Conceptualizing Walking and Walkability in the Smart City through a Model Composite w2 Smart City Utility Index
Abstract
:1. Introduction
2. Research Model and Materials
3. Walking and Walkability in the Smart City: Toward the Identification of the Model Index Variables
3.1. Walking and Walkability: Definitions and Applicability in the Smart City Context
3.2. Walking and Walkability: Conceptual Boundaries and Relevance
3.3. Conceptualizing Walking and Walkability & Identifying the Model Index Variables
3.4. The SDG 11 Perspective on Walking and Walkability: Toward a Conceptual Framework
4. Utility and Its Added Value in the Debate on Smart Cities
4.1. The Concept of Utility: A General Insight
4.2. The Concept of Utility: New Openings and Research Imperatives
4.3. The Smart City Utility Model: Querying Walking and Walkability in the Smart City
5. The w2 Smart City Utility Index
5.1. General Observations
5.2. Modelling and Assigning Weights to the Aggregate Variables
5.3. Variables’ Standardization Procedure and the Model w2 Smart City Utility Index
5.4. The Model Composite w2 Smart City Utility Index: Added Value and Limitations
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brown, E.; Shortell, T. Walking in Cities: Quotidian Mobility as Urban Theory, Method, and Practice; Temple University Press: Philadelphia, PA, USA, 2015. [Google Scholar]
- Pooley, C.G.; Horton, D.; Scheldeman, G.; Mullen, C.; Jones, T.; Tight, M. You feel unusual walking: The invisible presence of walking in four English cities. J. Transp. Health 2014, 1, 260–266. [Google Scholar] [CrossRef] [Green Version]
- Newman, P.; Kosonen, L.; Kenworthy, J. Theory of urban fabrics: Planning the walking, transit/public transport and automobile/motor car cities for reduced car dependency. Town Plan. Rev. 2016, 87, 429–458. [Google Scholar] [CrossRef]
- Bahendwa, F. Relevance of walking and informal activities in urban space: A case of Dar es Salaam City, Tanzania. J. Sustain.Dev. 2017, 10, 43. [Google Scholar] [CrossRef] [Green Version]
- Helminen, V.; Tiitu, M.; Kosonen, L.; Ristimäki, M. Identifying the areas of walking, transit and automobile urban fabrics in Finnish intermediate cities. Transp. Res. Interdiscip. Perspect. 2020, 8, 100257. [Google Scholar] [CrossRef]
- Fonseca, F.; Conticelli, E.; Papageorgiou, G.; Ribeiro, P.; Jabbari, M.; Tondelli, S.; Ramos, R. Levels and characteristics of utilitarian walking in the central areas of the cities of Bologna and Porto. Sustainability 2021, 13, 3064. [Google Scholar] [CrossRef]
- Visvizi, A.; Lytras, M. Rescaling and refocusing smart cities research: From mega cities to smart villages. J. Sci. Technol. Policy Manag. (JSTPM) 2018, 9, 134–145. [Google Scholar] [CrossRef]
- Van den Berg, P.; Sharmeen, F.; Weijs-Perrée, M. On the subjective quality of social Interactions: Influence of neighborhood walkability, social cohesion and mobility choices. Transp. Res. Part A Policy Pract. 2017, 106, 309–319. [Google Scholar] [CrossRef]
- Visvizi, A.; Lytras, M.D. Editorial: Policy making for smart cities: Innovation and social inclusive economic growth for sustainability. J. Sci. Technol. Policy Manag. (JSTPM) 2018, 9, 126–133. [Google Scholar] [CrossRef] [Green Version]
- Kashef, M.; Visvizi, A.; Troisi, O. Smart city as a smart service system: Human-computer interaction and smart city surveillance systems. Comput. Hum. Behav. 2021, 124, 106923. [Google Scholar] [CrossRef]
- Bibri, S.E.; Krogstie, J. Smart sustainable cities of the future: An extensive interdisciplinary literature review. Sustain. Cities Soc. 2017, 31, 183–212. [Google Scholar] [CrossRef]
- Cardullo, P.; Di Feliciantonio, C.; Kitchin, R. The Right to the Smart City; Emerald Publishing: Bingley, UK, 2019. [Google Scholar]
- Cardullo, P.; Kitchin, R. Being a ‘citizen’ in the smart city: Up and down the scaffold of smart citizen participation in Dublin, Ireland. GeoJournal 2019, 84, 1–13. [Google Scholar] [CrossRef]
- Chui, K.T.; Lytras, M.D.; Visvizi, A. Energy sustainability in smart cities: Artificial intelligence, smart monitoring, and optimization of energy consumption. Energies 2018, 11, 2869. [Google Scholar] [CrossRef] [Green Version]
- Visvizi, A.; Lytras, M.D. Smart cities research and debate: What is in there. In Smart Cities: Issues and Challenges: Mapping Political, Social and Economic Risks and Threats; Visvizi, A., Lytras, M.D., Eds.; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Visvizi, A.; Lytras, M.D. (Eds.) Smart Cities: Issues and Challenges: Mapping Political, Social and Economic Risks and Threats; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Mouton, M.; Burns, R. (Digital) neo-colonialism in the smart city. Reg. Stud. 2021, 55, 1890–1901. [Google Scholar] [CrossRef]
- Alkmanash, E.H.; Jussila, J.J.; Lytras, M.D.; Visvizi, A. Annotation of smart cities Twitter microcontents for enhanced citizen’s engagement. IEEE Access 2019, 7, 116267–116276. [Google Scholar] [CrossRef]
