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Abstract: Environmental protection is currently one of the key priority areas of the European Union
(EU). The search for precise tools to assess the impact of the economy, industry, or the production
of individual products or services is crucial for an effective and efficient policy in environmental
protection. Blockchain technology, originally related to the financial sector and cryptocurrencies, is
an innovative solution that is increasingly being implemented by other areas of the economy and
industry sectors. The authors reviewed the literature and based on it presented the possibilities and
effects of using blockchain technology in Life Cycle Assessment (LCA), which is in line with the
current development trends of this method. The analysis of the research conducted in this area also
allowed to present not only the advantages of blockchain in LCA, but also the limitations of this
technology and the potential directions of further research.

Keywords: life cycle assessment (LCA); blockchain; management; Internet of Things (IoT); Corporate
Social Responsibility (CSR)

1. Introduction

Environmental protection, rational management of natural resources, and inclusion
of the ecological account in the economic account are among the contemporary priorities
of the European Union in implementing the sustainable development policy. On 14 July
2021, the European Commission (EC) adopted a set of proposals to make the EU’s climate,
energy, transport, and taxation policies fit for reducing net greenhouse gas emissions by
at least 55% by 2030, compared to 1990 levels. Achieving these emission reductions in
the next decade is crucial to Europe becoming the world’s first climate-neutral continent
by 2050 and making the European Green Deal a reality [1]. One of the answers to the
priorities of environmental protection contained in the EU documents is the remodelling of
the rules for determining the actual cost of production or services, including calculations of
all costs related to the production of goods and services along with their disposal—which
corresponds to the ISO 14001: 2015 standard [2]. The guidelines of ISO 14001: 2015 are
the basis for a methodology for assessing environmental impacts associated with all the
stages of the life cycle of a commercial product, process, or service, known as Life Cycle
Assessment (LCA) [3]. Estimating the costs of production and use of a product based on
the LCA method means taking into account the impact on the environment, society, and
economy throughout the entire life cycle of the product. The LCA method considers the
costs of using raw materials, the costs of material processing, maintenance, use, and final
disposal or recycling [4]. Linking the LCA assessment with the ISO 14,040 series standards
allows for the recognition of the cost of item production according to the following methods:
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(1) cradle-to-gate: from the extraction of raw materials and transporting them to the factory,
(2) cradle-to-grave: from raw material extraction, through use and disposal of the product
and (3) gate to gate: from one defined point to another on the product life cycle axis [5].
Growing awareness of business responsibility, the need to implement environmental
standards, or rationally managing resources are just some of the “motivators” to look for
solutions that, on the one hand, meet environmental protection requirements, and, on the
other hand, reduce consumption costs and increase the economic efficiency of production or
service processes. In this area, blockchain technology is becoming more and more commonly
and more widely used and supports the implemented business processes [6–12]. The question,
therefore, arises whether blockchain technology can be used in LCA? Should the further
direction of scientific research focus on linking these two research areas—blockchain and
LCA? The aim of the authors was, based on the conducted analysis of the literature, to
determine the current research trends in the area of potential blockchain use in LCA,
but also to draw attention to its potential limitations.

2. Blockchain

Blockchain is a technology that is increasingly used in the modern world. Its cre-
ator is Satoshi Nakamoto, who in 2008 used this technology in cryptocurrencies [13].
The idea of blockchain assumes creating data chains between any two pages and stor-
ing them in a distributed cloud environment [14]. This technology is most often associ-
ated with cryptocurrencies, financial markets, or transactions, still, it is more and more
widely used in other areas of industry or economy—health care, smart energy, copyright
protection [15–20]. Originally blockchain technology was used to create a peer-to peer
network and focused on cryptography and smart contracts [21–23]. Illustrating the current,
extensive range of blockchain technology use, one can use the visualization (Figure 1)
developed by Casino et al. [24].

