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Abstract: Due to the intermittence and randomness of the renewable energy, hybrid energy storage
system is widely adopted to suppress the power fluctuation. Power distribution is crucial for the
robust and efficient operation of hybrid energy system. This paper proposes an innovative framework
for hybrid energy storage system power distribution combining main circuit topology, modulation
method and power distribution strategy. Firstly, hybrid modulation strategy to realize power
distribution in a single-phase inverter is introduced. Then, power load prediction and low frequency
filter are utilized to generate references for power distribution. Finally, the simulation model is
established to test the framework and the result demonstrates the superiority of the proposed
framework. The mean absolute percent error of the proposed SSA-LSTM mdoel is 0.0955 and
the prediciton error by 40% compared with conventional LSTM model. Additionally, the energy
management framework can adjust the port power distribution ratio flexibily to significantly suppress
the power fluctuation of the grid and the operation cost of the hybrid energy storage system by
reducing the charge and discharge cycle of the battery.

Keywords: power distribution; hybrid modulation; asymmetrical Cascaded H-Bridge; power load
prediciton

1. Introduction

Under the dual pressure of excessive fossil energy consumption and environmental
degradation, the renewable energy systems with distributed generator (DG) such as solar
photovoltaic (PV) and wind turbine (WT) have aroused wide attention in the recent years [1].
Without pollution, the renewable energy systems will play an essiential part in the modern
power system. However, there exist some concerns about the development of renewable
energy systems due to their intermittent and random features [2]. The generated energy of
DG is subject to environmental factor like solar irradiance, temperature and weather [3],
which poses threat to the stability of the main grid. To deal with this problem, the large
scale distributed energy storage units are usually utilized to suppress the fluctuations in
energy production and electric power load to improve the reliability and robustness of
microgrids [4,5]. Conventional battery energy storage system (BESS) suffers from high
capital cost and capacity attenuation due to frequent charge and discharge, which restricts
the healthy and sustainable develop of renewable energy system [6,7]. As a remedy to that
issue, hybrid energy storage system (HESS) with multiple types of energy storage devices
is becoming mainstream.

Various energy storage devices are equivalent to DC ports with different characteristics
in energy density and power density [8]. These storage devices can be generally divided
into two types: high-energy storage (ESS-E) and high power storage (ESS-P) where ESS-E is
responsible for long-term energy fluctuations [7,9] and ESS-P deals with the fast transient
power [10]. Battery-Supercapacitor (SC) is the classical combination of ESS-E and ESS-P in
many scenarios, making their respective advantages complementary to each other [11,12].
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To realize flexibile power distribution between different ports of ESS and ac grid, the
HESS consists of three vital parts, i.e., the power converter layer, the modulation layer
and the control layer [13]. The power converter layer is responsible of power conversion
between the different ports and ac grid. The modulation layer is responsible to generate
gate drive signal for power switches. The control layer allocates the stochastic load power
between ports according to their characteristics.

In the power converter layer, various converter configurations have been introduced
in the literature. Conventionally, the distributed power is implemented to batteries and
SCs through extra dc-dc converters [14,15]. Undesirably, part energy has to be processed
twice, and the conversion efficiency is reduced as well [16]. Multi-port converters(mpc)
with multiple energy storageinterfaces and an ac port have drawn wide attention in
HESS because of many specific merits, including higher integration, reduced harmonic
content of the output voltage and less cost compared with conventional solutions [17,18].
MPC integrates ess energy management and dc/ac power output. Hereby, there is one
stage of power conversion from energy storage to the grid, leading to the lower cost
and higher efficiency. Notwithstanding the above advantages brought by mpc, the main
challenging issue is to control and distribute the power between the ports according to
specific application requirements [19].

In the modulation layer, many researches have been conducted to deal with the
power distribution in MPC. Reference [8] shows the modulation strategy of a MPC in EVs.
By turn several switches off in a fundamental period, the MPC operates in a two-level
mode to allocate power between different ports. But this modulation strategy is unable to
applied in multilevel converter. In the literature [16,20], modified space vector pulse width
modulation(SVPWM) is proposed based on a specific three-port three-phase converter.
However, the proposed methods is difficult to generalize to other topologies and power
distribution algorithm is not mentioned in these literature and these methods will bring
about low frequency harmonic content and is difficult to generalize to other topologies.