- Lytras, M.D.; Visvizi, A.; Chopdar, P.K.; Sarirete, A.; Alhalabi, W. Information management in smart cities: Turning end users’ views into multi-item scale development, validation, and policy-making recommendations. Int. J. Inf. Manag. 2021, 56, 102146. [Google Scholar] [CrossRef]
- Clarinval, A.; Simonofski, A.; Vanderose, B.; Dumas, B. Public displays and citizen participation: A systematic literature review and research agenda. Transform. Gov. People Process. Policy 2021, 15, 1–35. [Google Scholar] [CrossRef]
- Martí, P.; del Hoyo, P.R.; Nolasco-Cirugeda, A.; Serrano-Estrada, L.; García-Mayor, C. The potential of location-based social networks for participatory urban planning. In Smart Cities and the UN SDGs; Visvizi, A., del Hoyo, P.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 107–123. [Google Scholar] [CrossRef]
- Chang, I.-C.C.; Jou, S.-C.; Chung, M.-K. Provincialising smart urbanism in Taipei: The smart city as a strategy for urban regime transition. Urban Stud. 2021, 58, 559–580. [Google Scholar] [CrossRef]
- Visvizi, A.; Mazzucelli, C.G.; Lytras, M. Irregular migratory flows: Towards an ICT-enabled integrated framework for resilient urban systems. J. Sci. Technol. Policy Manag. 2017, 8, 227–242. [Google Scholar] [CrossRef]
- Kitchin, R.; Moore-Cherry, N. Fragmented governance, the urban data ecosystem and smart city-regions: The case of Metropolitan Boston. Reg. Stud. 2021, 55, 1913–1923. [Google Scholar] [CrossRef]
- Visvizi, A.; Lytras, M.D. Sustainable smart cities and smart villages research: Rethinking security, safety, well-being, and happiness. Sustainability 2020, 12, 215. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Razek, S.A. Governance and SDGs in smart cities context. In Smart Cities and the UN SDGs; Visvizi, A., del Hoyo, P.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 61–70. [Google Scholar] [CrossRef]
- Lytras, M.D.; Visvizi, A. Information management as a dual-purpose process in the smart city: Collecting, managing and utilizing information. Int. J. Inf. Manag. 2021, 56, 102224. [Google Scholar] [CrossRef]
- Lytras, M.D.; Visvizi, A. Who uses smart city services and what to make of it: Toward interdisciplinary smart cities research. Sustainability 2018, 10, 1998. [Google Scholar] [CrossRef] [Green Version]
- Calzada, I.; Almirall, E. Data ecosystems for protecting European citizens’ digital rights. Transform. Gov. People Process Policy 2020, 14, 133–147. [Google Scholar] [CrossRef]
- Radchenko, K. From smart cities to smart regions: Regional economic specialization as a tool for development and inclusion. Cent. East. Eur. EDem EGov Days 2020, 338, 21–31. [Google Scholar] [CrossRef]
- Varela, E.; Mora, H.; Visvizi, A.; Mollá-Sirvent, R. Smart Society model for Social Inclusion based on Cryptocurrency Technologies. In Research and Innovation Forum 2020: Disruptive Technologies in Times of Change, Springer Proceedings in Complexity; Visvizi, A., Lytras, M.D., Aljohani, N.R., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; ISBN 978-3-030-62066-0. [Google Scholar] [CrossRef]
- Hassankhani, M.; Alidadi, M.; Sharifi, A.; Azhdari, A. Smart city and crisis management: Lessons for the COVID-19 pandemic. Int. J. Environ. Res. Public Health 2021, 18, 7736. [Google Scholar] [CrossRef] [PubMed]
- Blečić, I.; Congiu, T.; Fancello, G.; Trunfio, G.A. Planning and design support tools for walkability: A guide for urban analysts. Sustainability 2020, 12, 4405. [Google Scholar] [CrossRef]
- Visvizi, A.; Pérez del Hoyo, R. Sustainable development goals (SDGs) in the smart city: A tool or an approach? (an introduction). In Smart Cities and the UN SDGs; Visvizi, A., Pérez del Hoyo, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar] [CrossRef]
- Pérez del Hoyo, R.; Visvizi, A.; Mora, H. Inclusiveness, safety, resilience & sustainability in the smart city context. In Smart Cities and the UN SDGs; Visvizi, A., Pérez del Hoyo, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar] [CrossRef]
- Freudenberg, M. Composite Indicators of Country Performance: A Critical Assessment; OECD Science, Technology and Industry Working Papers, No. 2003/16; OECD Publishing: Paris, France, 2003. [Google Scholar] [CrossRef]
- Becker, W.; Saisana, M.; Paruolo, P.; Vandecasteele, I. Weights and importance in composite indicators: Closing the gap. Ecol. Indic. 2017, 80, 12–22. [Google Scholar] [CrossRef]
- Poledníková, E.; Melecký, L. Weighting methods for constructing composite indices in regional development. In Proceedings of the 11th International Days of Statistics and Economics, Prague, Czech Republic, 14–16 September 2017; pp. 1253–1262. Available online: https://msed.vse.cz/msed_2017/article/225-Polednikova-Eva-paper.pdf (accessed on 20 October 2021).
