman, L.; Gogotsi, Y.; Eklund, P.; et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater. 2014, 26, 2374–2381. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, F.; Alhabeb, M.; Hatter, C.B.; Anasori, B.; Hong, S.M.; Koo, C.M.; Gogotsi, Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016, 353, 1137–1140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipatov, A.; Alhabeb, M.; Lukatskaya, M.R.; Boson, A.; Gogotsi, Y.; Sinitskii, A. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv. Electron. Mater. 2016, 2, 1600255. [Google Scholar] [CrossRef] [Green Version]
- Vahid Mohammadi, A.; Moncada, J.; Chen, H.; Kayali, E.; Orangi, J.; Carrero, C.A.; Beidaghi, M. Thick and freestanding MXene/PANI pseudocapacitive electrodes with ultrahigh specific capacitance. J. Mater. Chem. A 2018, 6, 22123–22133. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, P.; Wang, F.; Ricciardulli, A.G.; Lohe, M.R.; Blom, P.W.M.; Feng, X. Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system. Angew. Chem. Int. Ed. 2018, 57, 15491–15495. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, M.; Yan, H.; Feng, Y.; Zhang, X.; Guo, R. Few-layer large Ti3C2Tx sheets exfoliated by NaHF2 and applied to the sodium-ion battery. J. Mater. Chem. A 2021, 9, 9593–9601. [Google Scholar] [CrossRef]
- Feng, A.; Yu, Y.; Wang, Y.; Jiang, F.; Yu, Y.; Mi, L.; Song, L. Two-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2. Mater. Des. 2017, 114, 161–166. [Google Scholar] [CrossRef]
- Levitt, A.S.; Alhabeb, M.; Hatter, C.B.; Sarycheva, A.; Dionb, G.; Gogotsi, Y. Electrospun MXene/carbon nanofibers as supercapacitor electrodes. J. Mater. Chem. A 2019, 7, 269–277. [Google Scholar] [CrossRef]
- Huang, X.; Wu, P. A facile, high-yield, and freeze-and-thaw-assisted approach to fabricate MXene with plentiful wrinkles and its application in on-chip micro-supercapacitors. Adv. Funct. Mater. 2020, 30, 1910048. [Google Scholar] [CrossRef]
- Mendoza-Sanchez, B.; Gogotsi, Y. Synthesis of two-dimensional materials for capacitive energy storage. Adv. Mater. 2016, 28, 6104–6135. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Liu, S.; Tu, K.H.; Schmidt, H.; Chu, L.; Xiang, D.; Martin, J.; Eda, G.; Ross, C.A.; Garaj, S. Crested two-dimensional transistors. Nat. Nanotechnol. 2019, 14, 223–226. [Google Scholar] [CrossRef] [PubMed]
- Naguib, M.; Mashtalir, O.; Carle, J.; Presser, V.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-dimensional transition metal carbides. ACS Nano 2012, 6, 1322–1331. [Google Scholar] [CrossRef]
- Lukatskaya, M.R.; Mashtalir, O.; Ren, C.E.; Dall’Agnese, Y.; Rozier, P.; Taberna, P.L.; Naguib, M.; Simon, P.; Barsoum, M.W.; Gogotsi, Y. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 2013, 341, 1502–1505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, L.; Fan, Z.; Shao, Y.; Tian, Z.; Sun, J.; Liu, Z. Versatile N-doped MXene ink for printed electrochemical energy storage application. Adv. Energy Mater. 2019, 9, 1901839. [Google Scholar] [CrossRef]