In the control layer, the power flow distribution algorithm for HESS have been con-
sidered to be significant in many scenarios. The control strategies can be divided into
two parts, i.e., rule-based(RB) control, and AI-based control [13]. The RB control is based
on human expertise. A typical RB control is filter-based control. Reference [21] shows a
novel discrete Fourier transform phase-locked loop method to allocate power between
PV and segmented energy storages. The main drawback of this method is that cutoff
frequencies of the filter is hard to determine [22]. Machine learning methods demonstrate
ground-breaking performance in this issue. Reference [7] proposes a knowledge-based
battery energy management for hybrid electric bus. Apart from the computational burden,
criticism against the existing driving pattern recognition methods is that the data are mostly
based on binary classification, which may cause loss of useful information. Additionally,
the converter topology is not taken into consideration.

In this paper, a framework for power distribution of HESS is introduced as is shown
in Figure 1. The proposed framework is composed of MPC topology, modulation method
and power distribution strategy. The combination of battery and super capacitor is chosen
as HESS units due to its high feasibility and low cost. Asymmetrical Cascaded H-Bridge
(ACHB) is set as the topology of the MPC due to its modularity and scalability [23,24].
The power distribution strategy is responsible for allocating output power reference for
battery and SC on the basis of frequency while the modulation method is responsible
for generalizing the switch drive signals. The main contributions of this paper can be
summarized as: (i) In the power convergence layer, The inverter implementation is taken
into consideration to improve the overall operation performance. (ii) In the modulation
layer, the proposed hybrid modulation strategy can allocate the power flexibly between
different ports without give birth to low frequency harmonic content. (iii) In the control
layer, the proposed prediction method is superior in accuracy by improving long-short-term
memory (LSTM) with Sparrow Search Algorithm (SSA). The mean absolute percentage
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error of proposed SSA-LSTM model is 0.0955 and prediction error is reduced by 40%
compared with conventional LSTM model.

Figure 1. Circuit configurations for renewable energy system with HESS.

This rest content is organized as follow: Section 2 demonstrates the hybrid modulation
method for power flow control based on the ACHB converter. In Section 3, the proposed
power distribution algorithm is elaborated in detail. Then the simulation results are
presented to verify the feasibility of the framework in Section 4. At last, the conclusion is
summarized in Section 5.

2. Asymmetrical Cascaded H-Bridge under Level-Shift PWM

ACHB is a typical multi-port single-phase converter for HESS because of its high
modularity, which is shown in Figure 2. The main H-bridge module is connected to a
battery pack Vdc as a HESS-E and the auxiliary module is fed from a super capacitor Vc as a
HESS-P. The positive direction of output current is shown as well.

Figure 2. Single-phase two-cell asymmetrical hybrid CHB MLI.
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The relationship between output voltage levels and switching status can be described
by switching function, which can be defined as:

Si(t) =
{

0 if switch is off
1 if switch is on

, i = 1, 2, 3, 4, 5, 6, 7, 8 (1)

where Si is the switch function of the switch i. Note that the switch pairs S1&S3, S2&S4,
S5&S7 and S6&S8 work in a complementary mode, the relationship of complementary
switches can be presented as the following:

S2 = S1 = 1− S1

S4 = S3 = 1− S3

S6 = S5 = 1− S5

S8 = S7 = 1− S7

(2)

The output voltage vab(t) can be expressed by switching function:

vab(t) = v1(t) + v2(t) = Vc × (S3 − S1) + Vdc × (S7 − S5) (3)

where v1(t) and v2(t) is the output voltage of main H-bridge and auxiliary cell. In order to
analyze power distribution between ports, some assumptions are made, which are listed as

1. Dead-band intervals of switches are ignored.
2. The output current io is an ideal sinusoidal wave, which can be expressed as io(t) =

Iom sin(ωt + θI), where θI is the phase angle of output current.
3. The conduction voltage drop and equivalent resistance of switches are ignored.
4. The voltage increment of super capacitor and battery within a fundamental cycle

is negligible.