- Distefano, N.; Pulvirenti, G.; Leonardi, S. Neighbourhood walkability: Elderly’s priorities. Res. Transp. Bus. Manag. 2021, 40, 100547. [Google Scholar] [CrossRef]
- Fancello, G.; Congiu, T.; Tsoukiàs, A. Mapping walkability. A subjective value theory approach. Socio-Econ. Plan. Sci. 2020, 72, 100923. [Google Scholar] [CrossRef]
- Gao, J.; Kamphuis, C.B.M.; Helbich, M.; Ettema, D. What is ‘neighborhood walkability’? How the built environment differently correlates with walking for different purposes and with walking on weekdays and weekends. J. Transp. Geogr. 2020, 88, 102860. [Google Scholar] [CrossRef]
- Lytras, M.D.; Visvizi, A.; Sarirete, A. Clustering smart city services: Perceptions, expectations, responses. Sustainability 2019, 11, 1669. [Google Scholar] [CrossRef] [Green Version]
- Troisi, O.; Fenza, G.; Grimaldi, M.; Loia, F. Covid-19 sentiments in smart cities: The role of technology anxiety before and during the pandemic. Comput. Hum. Behav. 2021, 126, 106986. [Google Scholar] [CrossRef] [PubMed]
- De Marsico, M.; Mecca, A.; Barra, S. Walking in a smart city: Investigating the gait stabilization effect for biometric recognition via wearable sensors. Comput. Electr. Eng. 2019, 80, 106501. [Google Scholar] [CrossRef]
- Semenov, A.; Zelentsov, V.; Pimanov, I. Application suggesting attractive walking routes for pedestrians using an example of Saint-Petersburg city. Procedia Comput. Sci. 2019, 156, 319–326. [Google Scholar] [CrossRef]
- Atzori, A.; Barra, S.; Carta, S.; Fenu, G.; Podda, A.S. Heimdall: An AI-based infrastructure for traffic monitoring and anomalies detection. In Proceedings of the 2021 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops), Kassel, Germany, 22–26 March 2021; pp. 154–159. [Google Scholar] [CrossRef]
- Kim, H. Wearable sensor data-driven walkability assessment for elderly people. Sustainability 2020, 12, 4041. [Google Scholar] [CrossRef]
- Kim, H.; Ahn, C.R.; Yang, K. A people-centric sensing approach to detecting sidewalk defects. Adv. Eng. Inform. 2016, 30, 660–671. [Google Scholar] [CrossRef] [Green Version]
- Kanga, S.; Meraj, G.; Sudhanshu Farooq, M.; Nathawat, M.S.; Singh, S.K. Analyzing the risk to COVID-19 infection using remote sensing and GIS. Risk Anal. 2021, 41, 801–813. [Google Scholar] [CrossRef]
- Fonseca, F.; Conticelli, E.; Papageorgiou, G.; Ribeiro, P.; Jabbari, M.; Tondelli, S.; Ramos, R. Use and Perceptions of Pedestrian Navigation Apps: Findings from Bologna and Porto. ISPRS Int. J. Geo-Inf. 2021, 10, 446. [Google Scholar] [CrossRef]
- Den Heijer, A.E.; Groen, Y.; Tucha, L.; Fuermaier AB, M.; Koerts, J.; Lange, K.W.; Thome, J.; Tucha, O. Sweat it out? The effects of physical exercise on cognition and behavior in children and adults with ADHD: A systematic literature review. J. Neural Transm. 2017, 124 (Suppl. 1), 3–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, X.; Li, R.; Wong, S.H.S.; Sum, R.K.W.; Sit, C.H.P. The impact of exercise interventions concerning executive functions of children and adolescents with attention-deficit/hyperactive disorder: A systematic review and meta-analysis. Int. J. Behav. Nutr. Phys. Act. 2021, 18, 68. [Google Scholar] [CrossRef]