- Persson, I.; El Ghazaly, A.; Tao, Q.; Halim, J.; Kota, S.; Darakchieva, V.; Palisaitis, J.; Barsoum, M.W.; Rosen, J.; Persson, P.O.A. Tailoring structure, composition, and energy storage properties of MXenes from selective etching of in-plane, chemically ordered max phases. Small 2018, 14, 1703676. [Google Scholar] [CrossRef]
- Wang, F.; Wu, X.; Yuan, X.; Liu, Z.; Zhang, Y.; Fu, L.; Zhu, Y.; Zhou, Q.; Wu, Y.; Huang, W. Latest advances in supercapacitors: From new electrode materials to novel device designs. Chem. Soc. Rev. 2017, 46, 6816–6854. [Google Scholar] [CrossRef]
- Shao, Y.; El-Kady, M.F.; Sun, J.; Li, Y.; Zhang, Q.; Zhu, M.; Wang, H.; Dunn, B.; Kaner, R.B. Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 2018, 118, 9233–9280. [Google Scholar] [CrossRef]
- Zhong, C.; Deng, Y.; Hu, W.; Qiao, J.; Zhang, L.; Zhang, J. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 2018, 44, 7484–7539. [Google Scholar] [CrossRef]
- Muzaffar, A.; Ahamed, M.B.; Deshmukh, K.; Thirumalai, J. A review on recent advances in hybrid supercapacitors: Design, fabrication and applications. Renew. Sustain. Energy Rev. 2019, 101, 123–145. [Google Scholar] [CrossRef]
- Liu, H.; Liu, X.; Wang, S.; Liu, H.-K.; Li, L. Transition metal based battery-type electrodes in hybrid supercapacitors: A review. Energy Storage Mater. 2020, 28, 122–145. [Google Scholar] [CrossRef]
- Lukatskaya, M.R.; Bak, S.-M.; Yu, X.; Yang, X.-Q.; Barsoum, M.W.; Gogotsi, Y. Probing the mechanism of high capacitance in 2D titanium carbide using in situ x-ray absorption spectroscopy. Adv. Energy Mater. 2015, 5, 1500589. [Google Scholar] [CrossRef]
- Li, H.; Li, X.; Liang, J.; Chen, Y. Hydrous RuO2-decorated MXene coordinating with silver nanowire inks enabling fully printed micro-supercapacitors with extraordinary volumetric performance. Adv. Energy Mater. 2019, 9, 1803987. [Google Scholar] [CrossRef]
- Pan, Z.; Cao, F.; Hua, X.; Ji, X. A facile method for synthesizing CuS decorated Ti3C2 MXene with enhanced performance for asymmetric supercapacitors. J. Mater. Chem. A 2019, 7, 8984–8992. [Google Scholar] [CrossRef]
- Wang, X.; Li, H.; Li, H.; Lin, S.; Ding, W.; Zhu, X.; Sheng, Z.; Wang, H.; Zhu, X.; Sun, Y. 2D/2D 1T-MoS2/Ti3C2 MXene heterostructure with excellent supercapacitor performance. Adv. Funct. Mater. 2020, 30, 0190302. [Google Scholar] [CrossRef]
- Wang, Y.; Dou, H.; Wang, J.; Ding, B.; Xu, Y.; Chang, Z.; Hao, X. Three-dimensional porous MXene/layered double hydroxide composite for high performance supercapacitors. J. Power Sources 2016, 327, 221–228. [Google Scholar] [CrossRef]
- Luo, Y.; Yang, C.; Tian, Y.; Tang, Y.; Yin, X.; Que, W. A long cycle life asymmetric supercapacitor based on advanced nickel-sulfide/titanium carbide MXene) nanohybrid and MXene electrodes. J. Power Sources 2020, 450, 227694. [Google Scholar] [CrossRef]
- Wen, Y.; Rufford, T.E.; Chen, X.; Li, N.; Lyu, M.; Dai, L.; Wang, L. Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano Energy 2017, 38, 368–376. [Google Scholar] [CrossRef]