3. Modulation Method for Power Flow Control

The Port Power Distribution Ratio (PPDR) is the power of a energy storage unit to the
total power of the converter. A positive PPDR means energy is flowing out of the units and
vice verse. PPDR is chosen to evalute the energy management capacity of a energy storage
unit in the given topology. The PPDR of super capacitor in ACHB can be calculated as

PPDRc =
Pc

Pout
=

∑
N=

fc
fm

i=1

∫ Ti
Ti−1

io(t) fmV1(t)dt

Pout
(4)

where N is the frequency modulation index, fm is the fundamental frequency, fc is the
switching frequency, Pout is the output power of the converter, Vc is the actual voltage of
super capacitor. Output power of auxiliary cell in a fundamental cycle is the sum of output
power in each carrier cycle as is shown in Equation (4). The current of output current Io(t)
can be seen as a constant value during one carrier cycle since the carrier cycle is very short
and the output voltage of auxiliary cell V1(t) can be expressed by the switching function
according to Equation (3). Hence, the output power of auxiliary cell Pc can be rewritten as

Pc =

N=
fc
fm

∑
i=1

fmVcio(Ti)
∫ Ti

Ti−1

S3(t)− S1(t)dt (5)

The integration of switching function in Equation (5) can be expressed by the duty
cycle, which be calculated as

S3(t)− S1(t)dt = (d3(Ti)− d1(Ti))(Ti − Ti−1) (6)
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Since the term Ti−1 − Ti is very small, it can be viewed as a differential item. The
Equation (6) can be expressed by

PPDRc =

∫ 2π
ω

0 fmVcio(t)× (d3(t)− d1(t))dt
Pout

(7)

The duty cycle term in Equation (7) d1(t)− d3(t) depends on the modulation method.
At present, Level-shift PWM (LSPWM) is widely adopted in multilevel modulation. As
is shown in Figure 3, six triangular carriers modulate the sinusoidal reference wave to
engender seven voltage levels. The reference wave can be written as

vre f (t) = Vm sin(ωt + θv) (8)

where Vm is the amplitude of reference wave. In order to avoid over-modulation operation
regardless of the super capacitor voltage, the Vm is assumed to be equal to Vdc. Therefore,
there are six carrier waves and seven output voltage levels in Figure 3.

Figure 3. Seven-level LSPWM technique.

The duty cycle term d1(t)− d3(t) depends on which carrier is modulated by. Consid-
ering symmetry between the positive and negative parts of the modulation, the electrical
charge increment of positive half cycle is calculated as

When the reference wave amplitude vre f (t) is in area 1 (vre f (t) ∈ [0, Vc]), the duty
cycle term d1(t)− d3(t) is expressed in the following equation:

d3(t)− d1(t) =
Vm sin(ωt + θv)

Vc
(9)

Substituting Equation (9) into Equation (7), the electrical charge increment of this
symmetric part can be calculated as

Pc1 =
Vc Iom cos(θ)

π

(√
1− V2

c
V2

m
− Vm

Vc
asin

(
Vc

Vm

))
(10)

where θ represents the load impedance angle, which equals to θv − θi. Similarly to the
analysis above, the theoretical expression of the charge increment from area 2 to area 3 can
be acquired as follows, respectively.
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Pc2 =
2Vc Iom

π
(2Vc −Vdc)

(
Vc cos(θ)

√
V2

m −V2
c

V2
m

−Vc cos(θ)

√
V2

m −V2
c −V2

dc + 2VcVdc

V2
m

+ Vm cos(θ) asin
(

Vc

Vm

)
+ Vm cos(θ) asin

(
Vc −Vdc

Vm

)
−(2Vc −Vdc) cos(θ)

√
V2

m −V2
c

V2
m

)
(11)

Pc3 =
Iom

π

Vc cos(θ)