- Carlson, C.; Aytur, S.; Gardner, K.; Rogers, S. The importance of the “local” in walkability. Buildings 2015, 5, 1187–1206. [Google Scholar] [CrossRef]
- La Rocca, R.A. Soft Mobility and urban transformation. TeMaLab J. Mobil. Land Use Environ. 2010, 3, 85–90. [Google Scholar] [CrossRef]
- Rogers, S.H.; Gardner, K.H.; Carlson, C.H. Social capital and walkability as social aspects of sustainability. Sustainability 2013, 5, 3473–3483. [Google Scholar] [CrossRef] [Green Version]
- Loo, B.P.Y. Walking towards a happy city. J. Transp. Geogr. 2021, 93, 103078. [Google Scholar] [CrossRef]
- Urry, J. Mobilities: New Perspectives on Transport and Society, 1st ed.; Grieco, M., Ed.; Routledge: Milton Park, UK, 2012. [Google Scholar] [CrossRef]
- Kaczynski, A.T.; Robertson-Wilson, J.; Decloe, M. Interaction of perceived neighborhood walkability and self-efficacy on physical activity. J. Phys. Act. Health 2012, 9, 208–217. [Google Scholar] [CrossRef]
- Kartschmit, N.; Sutcliffe, R.; Sheldon, M.P.; Moebus, S.; Greiser, K.H.; Hartwig, S.; Thürkow, D.; Stentzel, U.; van den Berg, N.; Wolf, K.; et al. Walkability and its association with prevalent and incident diabetes among adults in different regions of Germany: Results of pooled data from five German cohorts. BMC Endocr. Disord. 2020, 20, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Hübler, M.; Löschel, A. The EU decarbonisation roadmap 2050—What way to walk? Energy Policy 2013, 55, 190–207. [Google Scholar] [CrossRef] [Green Version]
- Haasz, T.; Gómez Vilchez, J.J.; Kunze, R.; Deane, P.; Fraboulet, D.; Fahl, U.; Mulholland, E. Perspectives on decarbonizing the transport sector in the EU-28. Energy Strategy Rev. 2018, 20, 124–132. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, J. Long-term pathways to deep decarbonization of the transport sector in the post-COVID world. Transp. Policy 2021, 110, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Salvucci, R.; Gargiulo, M.; Karlsson, K. The role of modal shift in decarbonising the Scandinavian transport sector: Applying substitution elasticities in TIMES-Nordic. Appl. Energy 2019, 253, 113593. [Google Scholar] [CrossRef]
- Dillman, K.; Czepkiewicz, M.; Heinonen, J.; Fazeli, R.; Árnadóttir, A.; Davíðsdóttir, B.; Shafiei, E. Decarbonization scenarios for Reykjavik’s passenger transport: The combined effects of behavioural changes and technological developments. Sustain. Cities Soc. 2021, 65, 102614. [Google Scholar] [CrossRef]
- Pratiwi, P.I.; Xiang, Q.; Furuya, K. Physiological and psychological effects of walking in urban parks and its imagery in different seasons in middle-aged and older adults: Evidence from Matsudo City, Japan. Sustainability 2020, 12, 4003. [Google Scholar] [CrossRef]
- Mazzucelli, C.G.; Visvizi, A.; Bee, R. Secular states in a “security community”: The migration-terrorism nexus? J. Strateg. Secur. 2016, 9, 16–27. [Google Scholar] [CrossRef] [Green Version]
- Randall, T.; Baetz, B. Evaluating pedestrian connectivity for suburban sustainability. J. Urban Plan. Dev. Asce 2001, 127, 1–15. [Google Scholar] [CrossRef]
- Litman, T.A. Economic Value of Walkability; Victoria Transport Policy Institute: Victoria, BC, Canada, 2003; Volume 10, pp. 3–11. Available online: https://www.vtpi.org/walkability.pdf (accessed on 5 November 2021).