- Mu, X.; Wang, D.; Du, F.; Chen, G.; Wang, C.; Wei, Y.; Gogotsi, Y.; Gao, Y.; Dall’Agnese, Y. Revealing the pseudo-intercalation charge storage mechanism of MXenes in acidic electrolyte. Adv. Funct. Mater. 2019, 29, 1902953. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, X.; Sui, J.; Abraha, B.S.; Li, Y.; Peng, W.; Zhang, G.; Zhang, F.; Fan, X. Improving the performance of titanium carbide MXene in supercapacitor by partial oxidation treatment. Inorg. Chem. Front. 2020, 7, 1205–1211. [Google Scholar] [CrossRef]
- Li, Z.; Ma, C.; Wen, Y.; Wei, Z.; Xing, X.; Chu, J.; Yu, C.; Wang, K.; Wang, Z.-K. Highly conductive dodecaborate/MXene composites for high performance supercapacitors. Nano Res. 2019, 13, 196–202. [Google Scholar] [CrossRef]
- Li, K.; Wang, X.; Li, S.; Urbankowski, P.; Li, J.; Xu, Y.; Gogotsi, Y. An ultrafast conducting polymer@MXene positive electrode with high volumetric capacitance for advanced asymmetric supercapacitors. Small 2020, 16, 1906851. [Google Scholar] [CrossRef]
- Zhang, C.J.; Anasori, B.; Seral-Ascaso, A.; Park, S.H.; McEvoy, N.; Shmeliov, A.; Duesberg, G.S.; Coleman, J.N.; Gogotsi, Y.; Nicolosi, V. Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv. Mater. 2017, 29, 1702678. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Peng, J.; Wang, W.; Jin, B.; Chen, T.; Liu, S.; Zhao, Q.; Huang, W. Interlayer hydrogen-bonded metal porphyrin frameworks/MXene hybrid film with high capacitance for flexible all-solid-state supercapacitors. Small 2019, 15, 1901351. [Google Scholar] [CrossRef]
- Wu, X.; Huang, B.; Lv, R.; Wang, Q.; Wang, Y. Highly flexible and low capacitance loss supercapacitor electrode based on hybridizing decentralized conjugated polymer chains with MXene. Chem. Eng. J. 2019, 378, 122246. [Google Scholar] [CrossRef]
- Qin, L.; Tao, Q.; El Ghazaly, A.; Fernandez-Rodriguez, J.; Persson, P.O.Å.; Rosen, J.; Zhang, F. High-performance ultrathin flexible solid-state supercapacitors based on solution processable Mo1.33C MXene and PEDOT:PSS. Adv. Funct. Mater. 2018, 28, 1703808. [Google Scholar] [CrossRef] [Green Version]
- Shi, M.; Xiao, P.; Lang, J.; Yan, C.; Yan, X. Porous g-C3N4 and MXene dual-confined FeOOH quantum dots for superior energy storage in an ionic liquid. Adv. Sci. 2020, 7, 1901975. [Google Scholar] [CrossRef] [Green Version]
- Tian, W.; Vahid Mohammadi, A.; Reid, M.S.; Wang, Z.; Ouyang, L.; Erlandsson, J.; Pettersson, T.; Wagberg, L.; Beidaghi, M.; Hamedi, M.M. Multifunctional nanocomposites with high strength and capacitance using 2D MXene and 1D nanocellulose. Adv. Mater. 2019, 31, 1902977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Wang, X.; Li, X.; Bai, Y.; Xiao, H.; Liu, Y.; Liu, R.; Yuan, G. Engineering 3D ion transport channels for flexible MXene films with superior capacitive performance. Adv. Funct. Mater. 2019, 29, 1900326. [Google Scholar] [CrossRef]