√
V2

m −V2
c −V2

dc + 2VcVdc

V2
m

−Vdc cos(θ)

√
V2

m −V2
dc

V2
m

−Vm asin
(

Vdc
Vm

)
cos(θ)

+ Vdc cos(θ)

√
V2

m −V2
c −V2

dc + 2VcVdc

V2
m

−Vm asin
(

Vc −Vdc
Vm

)
cos(θ)

)
(12)

Based on the above equations, the power of auxiliary cell can be expressed as

Pc = 2 ∑
i=1

Pci (13)

The PPDRc can be calculated according to Equations (7) and (13). The influence of Vc
and θ on PPDRc with Vm = Vdc = 220

√
2V is shown in Figure 4.

Figure 4. Influence of Vc and θ on the electrical charge increment.

As is shown in Figure 4, by increasing the super capacitor voltage and load power
factor, the value of PPDRc keeps increasing. It is inevitable that the PPDRc is determined
by the specific operation point in LSPWM. In this paper, hybrid modulation method is
proposed to control power flow between ports flexibily.
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The proposed hybrid modulation strategy is innovatively utilized in this article to
control power flow between cells in ACHB. As is depicted in Equation (7), the output power
of each cell is associated with nonorthogonal fundamental component of H-bridge’s output
voltage. The power flow can be controlled if the nonorthogonal fundamental component
is controllable. Sine pulse width modulation (SPWM) can be added in the modulation
strategy to transfer the fundamental component between the ports in ACHB.

In the proposed hybrid modulation strategy, carrier cycle Ts is divided into LSPWM
operation time Tn and SPWM operation time Tu as is shown in Figure 5. In LSPWM,
operation time Tn, all H-bridge cells are modulated by conventional LSPWM uniformly to
generate multilevel output voltage. In SPWM operation time Tu, two H-bridge cells are
modulated by different SPWM, respectively.

du1 and du2 are the duty cycle of the auxiliary cell and main cell. The duty cycle of
auxiliary cell du1(t) can be calculated as

du1(t) = mu1 sin(ωt + θvu1) (14)

where mu1 and θvu1 is the amplitude modulation index and phase of SPWM.

Figure 5. Proposed modulation strategy.

In the proposed hybrid modulation strategy, LSPWM operation part is mainly re-
sponsible for the fundamental component of output voltage. The injected SPWM enables
degrees of freedom to transfer energy between ports in ACHB without low-order har-
monic content.

In hybrid modulation strategy, the reference wave of LSPWM and each SPWM are an
ideal sinusoidal wave which can be expressed as

vml(t) = Vml sin(ωt + θv) (15)

vdc
ms(t) = Vdc

ms sin(ωt + θdc
s ) (16)

vc
ms(t) = Vc

ms sin(ωt + θc
s) (17)

where vml(t), vdc
ms(t), vc

ms(t) are the reference waves of LSPWM, the SPWM for main cell
and the SPWM for auxiliary cell. In order to ensure the magnitude of fundamental output
voltage Vm, the relationship between the three reference waves can be expressed as:Vm = Vm1

Tn

Ts
+ (Vdc

ms cos(θdc
s − θv) + Vc

ms cos(θc
s − θv))

Tu

Ts

Vds
ms sin(θds

s − θv) + Vc
ms sin(θc

s − θv) = 0
(18)
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To simplify the analysis, the power factor angle of each modulation is assumed as 1,
which can be expressed as

θv = θI = θdc
s = θc

s (19)

In hybrid modulation, the PPDRc can be calculated as

PPDRc = PPDRLSPWM
c + PPDRSPWM

c (20)

where PPDRLSPWM
c ,PPDRSPWM

c are the port power distribution ratios of auxiliary cell
contributed by LSPWM abd SPWM part, respectively.The PPDRSPWM

c can be calculated as

PPDRSPWM
c =

PSPWM
c
Pout

=
Vc

msTu

VmTs
(21)

According to Equations (20) and (21), PPDRc can be controlled by adjusting Vc
ms and Tu.