- Cook, J.A.; Boose, M.; Marshall, W.E.; Main, D.S. How Does Design Quality Add to our Understanding of Walkable Communities? Landsc. J. 2013, 32, 151–162. [Google Scholar] [CrossRef]
- Forsyth, A.; Southworth, M. Cities afoot—Pedestrians, walkability and urban design. J. Urban Des. 2008, 13, 1–3. [Google Scholar] [CrossRef]
- Nakamura, K. Experimental analysis of walkability evaluation using virtual reality application. Environ. Plan. B Urban Anal. City Sci. 2020, 48, 2481–2496. [Google Scholar] [CrossRef]
- Jamei, E.; Ahmadi, K.; Chau, H.W.; Seyedmahmoudian, M.; Horan, B.; Stojcevski, A. Urban design and walkability: Lessons learnt from Iranian traditional cities. Sustainability 2021, 13, 5731. [Google Scholar] [CrossRef]
- Eckermann, A.; Henkel, A.; Lah, O.; Eichhorst, U.; Bongardt, D.; Würtenberger, L. Navigating Transport NAMAs: A Practical Handbook on Nationally Appropriate Mitigation Actions (NAMAs) in the Transport Sector. 2015. Available online: https://epub.wupperinst.org/frontdoor/index/index/searchtype/all/start/0/rows/10/yearfq/2014/facetNumber_author_facet/all/has_fulltextfq/false/author_facetfq/Henkel%2C+Andrea/docId/5684 (accessed on 5 November 2021).
- Krambeck, H. The Global Walkability Index. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2006. [Google Scholar]
- Jacobs, J. The Death and Life of Great American Cities; Random House: New York, NY, USA, 1961. [Google Scholar]
- Ewing, R.; Handy, S. Measuring the unmeasurable: Urban design qualities related to walkability. J Urban Des. 2009, 14, 65–84. [Google Scholar] [CrossRef]
- Brown, B.B.; Yamada, I.; Smith, K.R.; Zick, C.D.; Kowaleski-Jones, L.; Fan, J.X. Mixed land use and walkability: Variations in land use measures and relationships with BMI, overweight, and obesity. Health Place 2009, 15, 1130–1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saelens, B.E.; Sallis, J.F.; Frank, L.D. Environmental correlates of walking and cycling: Findings from the transportation, urban design, and planning literatures. Ann. Behav. Med. 2003, 25, 80–91. [Google Scholar] [CrossRef] [PubMed]
- Oishi, S.; Cha, Y.; Schimmack, U. The social ecology of COVID-19 cases and deaths in New York City: The role of walkability, wealth, and race. Soc. Psychol. Personal. Sci. 2021, 12, 1457–1466. [Google Scholar] [CrossRef]
- Cerin, E.; Conway, T.L.; Adams, M.A.; Barnett, A.; Cain, K.L.; Owen, N.; Christiansen, L.B.; van Dyck, D.; Mitáš, J.; Sarmiento, O.L.; et al. Objectively-assessed neighbourhood destination accessibility and physical activity in adults from 10 countries: An analysis of moderators and perceptions as mediators. Soc. Sci. Med. 2018, 211, 282–293. [Google Scholar] [CrossRef]
- Kahlmeier, S.; Racioppi, F.; Götschi, T.; Castro, A.; Cavill, N. The WHO health economic assessment tool for walking and cycling: How to quantify impacts of active mobility. In Advances in Transportation and Health; Nieuwenhuijsen, M.J., Khreis, H., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 329–342. [Google Scholar] [CrossRef]
- Kato, H.; Takizawa, A. Which Residential Clusters of Walkability Affect Future Population from the Perspective of Real Estate Prices in the Osaka Metropolitan Area? Sustainability 2021, 13, 13413. [Google Scholar] [CrossRef]
- Stangl, P. Block size-based measures of street connectivity: A critical assessment and new approach. Urban Des. Int. 2015, 20, 44–55. [Google Scholar] [CrossRef]
- Hutabarat Lo, R. Walkability: What is it? J. Urban. Int. Res. Placemaking Urban Sustain. 2009, 2, 145–166. [Google Scholar] [CrossRef]
- Thompson, S.M.; Kent, J.L. Human health and a sustainable built environment. In Encyclopedia of Sustainable Technologies; Abraham, M.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 71–80. [Google Scholar] [CrossRef]
- Kaklauskas, A.; Gudauskas, R. Intelligent decision-support systems and the internet of things for the smart built environment. In Start-Up Creation; Pacheco-Torgal, F., Rasmussen, E., Granqvist, C.G., Ivanov, V., Kaklauskas, A., Makonin, S., Eds.; Woodhead Publishing: Sawston, UK, 2016; pp. 413–449. [Google Scholar] [CrossRef]
- Mezoued, A.M.; Letesson, Q.; Kaufmann, V. Making the slow metropolis by designing walkability: A methodology for the evaluation of public space design and prioritizing pedestrian mobility. Urban Res. Pract. 2021, 1–20. [Google Scholar] [CrossRef]
- Montgomery, J. Making a city: Urbanity, vitality and urban design. J. Urban Des. 1998, 3, 93–116. [Google Scholar] [CrossRef]
- Hall, C.M.; Ram, Y.; Shoval, N. The Routledge International Handbook of Walking; Routledge: New York, NY, USA; London, UK, 2017. [Google Scholar]
- Adkins, A.; Makarewicz, C.; Scanze, M.; Ingram, M.; Luhr, G. Contextualizing walkability: Do relationships between built environments and walking vary by socioeconomic context? J. Am. Plan. Assoc. 2017, 83, 296–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vichiensan, V.; Nakamura, K. Walkability perception in asian cities: A comparative study in Bangkok and Nagoya. Sustainability 2021, 13, 6825. [Google Scholar] [CrossRef]
- OECD. Resilient Cities; OECD Publishing: Paris, France, 2016; Available online: www.oecd.org/regional/regional-policy/resilient-cities.htm (accessed on 3 October 2021).