- Quain, E.; Mathis, T.S.; Kurra, N.; Maleski, K.; van Aken, K.L.; Alhabeb, M.; Alshareef, H.N.; Gogotsi, Y. Direct writing of additive-free MXene-in-water ink for electronics and energy storage. Adv. Mater. Technol. 2019, 4, 1800256. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, X.; Li, X.; Liu, R.; Bai, Y.; Xiao, H.; Liu, Y.; Yuan, G. Intercalating ultrathin MoO3 nanobelts into MXene film with ultrahigh volumetric capacitance and excellent deformation for high-energy-density devices. Nano-Micro Lett. 2020, 12, 115. [Google Scholar] [CrossRef] [PubMed]
- Abdolhosseinzadeh, S.; Schneider, R.; Verma, A.; Heier, J.; Nuesch, F.; Zhang, C.J. Turning trash into treasure: Additive free MXene sediment inks for screen-printed micro-supercapacitors. Adv. Mater. 2020, 32, 2000716. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Hua, T. An easily manipulated protocol for patterning of MXenes on paper for planar micro-supercapacitors. J. Mater. Chem. A 2017, 5, 19639–19648. [Google Scholar] [CrossRef]
- Zhang, J.; Seyedin, S.; Qin, S.; Wang, Z.; Moradi, S.; Yang, F.; Lynch, P.A.; Yang, W.; Liu, J.; Wang, X.; et al. Highly conductive Ti3C2Tx MXene hybrid fibers for flexible and elastic fiber-shaped supercapacitors. Small 2019, 15, 1804732. [Google Scholar] [CrossRef]
- Shao, W.; Tebyetekerwa, M.; Marriam, I.; Li, W.; Wu, Y.; Peng, S.; Ramakrishna, S.; Yang, S.; Zhu, M. Polyester@MXene nanofibers-based yarn electrodes. J. Power Sources 2018, 396, 683–690. [Google Scholar] [CrossRef]
- Chang, T.H.; Zhang, T.; Yang, H.; Li, K.; Tian, Y.; Lee, J.Y.; Chen, P.Y. Controlled crumpling of two-dimensional titanium carbide (MXene) for highly stretchable, bendable, efficient supercapacitors. ACS Nano 2018, 12, 8048–8059. [Google Scholar] [CrossRef] [PubMed]
- Lipatov, A.; Lu, H.; Alhabeb, M.; Anasori, B.; Gruverman, A.; Gogotsi, Y.; Sinitskii, A. Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers. Sci. Adv. 2018, 4, 491. [Google Scholar] [CrossRef] [Green Version]
- An, H.; Habib, T.; Shah, S.; Gao, H.; Radovic, M.; Green, M.J.; Lutkenhaus, J.L. Surface-agnostic highly stretchable and bendable conductive MXene multilayers. Sci. Adv. 2018, 4, 118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Come, J.; Xie, Y.; Naguib, M.; Jesse, S.; Kalinin, S.V.; Gogotsi, Y.; Kent, P.R.C.; Balke, N. Nanoscale elastic changes in 2D Ti3C2Tx (MXene) pseudocapacitive electrodes. Adv. Energy Mater. 2016, 6, 1502290. [Google Scholar] [CrossRef]
- Shang, M.; Chen, X.; Li, B.; Niu, J. A fast charge/discharge and wide-temperature battery with a germanium oxide layer on a Ti3C2TxMXene matrix as anode. ACS Nano 2020, 14, 3678–3686. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Han, L.; Li, Y.; Li, J.; Zhu, G.; Zhang, X.; Lu, T.; Pan, L. MXene-decorated SnS2/Sn3S4 hybrid as anode material for high-rate lithium-ion batteries. Chem. Eng. J. 2020, 380, 122590. [Google Scholar] [CrossRef]
- Tang, X.; Liu, H.; Guo, X.; Wang, S.; Wu, W.; Mondal, A.K.; Wang, C.; Wang, G. A novel lithium-ion hybrid capacitor based on the aerogellikeMXene wrapped Fe2O3nanosphere anode and the 3D nitrogen sulphur dual-doped porous carbon cathode. Mater. Chem. Front. 2018, 2, 1811–1821. [Google Scholar] [CrossRef]