Define Vc
ms/Vc as SPWM modulation index mc

s for the auxiliary cell, which ranges
from 0 to 1. According to the aforementioned calculation, the relationship between PPDRc
and Vc, mc

s is shown in Figure 6 when Tu/Ts is fixed as 0.1 and the RMS of output voltage
is 220 V.

Figure 6. Influence of Vc and mc
s on PPDRc.

When mc
s = 1, PPDRc has the maximum value. PPDRc can be adjusted below the

maximum value when mc
s ranges from 0 to 1. It is obvious that minimum value of PPDRc

is the opposite of maximum value when current direction is contrary to the voltage. The
influence of Vc and Tu/Ts on the maximum value of PPDRc is demonstrated in Figure 7.
The flexibile power distribution between ports can be realized below the dash line as is
shown in Figure 7.
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Figure 7. Influence of Vc and Tu/Ts on the maximum value of PPDRc.

4. SSA-LSTM-Model-Based Power Flow Control Algorithm

This part introduces a power HESS control algorithm based on SSA-LSTM .

4.1. Long Short-Term Memory (LSTM) Architecture

Long Short-Term Memory (LSTM) have emerged as an effective and scalable model
for sequential data recently. Unlike earlier methods such as Recurrent Nerual Network,
LSTM model is both adaptive and effective at capturing long-term temporal features [25].
They do not suffer from the optimization obstacles that plague simple recurrent networks
(SRNs) and have been widely used to deal with many difficult sequence problems. This
includes handwriting recognition, natural language processing, power load data prediction
and so on [26].

The core feature of LSTM lies in cell state and gate structure. A schematic of LSTM
basic cell can be seen in Figure 8. The hidden layer cell of LSTM has 3 inputs value at time
t: input xi of the current input layer, the output hi−1 of the previous hidden layer, and the
state value ct−1 of the previous cell. Each cell generates two outputs, which are the current
output hi and current cell state value ci. The cell also features three gates (input, forget,
and output). These gates can be defined by the following set of equations:

Forget gate:
ft = σ

(
W f [ht−1, xt] + b f

)
(22)

Input gate:
it = σ(Wi[ht−1, xt] + bi) (23)

Output gate:
ot = σ(Wo[ht−1, xt] + bo) (24)

where W and b present the weight and bias of each gate, σ is the sigmoid function.
Memory cell:

ct = ft ⊗ ct−1 + it ⊗ tanh(Wc[ht−1, xt] + bc) (25)

Cell output:
ht = ot ⊗ tanh(ct) (26)

where tanh is the activation function of the LSTM cell and the ⊗ presents matrix multipli-
cation.

LSTM can re
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Figure 8. Schematic of LSTM block.

4.2. Application of Sparrow Search Algorithm for LSTM Optimization

Sparrow Search Algorithm is inspired by the behavior of sparrow and uses sparrow
position to present optimization variables [27]. It has been proved that SSA is superior in
accuracy, convergence speed, stability and robustness compared with other swarm intelli-
gence algorithms [28]. Therefore, SSA is an effective means of parameter optimization.

In the SSA, the sparrow population is divided into two types: producer and scrounger.
The producer accounts for searching for food while the scrounger follows the producer in
order to get food. According to observations, sparrows can flexibly shift between producer
and scrounger. The positions of the sparrow population represent the potential solutions
of a optimization problem. The sparrows update their position according to their social
role and safety threshold.

Through the above description of sparrow population’s behavior, the flow chart of
SSA is shown in Figure 9.

Figure 9. Program flow chart of SSA.
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The producers search the foraging area on a large scale and update the location
according to (27)

Xt+1
i,j =

{
Xt

i,j · exp
(
−i

α×T

)
if R2 < ST

Xt
i,j + Q · L if R2 > ST

(27)

where t represents iteration. Xt
i,j is the coordinate of the jth dimension of sparrow i.

R2 ∈ [0, 1] indicates a warning value and ST is the safety threshold. ST usually takes
a value of 0.8. Q is a normally distributed random number. L is a matrix where all the
elements are 1, and the size is 1× d. T is total number of iteration.