- Polese, F.; Troisi, O.; Grimaldi, M.; Loia, F. Reinterpreting governance in smart cities: An ecosystem-based view. In Smart Cities and the UN SDGs; Visvizi, A., Pérez del Hoyo, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 71–89. [Google Scholar] [CrossRef]
- Geropanta, V.; Karagianni, A.; Mavroudi, S.; Parthenios, P. Exploring the relationship between the smart-sustainable city, well-being, and urban planning: An analysis of current approaches in Europe. In Smart Cities and the UN SDGs; Visvizi, A., Pérez del Hoyo, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 143–161. [Google Scholar] [CrossRef]
- Gossen, H.H. Entwicklung der Gesetze des Menschlichen Verkehrs, und der Daraus Fliessenden Regeln für Menschliches Handeln; reprinted in Liberac: Amsterdam, The Netherlands, 1967; Friedrich Vieweg und Sohn: Braunschweig, Germany, 1854. [Google Scholar]
- Moscati, I. Measuring Utility. From the Marginal Revolution to Behavioral Economics; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Nisticò, S. Some notes on Gossen’s “submerged and forgotten” approach to consumption and time. Eur. J. Hist. Econ. Thought 2021, 28, 635–653. [Google Scholar] [CrossRef]
- Simoes, N.; Diogo, A.P. Marginal utility. In Encyclopedia of Quality of Life and Well-Being Research; Michalos, A.C., Ed.; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Jana, R.K.; Mitra, S.K. Maximizing pleasure in day tours: Utility theory approach. Int J Tourism Res. 2021, 23, 532–541. [Google Scholar] [CrossRef]
- Khaleel, F.; Avdukić, A. Exploring the epistemology of utility Function in islamic economics: Foundation of islamic finance. In Islamic Finance Practices; Efendic, V., Ed.; Palgrave Macmillan: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Zweifel, P.; Breyer, F.; Kifmann, M. Health Economics, 2nd ed.; Springer-Verlag: Berlin/Heidelberg, Germany, 2011; pp. 293–303. [Google Scholar]
- Norstad, J. An Introduction to Utility Theory. Available online: http://seshadri.us/docs/norstad_utility.pdf (accessed on 1 September 2021).
- Chipman, J.; Lenfant, J.S. Slutsky’s 1915 article: How it came to be found and interpreted. Hist. Political Econ. 2001, 34, 553–597. [Google Scholar] [CrossRef]
- Hicks, J.R.; Allen, R.J.D. A reconsideration of the theory of value. Economics 1934, 1, 52–76. [Google Scholar]
- Batley, R. On ordinal utility, cardinal utility, and random utility. Theory Decis. 2007, 64, 37–63. [Google Scholar] [CrossRef] [Green Version]
- Peart, S.J.; David, M.L. From Cardinal to Ordinal Utility Theory: Darwin and Differential Capacity for Happiness. Am. J. Econ. Sociol. 2005, 64, 79–851. [Google Scholar] [CrossRef]
- Von Neumann, J.; Morgenstern, O. Theory of Games and Economic Behavior; Princeton University Press: Princeton, NJ, USA, 1944. [Google Scholar]
- Alvino, L.; Constantinides, E.; Franco, M. Towards a better understanding of consumer behavior: Marginal utility as a parameter in neuromarketing research. Int. J. Mark. Stud. 2018, 10, 90–106. [Google Scholar] [CrossRef] [Green Version]
- Keller, L. The problem with the concept of utility and its measurement, the problem with the concept of utility and its measurement. Pol. J. Political Sci. 2015, 1, 6–44. [Google Scholar]
- Begg, D.; Fischer, S.; Dornbusch, R. Economics, 6th ed.; McGraw-Hill Education: New York, NY, USA, 2000; pp. 168–169. [Google Scholar]