- Ahmed, B.; Anjum, D.H.; Gogotsi, Y.; Alshareef, H.N. Atomic layer deposition of SnO2 on MXene for Li-ion battery anodes. Nano Energy 2017, 34, 249–256. [Google Scholar] [CrossRef] [Green Version]
- Cheng, R.; Wang, Z.; Cui, C.; Hu, T.; Fan, B.; Wang, H.; Liang, Y.; Zhang, C.; Zhang, H.; Wang, X. One-step incorporation of nitrogen and vanadium between Ti3C2Tx MXene interlayers enhances lithium ion storage capability. J. Phys. Chem. C 2020, 124, 6012–6021. [Google Scholar] [CrossRef]
- Ruan, T.; Wang, B.; Yang, Y.; Zhang, X.; Song, R.; Ning, Y.; Wang, Z.; Yu, H.; Zhou, Y.; Wang, D.; et al. Interfacial and electronic modulation via localized sulfurization for boosting lithium storage kinetics. Adv. Mater. 2020, 32, 2000151. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, S.; Li, B.; Yang, Y.G.S. Horizontal growth of lithium on parallelly aligned MXene layers towards dendrite-free metallic lithium anodes. Adv. Mater. 2019, 31, 1901820. [Google Scholar] [CrossRef]
- Wei, C.; Fei, H.; Tian, Y.; An, Y.; Zeng, G.; Feng, J.; Qian, Y. Room-temperature liquid metal confined in MXene paper as a flexible, freestanding, and binder-free anode for next-generation lithium-ion batteries. Small 2019, 15, 1903214. [Google Scholar] [CrossRef]
- Yang, Q.; Huang, Z.; Li, X.; Liu, Z.; Li, H.; Liang, G.; Wang, D.; Huang, Q.; Zhang, S.; Chen, S.; et al. A wholly degradable, rechargeable Zn-Ti3C2 MXene capacitor with superior anti-self-discharge function. ACS Nano 2019, 13, 8275–8283. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, Q.; Zeng, W.; Wang, M.; Ruan, L.; Ma, Y. A new free-standing aqueous zinc-ion capacitor based on MnO2–CNTs cathode and MXene anode. Nano-Micro Lett. 2019, 11, 70. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Wang, S.; Wang, Q.; Chen, X.; Du, X.; Wang, M.; Zhao, Y.; Dong, C.; Ruan, L.; Zeng, W. A new flexible zinc-ion capacitor based on δ-MnO2@carbon cloth battery-type cathode and MXene@cotton cloth capacitor-type anode. J. Power Sources 2020, 446, 227345. [Google Scholar] [CrossRef]
Materials | Capacity/Current Density | Capacity Retention | Energy Density and Power Density | Reference |
---|---|---|---|---|
1T-MoS2/Ti3C2MXene based flexible ASSS | 386.7 F g−1 at 1 A g−1 | 91.1% after 20,000 cycles at 30 mA cm−2 | 17.4 µW h cm−2 (600 µW cm−2) | [66] |
TC-9//Ti3C2 ASC | 49.3 F g−1 at 1 A g−1 | 82.4% after 5000 cycles at 8 A g−1 | 15.4 W h kg−1 (750.2 W kg−1) | [65] |
MXene/LDH composite | 1061 F g−1 at 1 A g−1 | 70% after 4000 cycles at 4 A g−1 | [67] | |
M-Ti3C2Tx//PANI | 510 F g−1 at 10 mV s−1 | 50.6 W h L−1 (1.7 kW L−1) | [73] | |
N-Ti3C2Tx-200 °C | 192 F g−1 at 1 mV s−1 | 92% after 10,000 cycles at of 50 mV s−1 | 8.07 W h kg−1 (52.8 W kg−1) | [69] |
all-solid-state symmetric SCs based on MXene/MPFs electrode | 408 mF cm−2 at 0.5 mA cm−2 | 95.9% after 7000 cycles at 5 mA cm−2 | 20.4 µW h cm−2 (152.2 µW cm−2) | [75] |