By reviewing the literature in blockchain and the possibilities of its use, Xu et al. [24]
pointed to, emphasized by many researchers [11,25–30], a feature that enables the collection
and processing of vast amounts of data in real-time. It is the fundamental advantage of
this technology, which implies such extensive use. Hence, the financial area has become a
natural sector for using this technology [31]. Two branches of blockchain use out of the pos-
sibilities of using this technology indicated in Figure 1 [24] relate to: economy and industry,
as well as data management. The organization of production processes, supply chains, and
warehouse management requires processing considerable information. This is another area
that is within the scope of the possibility of adopting blockchain technology [32,33]. Other
areas of blockchain application are: medical sector [34–41], education [42] or management
and logistics [43,44]. Since, as many researchers emphasize, blockchain is primarily a kind
of database [21,45,46], which supports the reading and transmission of data (information).
It is based on a decentralized structure that allows direct contact of users without the
participation of an intermediary and at the same time ensures the security of event logs
with the help of the use of a time stamp [47,48]. The existing areas of blockchain technology
use have focused on financial applications or the processing of large amounts of data, e.g.,
personal data in medical or insurance services. Bui et al. [49] by reviewing the literature in
the blockchain area, they systematized and classified the research areas presented in the
literature. Bui et al. divided the publications of research results by category into: inherent
characteriscs of a blockchain and add-ons to a blockchain. The first category includes
publications that described blockchain features such as decentralization, immutability and
transparency. In the second category, however, publications were grouped according to
such features of blockchain technology as: authencity, privacy, smart contracts, incenvies
and deployment.

Zhang, Y et al. [50] and Tang et al. [51] indicate a great potential in the integration of
blockchain platforms with IoT, and thus the processing of a huge amount of data, which
consequently fits into the assumptions of smart city and sustainable development. The
main advantages of blockchain technology are: (1) the data that is stored on the blockchain
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network is a rich source of information in itself, (2) blockchains can enable trusted data
analytics environments to share data between multiple entities, adding an element of
certainty to data and derived analytical models [51]. Bui et al. claims that the advantages
of blockchain are based on a consensus mechanism. The authenticity of information in the
chain is determined and verified by most nodes before it is encrypted in blocks. However,
most of the existing research takes into account information from objective sources, and
very little takes into account information from subjective sources. Researchers who consider
such information do not propose an approach to verify its authenticity, and this remains a
research gap.
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Figure 1. Mindmap abstraction of different types of blockchain applications. Source: Casino, F.;
Dasaklis, T.K.; Patsakis, C. A systematic literature review of blockchain-based applications: Current
status, classification and open issues. Telematics and Informatics 2019, 36, 62 [24].

Therefore, is it indicated by Xu et al. [24] the use of blockchain in the areas of IoT and
Data Management can be linked and used in the LCA method? The authors point out that
the existing literature lacks a guiding framework integrating Blockchain and other relevant
technologies for carrying out LCA.

3. Life-Cycle Assessment

Dong et al. [52] (p. 4), while reviewing the literature, indicated the need to compare
the environmental performance of buildings. The existing criteria have been developed
based on: (1) the level of greenhouse gas emissions, (2) stages of the life cycle of a build-
ing, (3) absolute or relative value, (4) analysis of the entire building or its elements, and
(5) top-down or bottom-up approaches (Hollbeerg et al. [53]) (see Table 1).
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Table 1. Various types of benchmarks of LCA of buildings.

Category Benchmarks Description

LIFE CYCLE STAGES Whole life cycle Benchmark is a value for the whole life cycle of the building.
Life cycle phase Benchmark is a value for individual life cycle phases.

LEVELS OF VALUES Lowest acceptable value The limit value is defined as the lowest acceptable value.
Present state of the art The average or median values of the present state of the art.

Best-practice value The best-practice value that has been reached in building projects.
TOP-DOWN OR

BOTTOM-UP Top-down Benchmarks are defined based on political targets.

Bottom-up Most of the existing benchmarks are derived from theoretical values.
ABSOLUTE OR

RELATIVE VALUES Absolute values Benchmarks are defined as fixed values.

Relative values Internal benchmarks are defined according to a reference building.
WHOLE BUILDINGS

OR BUILDING
ELEMENTS

Whole building Benchmarks are for the whole building.

Building elements Benchmarks are for the individual building elements.

Source: Dong, Y.; Ng, S.T.; Liu, P. A comprehensive analysis towards benchmarking of life cycle assessment of buildings based on systematic
review. Building and Environment 2021, 204, 108162, https://doi.org/10.1016/j.buildenv.2021.108162, [52] p. 4.