When R2 < ST, it shows that the sparrow population is safe and will search on a large
scale. Conversely, the sparrows quickly move to other areas.

For scroungers, they update the position according to (28)

Xt+1
i,j =

 Q · exp
(

Xt
worst−Xt

i,j
i2

)
if i > n/2

Xt+1
P +

∣∣∣Xt
i,j − Xt+1

P

∣∣∣ · A+ · L otherwise
(28)

Among them, Xp is the best position among producers, Xworst is the worst position of
the population in this iteration, A is a 1× d matrix and the elements are randomly assigned
as 1 or −1, It indicates search direction.

When i > n/2, it means that these sparrows are very hungry, and they will fly to other
places by themselves.The remaining scroungers move around the producers because of the
rich food and compete with the them to become the producers.

The algorithm assumes that 10% to 20% of the sparrows can be aware of the dan-
ger. The sparrows were randomly selected and their position is updated according the
Equation (29):

Xt+1
i,j =


Xt

best + κ ·
∣∣∣Xt

i,j − Xt
best

∣∣∣ if fi > fg

Xt
i,j + K ·

(
|Xt

i,j−Xt
worst

( fi− fw)+ε

)
if fi = fg

(29)

Among them, Xbest is the best position of the population in this iteration; κ is the
parameter which controls step; K is a random number of 1 or −1; The fitnes value of
sparrow is fi; fg and fw are the best and worst fitness values of the population. ε is a
constant.

In (29), when fi > fg, sparrows are at eht edge of the population, so they fly to the
best positon Xbest of the population. fi = Fg indicates that these sparrows are already in
the best positoin Xbest. Due to their alertness, they need to move closer and stay away from
the worst position Xworst in the meanwhile.

To enhance the prediction accuracy and stability, this paper proposes a hybrid model
SSA-LSTM that employs the SSA to optimize the initial weights and bias of LSTM. The
major steps of the SSA-LSTM model are elaborated below:

1. Initialize the parameters of the SSA including sparrow population, position, composi-
tion and the maximum number of iteration. Initialize the structure of LSTM and the
weights and bias of LSTM model are taken as optimization targets.

2. The objective function of SSA is the mean absolute error (MAE) of predicted value of
untrained LSTM model compared with raw data.

3. Update the positions of the sparrows based on the results of the objective functions to
achieve the optimal initial value of LSTM when reach the maximum iteration number.

4. The particle values of SSA is used as the LSTM model’s weights and bias. Then
the training dataset is input into optimized LSTM model to get the final forecasting
model.
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5. Power Distribution Framework

The analysed system architecture is shown in Figure 10. The renewable energy
generator and HESS are directly connected to the grid. The HESS, which is composed of
ACHB and energy storage units, is responsible for smoothing the power fluctuation.

Figure 10. The flow chart of proposed power distribution strategy HESS.

The proposed control strategy for the framework is divided into the following three
steps.

Step 1: Future information is essiential to power distribution. Therefore, the SSA-
LSTM model is utilized to obtain the power reference for HESS based on the given multidi-
mensional information.

Step 2: Low pass filter (LPF) is adopted to seperate the frequency component of power
reference according to the energy units’ response time. Low frequency is regarded as the
power reference for the HESS-E while the rest part is taken as the reference for the HESS-P.

Step 3: The proposed hybrid modulation method is employed to generate the driving
signal for the switches in the inverter according to the power reference.

6. Experiment and Analysis
6.1. Data Description

In order to evaluate the proposed model, the experiment was carried out using the
actual load data. This is a dataset reports on daily hourly power load and relevant variables
from September 2013 to August 2015 in a district of Nanjing, China.

In a power system, the weather information is usually the dominant variable in driv-
ing the electricity demand. This dataset includes the date-time, power load, temperature,
pressure, wind direction, wind speed and the cumulative number of snow and rain col-
lected from Supervisory Control And Data Acquisition (SCADA) system. The input data of
the model is the environmental factors sampled every 15 minutes and the local load while
the output data is the power reference for the HESS to keep power balance.