- Wosiek, R.; Visvizi, A. The VWRCA index: Measuring a country’s comparative advantage and specialization in services. The case of Poland. Economies 2021, 9, 48. [Google Scholar] [CrossRef]
- Saeedi, K.; Visvizi, A. Software development methodologies, HEIs, and the digital economy. Educ. Sci. 2021, 11, 73. [Google Scholar] [CrossRef]
- Malik, R.; Visvizi, A.; Skrzek-Lubasińska, M. The gig economy: Current issues, the debate, and the new avenues of research. Sustainability 2021, 13, 5023. [Google Scholar] [CrossRef]
- Troisi, O.; Visvizi, A.; Grimaldi, M. The different shades of innovation emergence in smart service systems: The case of Italian cluster for aerospace technology. J. Bus. Ind. Mark. 2021. ahead-of-print. [Google Scholar] [CrossRef]
- Park, S.H.; Kim, J.H.; Choi, Y.M.; Seo, H.L. Design elements to improve pleasantness, vitality, safety, and complexity of the pedestrian environment: Evidence from a Korean neighbourhood walkability case study. Int. J. Urban Sci. 2013, 17, 142–160. [Google Scholar] [CrossRef]
- Blanc, I.; Friot, D.; Margni, M.; Jolliet, O. Towards a new index for environmental sustainability based on a DALY weighting approach. Sustain. Dev. 2008, 16, 251–260. [Google Scholar] [CrossRef] [Green Version]
- Nardo, M.; Saisanai, M.; Saltellii, A.; Tarantolai, S.; Hoffmanii, A.; Giovanniniii, E. Handbook on Constructing Composite Indicators: Methodology and User Guide; OECD Statistics Working Papers, No. 2005/03; OECD Publishing: Paris, France, 2005. [Google Scholar]
- Nardo, M.; Saisanai, M.; Saltellii, A.; Tarantolai, S.; Hoffmanii, A.; Giovanniniii, E. Handbook on Constructing Composite Indicators: Methodology and User Guide; OECD Publishing: Paris, France, 2008; Available online: https://www.oecd.org/sdd/42495745.pdf (accessed on 1 September 2021).
- S&P Dow Jones Indices. S&P/TSX Composite Equal Weight Index Methodology. 2021. Available online: https://www.spglobal.com/spdji/en/documents/methodologies/methodology-sp-tsx-equal-weight.pdf (accessed on 11 November 2021).
- Molinos-Senante, M.; Delgado-Antequera, L.; Gómez, T. Measuring the quality of service of water companies: A two-stage goal programming synthetic index proposal. Socio-Econ. Plan. Sci. 2021, 101140, In Press. [Google Scholar] [CrossRef]
- Cardenas Cardenas, G.; García Gamez, S.; Salas Suarez, A. A synthetic indicator of corruption for Latin America: A global vision. Compet. Rev. 2018, 28, 194–212. [Google Scholar] [CrossRef]
- Frank, L.D.; Sallis, J.F.; Saelens, B.E.; Leary, L.; Cain, K.; Conway, T.L.; Hess, P.M. The development of a walkability index: Application to the Neighborhood Quality of Life Study. Br. J. Sports Med. 2010, 44, 924–933. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Deakin, E.; Lee, J.S. Perception-based walkability index to test impact of microlevel walkability on sustainable mode choice decisions. Transp. Res. Rec. 2014, 2464, 126–134. [Google Scholar] [CrossRef]
- Habibian, M.; Hosseinzadeh, A. Walkability index across trip purposes. Sustain. Cities Soc. 2018, 42, 216–225. [Google Scholar] [CrossRef]
- Seth, S.; McGillivray, M. Composite Indices, Alternative Weights, and Comparison Robustness; OPHI Working Paper 106; University of Oxford: Oxford, UK, 2016; Available online: https://www.ophi.org.uk/wp-content/uploads/OPHIWP106.pdf (accessed on 11 November 2021).