The literature analysis in question shows that the LCA method is increasingly used
primarily in manufacturing industries. M. Buyle [54] and A.F. Abd Rashid and S. Yu-
soff [55] indicate difficulties in the direct use of LCA in construction due to the variety and
mass use of materials, long product life cycle, and their enormous technological and urban
diversity. S. Hellweg, L.M. Canals [56] and C.K. Anand, B. Amor [57] also emphasize the
difficulty of using the LCA method in construction due to the huge amount of data and the
inability to compare the tested objects, which is a significant problem when using the LCA
method, especially when comparing buildings. This is a significant drawback of the LCA
method, which in some cases may undermine the credibility of the obtained results. In
order to carry out a systematic assessment of the impact of buildings, the emission levels
should be analyzed quantitatively based on the impact analysis of each of the facilities
tested. Therefore, each of the tested objects will be assessed separately, and its features
will be taken into account, which is necessary for the interpretation of the environmental
performance of buildings. Anand and Amor [57] indicate that there is still a research gap
in this area, which makes it challenging to conduct a comparative analysis of buildings
using the LCA method. Many researchers focused on reviewing the literature in the area
of life-cycle assessment and its impact on the environmental assessment of buildings,
which undoubtedly allowed to enrich and systematize knowledge in this area, which is
an important step towards the elimination of the aforementioned barriers or problems
with the use of this method. Khasreen et al. 2009 highlighted the importance of LCA as a
decision support tool in the construction sector [58]. Ramesh et al. [59] performed a detailed
analysis of the effectiveness of applying the LCA method in the environmental assessment
of buildings on a large group of 73 cases from 13 countries. A similar research area was
adopted by Sharma et al. [60], who also studied the performance of the LCA in assessing
buildings located in different areas, but focused in particular on energy consumption by
building types and greenhouse gas emissions. Rashid and Yusoff [55], Chau et al. [25]
and Islam et al. [61] reviewed the LCA, Life Cycle Energy Analysis (LCEA) and Life-cycle
cost analysis (LCCA) methods to distinguish building materials that have a significant
impact on the environment. The problems with using the LCA method to compare the
impact of individual buildings on the environment indicated by Anand and Amor [57]
were analyzed by Soust-Verdaguer et al. [27], who identified possible simplifications
for each study to develop LCA. A similar research area—verifications of the applica-
tion nature of the LCA method for assessing the construction sector were carried out by
Saynajoki et al. [26]. The applicative nature of LCA can be found in work by Vilches et al. [62],
who investigated the impact on the environmental assessment of renovations and ren-
ovations of buildings carried out using the LCA method. Further possibilities of us-

https://doi.org/10.1016/j.buildenv.2021.108162


Energies 2021, 14, 8292 5 of 13

ing LCA in Building Information Modeling (BIM) were investigated by: Lu et al. [63],
Llatas et al. [64] and Potrc Obrecht et al. [65]. Lu et al. [63] performed a critical analysis
of BIM integrated with LCA and life-cycle costing (LCC). Llatas et al. [64] focused on the
possibility of integrating the Life Cycle Sustainability Assessment (LCSA) with the process
of building design and BIM. Potrc Obrecht et al. [65] analyzed the advantages and disadvan-
tages of various methods of the BIM integration process with LCA. The construction area is
extensive, hence attempts to use the LCA method also for individual construction products.
Yurong Zhang et al. [66] undertook a literature review on applying the LCA method in
the concrete production process with the use of ore waste recycling. Concrete is the most
widely used construction product. Its annual consumption is estimated at between 13
and 21 trillion tonnes [67]. Sustainable development requirements and the considerable
production needs of concrete promote the use of waste materials in its production. The
use of recycled aggregate concrete (RAC) is becoming more and more common, and the
LCA method allows to compare the environmental impact of concrete production using the
traditional natural aggregate concrete (NAC) and RAC methods [2,68,69]. Dong et al. [52]
(p. 4), while reviewing the literature, indicated the need to compare the environmental
performance of buildings. The existing criteria have been developed based on: (1) the level
of greenhouse gas emissions, (2) stages of the life cycle of a building, (3) absolute or relative
value, (4) analysis of the entire building or its elements, and (5) top-down or bottom-up
approaches (Hollbeerg et al. [53]) (see Table 1).