all-solid-state SC based on PDT/Ti3C2Tx | 52.4 mF cm−2 (3.52 F cm−3) at 0.1 mA cm−2 | 24 mW h cm−3 (502 mW cm−3) | [76] | |
FSC based on FQDs/CNTC film | 71.26 F cm−3 at 10 mV s−1 | 80% after 10,000 cycles at 4 A cm−3 | 77.12 mW h cm−3 (750 mW cm−3) | [78] |
Ti3C2Tx/CNF MSC | 25.3 mF cm−2 at 2 mV s−1 | 86.8% after 10,000 cycles at 0.57 mA cm−2 | 0.08 µWh cm−2(145 µW cm−2) | [79] |
PANI//Ti3C2Tx device | 925 mF cm−2 (87 F g−1) at 3 mA cm−2 | 93% after 10,000 cycles at 50 mA cm−2 | 252 µW h cm−2 (2.12 mW cm−2) | [80] |
M/MoO3 symmetric SC | 396 F cm−3 (118.8 F g−1) at mV s−1 | 90% after 5000 cycles at 30 mA cm−2 | 13.4 W h kg−1 (534.6 W kg−1) | [82] |
MXene NCY SC | 18.39 mF cm−2 at 5 mV s−1 | 98.2% after 6000 cycles at 50 mV s−1 | 0.38 μW h cm−2 (0.39 mW cm−2) | [86] |
MXene-N MSC | 70.1 mF cm−2 at 10 mV s−1 | 92% after 7000 cycles at 5 mA cm−2 | 0.42 mW h cm−2 0.83 mW h cm−3 | [56] |
MSCs based on this RuO2·xH2O@MXene–AgNW nanocomposite ink | 864.2 F cm−3 at 1 mV s−1 | 90% after 10,000 cycles at 100 mV s−1 | 13.5 mW h cm−3 (1.1 W cm−3) | [64] |
Materials | Capacity/Current Density | Cycling Stability | Rate Capacity | Reference |
---|---|---|---|---|
GeO2@MXene | 1127.1 mA h g−1 at 0.5 C | 1048.1 mA h g−1 at 0.5 C after 500 cycles | 221.2 mAh g−1 at 20.0 C | [91] |
S-TC | 601.3 mA h g−1 at 100 mA g−1 | 426.3 mA h g−1 at 100 mA g−1 after 100 cycles | 216.5 mAh g−1 at 5000 mA g−1 | [92] |
N(V)-modified Ti3C2TxMXene | 251.3 mA h g−1 at 0.1 C | 92 mA h g−1 at 3C after 1000 cycles | 118.3 mA h g−1 at 5 C | [95] |
Fe3O4/FeS 30@S-MX | 746.6 mAh g−1 at 0.1 A g−1 | 913.9 mA h g−1 after 1000 cycles at 1 A g−1 | 490.4 mA h g−1 at 10 A g−1 | [96] |
Materials | Capacity/Current Density | Cycling Stability | Energy Density and Power Density | Reference |
---|---|---|---|---|
Zn@Ti3C2 anode and Ti3C2 film cathode | 132 F g−1 at 0.5 A g−1 | 82.5% after 1000 cycles at 3 A g−1 | [99] | |
MnO2–CNTs cathode and MXene anode | 115.1 F g−1 at 1 mV s−1 | 83.6% at 15,000 cycles at 5.224 A g−1 | 98.6 W h kg−1 (77.5 W kg−1) | [100] |
MXene-rGO2//ZnSO4//Zn | 128.6 F g−1 at 0.4 A g−1 | 95% after 75,000 cycles at 5 A g−1 | 34.9 W h kg−1 (279.9 W kg−1) | [2] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, C.; Cui, H.; Mi, H.; Yang, S. Applications of 2D MXenes for Electrochemical Energy Conversion and Storage. Energies 2021, 14, 8183. https://doi.org/10.3390/en14238183
Ji C, Cui H, Mi H, Yang S. Applications of 2D MXenes for Electrochemical Energy Conversion and Storage. Energies. 2021; 14(23):8183. https://doi.org/10.3390/en14238183
Chicago/Turabian StyleJi, Chenchen, Haonan Cui, Hongyu Mi, and Shengchun Yang. 2021. "Applications of 2D MXenes for Electrochemical Energy Conversion and Storage" Energies 14, no. 23: 8183. https://doi.org/10.3390/en14238183
APA StyleJi, C., Cui, H., Mi, H., & Yang, S. (2021). Applications of 2D MXenes for Electrochemical Energy Conversion and Storage. Energies, 14(23), 8183. https://doi.org/10.3390/en14238183