- Shi, C.; Land, K.C. The data envelopment analysis and equal weights/minimax methods of composite social indicator construction: A methodological study of data sensitivity and robustness. Appl. Res. Qual. Life 2021, 16, 1689–1716. [Google Scholar] [CrossRef]
- Marsal-Llacuna, M.L.; Colomer-Llinàs, J.; Meléndez-Frigola, J. Lessons in urban monitoring taken from sustainable and livable cities to better address the Smart Cities initiative. Technol. Forecast. Soc. Chang. 2015, 90, 611–622. [Google Scholar] [CrossRef]
- Shen, Y.; Hermans, E.; Brijs, T.; Wets, G. Data envelopment analysis for composite indicators: A multiple layer model. Soc. Indic. Res. 2013, 114, 739–756. [Google Scholar] [CrossRef]
- Blancas, F.J.; Caballero, R.; González, M.; Lozano-Oyola, M.; Pérez, F. Goal programming synthetic indicators: An application for sustainable tourism in Andalusian coastal counties. Ecol. Econ. 2010, 69, 2158–2172. [Google Scholar] [CrossRef]
The Model Composite w2 Smart City Utility Index: Outline of Indicative Variables Aggregate Variables and their Components Built Environment Sidewalks | |||
---|---|---|---|
scores | |||
(i) | |||
1 | presence of sidewalk | score (i1) | |
2 | appropriate width of sidewalk for pedestrians, wheelchairs, and strollers | score (i2) | |
3 | pathway congestion with obstacles | score (i3) | |
4 | material used for sidewalk | score (i4) | |
5 | abrupt stoppages | score (i5) | |
6 | presence of shade | score (i6) | |
7 | presence of trees and landscaping | score (i7) | |
8 | presence of street furniture | score (i8) | |
curbs | |||
9 | presence of a curb | score (i9) | |
10 | height of a curb (ease of climbing up or down) | score (i10) | |
11 | presence of adequate ramps and slopes | score (i11) | |
roads and intersections | |||
12 | presence of adequate traffic lights to facilitate crossing | score (i12) | |
13 | traffic volume | score (i13) | |
14 | congestion points and traffic junctures | score (i14) | |
15 | noise levels | score (i15) | |
other | |||
16 | presence of appropriate mixed uses | score (i16) | |
17 | presence of resting spots | score (i17) | |
18 | other | score (i18) | |
Σ (total) | Σ(i1–i18) | ||
(ii) | ICT infrastructure | ||
1 | internet connectivity in the city | score (ii1) | |
2 | free Wi-Fi connection spots | score (ii2) | |
3 | ICT-enhanced traffic and emergencies management systems | score (ii3) | |
4 | smart city applications | score (ii4) | |
5 | public nodes for mobilization (charging spots, metric diagnosis units, ) | score (ii5) | |
6 | availability of publicly accessible devices to access information | score (ii6) | |
7 | other | score (ii7) | |
Σ (total) | Σ(ii1–ii7) | ||
(iii) | Regulatory frameworks | ||
1 | the existence of municipality/city level strategies supportive of utilitarian and non-utilitarian walking | score (iii1) | |
2 | the existence of municipality/city level strategies designed to boost walking-friendly infrastructure development | score (iii2) | |
3 | regulations on sidewalk trespassing by neighboring uses | score (iii3) | |
4 | regulations on adjacent building infrastructure in relation to sidewalk (air conditioning units exhaust and driplines) | score (iii4) | |
5 | regulations on width of sidewalks | score (iii5) | |
6 | rules on pedestrians’ priority of passage | score (iii6) | |
7 | execution of the pedestrians’ priority of passage and safety | score (iii7) | |
8 | rules on the required pathways’ width and curbs’ height | score (iii8) | |
9 | other | score (iii9) | |
Σ (total) | Σ(iii1–iii9) | ||
(iv) | Perceptions | ||
1 | overall assessment of the built environment and its impact on walking and walkability | score (iv1) | |
assessment of a specific subcomponent i1–i18 | Σ[iv1/(i1–i18)] | ||
2 | overall assessment of the ICT infrastructure and its impact on walking and walkability | score (iv2) | |
assessment of a specific subcomponent ii1–ii7 | Σ[iv2/(ii1–ii7)] | ||
3 | overall assessment of the regulatory frameworks and their impact on walking and walkability | score (iv3) | |
assessment of a specific subcomponent iii1–iii9 | Σ[iv3/(iii1–iii9)] | ||
(i)–(iv) | Total score | Σ(iv1–iv3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Visvizi, A.; Abdel-Razek, S.A.; Wosiek, R.; Malik, R. Conceptualizing Walking and Walkability in the Smart City through a Model Composite w2 Smart City Utility Index. Energies 2021, 14, 8193. https://doi.org/10.3390/en14238193
Visvizi A, Abdel-Razek SA, Wosiek R, Malik R. Conceptualizing Walking and Walkability in the Smart City through a Model Composite w2 Smart City Utility Index. Energies. 2021; 14(23):8193. https://doi.org/10.3390/en14238193
Chicago/Turabian StyleVisvizi, Anna, Shahira Assem Abdel-Razek, Roman Wosiek, and Radosław Malik. 2021. "Conceptualizing Walking and Walkability in the Smart City through a Model Composite w2 Smart City Utility Index" Energies 14, no. 23: 8193. https://doi.org/10.3390/en14238193
APA StyleVisvizi, A., Abdel-Razek, S. A., Wosiek, R., & Malik, R. (2021). Conceptualizing Walking and Walkability in the Smart City through a Model Composite w2 Smart City Utility Index. Energies, 14(23), 8193. https://doi.org/10.3390/en14238193