To answer the research question—what emission levels should a building have
throughout its life cycle, for different impact categories, respectively, Dong et al. [52]
applied two research methods: (1) case study selection and (2) comparative analysis using
CML 2001 [70] and IMPACT 2002+ [61]. As a result of the research, the factors influencing
the environment of the building’s life cycle (including three stages: (1) production, (2) use
and (3) end-of-life) were identified and grouped by categories (Table 2).

Table 2. Description of the impact categories and the conversion factors.

Impact Category Indicator Unit Referecne
Method Conversion Factors

CLIMATE CHANGE Global warming potential for time horizon
100 years kg CO2 eq CML

Non Specified: 1
TRACI:1.012

IMPACT
2002+: 1.048

ReCiPe: 0.983

ENERGY DEPLETION Abiotic depletion of fossil fuel related to the
lower heating value MJ CML

Non specified: 1
TRACI:
12.672

IMPACT
2002+: 0.958

ReCiPe:
42.748

EUTROPHICATION Eutrophication potential of emission of
nutrients kg PO4 eq CML

Non specified: 1
TRACI: 0.471 IMPACT
2002+: 10.397 ReCiPe:

3.951

ACIDIFICATION Acidification potential kg SO2 eq CML

Non specified: 1
TRACI: 1.061

IMPACT
2002+: 1.058

ReCiPe: 1.227
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Table 2. Cont.

Impact Category Indicator Unit Referecne
Method Conversion Factors

OZONE DEPLETION
Ozone depletion

potential of different
gases

kg CFC-11
eq CML

Non specified: 1
TRACI: 0.770 IMPACT
2002+: 1 ReCiPe: 0.159

PARTICULATE
MATTER

Fine particulate matter equivalent for
respiratory inorganics

kg PM2.5
eq

IMPACT
2002+

Non specified: 1
TRACI: 0.942 ReCiPe:

0.659

HUMAN TOXICITY Human toxicity potential describing fate,
exposure and effects of toxic substances

kg 1,4-DB
eq CML

Non specified: 1
TRACI: N.A. IMPACT
2002+: N.A. ReCiPe:

N.A.

Note: N.A.—not available. Source: Dong, Y.; Ng, S.T.; Liu, P. A comprehensive analysis towards benchmarking of life cycle assessment of
buildings based on systematic review. Building and Environment 2021, 204, 108162, https://doi.org/10.1016/j.buildenv.2021.108162, [52] p. 6.

Dong et al. [52] indicated a correlation between the suggested categories, but two of
them deserve special attention: climate change and energy depletion. Comparing types
based on different units of measurement requires their prior normalization (Figure 2).
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service life). Source: Dong, Y.; Ng, S.T.; Liu, P. A comprehensive analysis towards benchmarking of
life cycle assessment of buildings based on systematic review. Building and Environment 2021, 204,
108162, https://doi.org/10.1016/j.buildenv.2021.108162, [71] p. 12.

A literature review by Dong et al. [52] deserves special attention, as it touched upon
the problems of comparing buildings using the LCA method, previously highlighted by
Anand and Amor [57], or by Soust-Verdaguer et al. [27]. The conducted analysis of as
many as 105 cases allowed to observe significant discrepancies for all the indicated impact
categories. Dong et al. [52] reported comparative analysis of LCA results not always men-
tioned climate change, and depletion of energy sources are essential impact categories. In
general, LCA is a method that allows to estimate the cumulative environmental and social
effects associated with the production of a product or the provision of a service. [72,73]. An
important element of the use of LCA in the implementation of sustainable development
is the identification of key areas of the production process that have the most important
impact on the environment [74]. Currently, a significant burden on LCA is access to in-
formation within the entire life cycle of a product, which is crucial for its effectiveness
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and the ability to estimate its environmental impact [75,76]. The effectiveness of using
LCA to assess the impact on the environment and its barriers can be analyzed on a wide
level—systemic, organizational and the enterprise itself. The systemic barrier is the geo-
graphical complexity of supply chains and production processes, the use of outsourcing
significantly reduces the possibility of obtaining data necessary to assess the impact of a
manufactured product or service using the LCA method. On an organizational level, indi-
vidual suppliers often do not keep the necessary production process data, and consumers
still have a limited understanding of environmental issues. Barriers at the enterprise level
result from limited financial resources or limited human resources [77]. In addition, the
problem of the possibility of testing the impact on the environment with the dispersed
organization of production processes also arises from the legal framework [78]. Taking into
account the specificity of production processes, the LCA method must therefore be based
on assumptions and simplifications, which is its significant limitation [79–82].

There are two LCA methodologies in the literature: retrospective and prospective.
The retrospective LCA describes environmentally significant flows related to the life of the
product and its subsystems. The goal of a prospective LCA is to describe how environmen-
tally relevant flows will change in response to possible decisions [83,84]. Both retrospective
and prospective LCA analyzes have methodological limitations that result from access to
data and their standardization [81].

4. Life-Cycle Assessment Based on Blockchain Technology

The research question posed in this article regarding the possibility of supporting the
use of blockchain technology in the LCA method requires illustrating its impact on the
traditional structure of the LCA model [68] (Figure 3). It is worth recalling that blockchain
technology allows: (1) to ensure traceability and transparency of the goal and scope
definition, (2) at the inventory analysis level—by using the Internet of Things (IoT) con-
cept, collecting and integrating data collected in real-time, and (3) at the level of impact
assessment—create analytical forms [85] (Figure 4).
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The four phases (levels) of the LCA method defined by the ISO standard are supported
by blockchain allowing operational excellence at all levels. The problem of the analysis and
comparability of a large number of data in the LCA method, indicated in the literature on
the subject, appears at its first stage. According to the assumption, LCA should comprehen-
sively examine the product life cycle, from obtaining raw materials, production, use of the
product, its reuse, maintenance, recycling, and finally its disposal [86]. The time constraints
mentioned by the researchers, data availability, and financial resources will have the final
impact on the effectiveness of the LCA method [33]. Genovese et al. [87] indicate that the
use of blockchain solves other LCA problems of quantitative data regarding material and
energy consumption in production processes, which are diagnosed by Rebitzer et al. [88]
on the second level. The use of blockchain and IoT technologies at the third level of the
LCA—impact assessment allows for much more detailed analyzes. The IoT technology is
supported by sensors and devices that generate a huge amount of data in real-time, which
allows for a more precise determination of the potential influence of the discussed impact
categories, e.g., energy consumption or climate change [71,89,90]. The use of blockchain
in the three phases of the LCA method allows, in the last, fourth—interpretative stage, to
properly assess the product life cycle based only on relevant data. Moreover, the mentioned
collection of vast amounts of data in real-time significantly increases the possibilities and
functionalities of the LCA method: better use of production resources [91,92], more efficient
management of supply chains [93], reduction of production time [94], and consequently
gaining a competitive advantage by enterprises [95].

The aforementioned advantage of blockchain technology—the ability to collect, pro-
cess and analyze huge amounts of data in real time, which is the basic element of correct
LCA estimation, may also be its greatest threat. Sameri at al. indicate the problem of
access to data and competitive advantage. Blockchain technology would facilitate the
sharing of information through LCA activities, and some stakeholders, e.g., the company’s
management or shareholders, may consider access to such information as an element of
a competitive advantage, and therefore may consequently consider it confidential [96].
Hence, restricting access to information would significantly hamper LCA implementa-
tions with blockchain technology [97]. Another factor determining the possibility of using
blockchain in LCA is the participation of many stakeholders involved in the process of
collecting and processing data (e.g., an extensive production process involving several
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entities), which is a significant challenge in the organization and management of this
process [98,99].

Teh et al. studied the possibilities of using blockchain in the implementation of LCA
as part of a sustainable development policy and strategy on the example of the materials
industry, in particular, they examined how the use of blockchain in LCA can meet the
challenges of integrity, traceability and data transparency [100]. The implementation of
new technologies allows to achieve new possibilities, but a frequent problem in life cycle
assessment is still low availability of life cycle inventory (LCI) [101–103]. Certainly, new
technologies such as blockchain, IoT will allow to collect, combine and analyze large
amounts of data, which will revolutionize the data inventory process necessary for the
effective use of LCA [104]. Still, a significant limitation is the relatively low dissemination of
these technologies. A successful example of blockchain implementation is the Dutch dairy
sector, where the data inventory process (LCI) lasted up to several months, and the use of
the application programming interface (API) made it possible to shorten this period to zero
and ensure almost immediate access to this data, and thus increased the effectiveness of
the method LCA. [105]. The energy sector is another example where blockchain technology
successfully increases the economic and environmental efficiency of the energy production
process. The benefits of using blockchain include, among others: reducing transaction
costs by eliminating or reducing the need for intermediaries in operating the system,
increasing the consistency of energy standards, collecting data on energy production and
CO2 emissions in real time [106].

5. Conclusions

Supporting the LCA method with blockchain technology is undoubtedly the right
direction of increasing the effectiveness and eliminating the limitations of this method for
calculating the environmental impact assessment. In addition, the ability to process data
in real-time thanks to the use of IoT allows for broader use of LCA in every branch of the
economy or industry. In this article, the authors focus on using the LCA method in sectors
with the most significant impact on the environment. Still, a more common measurement
of individual elements of production chains in all economic areas is advisable. It will allow
for the collection of data and their ongoing analysis, optimization of production processes,
reduction of production costs, rational management of natural resources, and ultimately
increasing competitiveness. The use of blockchain technology will allow for a more precise
determination of the impact of the economy or a particular product on the environment and
has a measurable economic feature. This trend is not only in line with the EU strategy and
priorities [1], but is also of interest to Corporate Social Responsibility (CSR) [107,108]. The
literature review indicates the need for further research in the field of analysis of potential
areas of use of LCA based on blockchian technology [45,49,50,100,109–111].

However, the authors point to the existence of a research gap in the study of the
effectiveness of collecting and analyzing data using blockchain technology when conduct-
ing LCA. Conducting further research in this direction will allow us to better verify the
usefulness of blockchain in eliminating the current burdens of the LCA method.
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6. Karaszewski, R.; Modrzyński, P.; Modrzyńska, J. The Use of Blockchain Technology in Public Sector Entities Management: An
Example of Security and Energy Efficiency in Cloud Computing Data Processing. Energies 2021, 14, 1873. [CrossRef]

7. Kumar, V.D. How Blockchain Impact Energy Sector. Available online: https://www.blockchain-council.org/blockchain/how-
blockchain-impact-energy-sector/ (accessed on 22 February 2021).

8. Lakshmi, N.; Sricharan, S. Blockchain: Single Source of truth in Shared Services? An Empirical Paper on the Relevance of
Blockchain for Shared Services. Int. J. Recent Technol. Eng. 2019, 7, 6.

9. Lin, Y.-P.; Petway, J.R.; Lien, W.-Y.; Settele, J. Blockchain with Artificial Intelligence to Efficiently Manage Water Use under Climate
Change. Environment 2018, 5, 34. [CrossRef]

10. Paech, P. The Governance of Blockchain Financial Networks. Mod. Law Rev. 2017, 80, 1073–1110. [CrossRef]
11. World Energy Council. The Developing Role of Blockchain White Paper; World Energy Council: London, UK, 2017.
12. Zikratov, I.; Kuzmin, A.; Akimenko, V.; Niculichev, V.; Yalansky, L. Ensuring data integrity using blockchain technology.

In Proceedings of the 2017 20th Conference of Open Innovations Association (FRUCT), Saint Petersburg, Russia, 3–7 April 2017.
13. Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008. Available online: https://bitcoin.org/bitcoin.pdf (accessed

on 17 October 2021).
14. Iansiti, M.; Lakhani, K.R. The truth about blockchain. Harv. Bus. Rev. 2017, 95, 118–127.
15. Engelhardt, M.A. Hitching Healthcare to the Chain: An Introduction to Blockchain Technology in the Healthcare Sector. Technol.

Innov. Manag. Rev. 2017, 7, 22–34. [CrossRef]
16. Hyvarinen, H.; Risius, M.; Friis, G. A Blockchain-based approach towards overcoming financial fraud in public sector services.

Bus. Inf. Syst. Eng. 2017, 59, 441–456. [CrossRef]
17. Kim, H.M.; Laskowski, M. Toward an ontology-driven blockchain design for supply-chain provenance. Intell. Syst. Account.

Financ. Manag. 2018, 25, 18–27. [CrossRef]
18. O’Dair, M.; Beaven, Z. The networked record industry: How blockchain technology could transform the record industry.

Strateg. Chang. 2017, 26, 471–480. [CrossRef]
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