The Root Mean Square Error (RMSE), the Mean Absolute Error (MAE), and the Mean
Absolute Percentage Error (MAPE) are used as metrics to evaluate the performance of the
model. The three error measures are displayed as follows:

RMSE =

√√√√ 1
T

T

∑
t=1

(Rt − Ft)
2 (30)
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MAE =
1
T

T

∑
t=1
|Rt − Ft| (31)

MAPE =
1
T

T

∑
t=1

∣∣∣∣Rt − Ft

Rt

∣∣∣∣ (32)

where Rt is the real data, Ft is the predicted value, and T means the total number of testing
data. The entire training data is divided into two groups: training and validation sets. The
training sets are used to train different models while the load prediction using validation
data set is employed to test the model’s effectiveness. Two simulation validation are carried
out based on the different time scales. For a long term power distribution which is longer
than one hour, the simulation model is established to validate the performance of software
control strategy. For a short term MPC operation, the variable of PPDR can be neglected
and model based on Simulink is built to present its output power quality. The parameters
of the simulation model are presented in Table 1. Comparisons among different models are
given below.

Table 1. Parameters of Simulated ACHB system.

Parameters Value

DC source voltage Vdc 900 V

Capacitor voltage Vc 300 V

Output frequency f 50 Hz

Carrier frequency fc 20 kHz

Power factor cosθ 1

6.2. Experiment Results and Analysis

The prediction errors for each reference model are given in Table 2, and the comparison
of prediction results of each reference model for datasets are given in Figure 11.

Table 2. Comparison between Different Models.

RMSE (kW) MAE (kW) MAPE

ANN 2646.913 2291.346 0.304

LSTM 1342.607 975.746 0.167

SSA-LSTM 1109.224 664.887 0.0955

Figure 11. (a) Intercepted Fragment of Prediction results. (b) Prediction accuracy comparison
between different models.

As can be seen from Table 2 and Figures 11 and 12 ,the following conclusion can be
achieved.
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1. The proposed SSA − LSTM model have lower forecasting error, indicating an im-
proved accuracy of the power load prediciton.

2. Compared with the conventional LSTM model, the SSA − LSTM model reduces the
prediction error by about 40%, suggesting its potential for practical application.

3. the SSA + LSTM prediction method proposed in this paper follows the curve of real
values closely, which shows outstanding performance of out of sample.

4. In the short term simulation, the proposed modulation strategy can allocate the power
flexibily without giving birth to low frequency harmonic content as is shown in
Figure 12. The harmonic content is located around the switching frequency.

Figure 12. Spectrum of output voltage under the fixed PPDR.

As is shown in Figure 13. A five order filter is adopted according to the response time
of battery. The low frequency component is the power reference for ESS-E while the high
frequency component is for the ESS-P. Due to the LPF algorithm and supercapacitor, the
charge and discharge cycle of the battery can be reduced. And the result indicates the
proposed energy management can significantly reduce the operation cost.

Figure 13. Intercepted Fragments of Simulation results.

7. Conclusions

In this paper, an framework for power distribution in HESS has been introduced
innovatively. This framework is synthetically considered among the main ciruit topology,
the modulation method and the power distribution strategy. The software algorithm
has the strong flexibility and can be applied into many other topologies and system
structures. The SSA-LSTM algorithm is used to obtain the total power output of the HESS,
which will be divided into two parts based on frequency by LPF. The proposed hybrid
modulation method is applied to drive the switches in the ACHB. Under the proposed
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power distribution strategy, the MPC operate in a high efficiency because only one stage of
power conversion between energy storage and the grid The influence of energy storage
capability has been sidestepped based on the assumption that the capability is large enough.
Improving long-short-term memory (LSTM) with Sparrow Search Algorithm (SSA), the
proposed prediciton method obtain outstanding performance in accuracy. The MAPE
of the proposed SSA-LSTM mdoel is 0.0955 and the prediciton error is reduced by 40%
compared with conventional LSTM model. Additionally, the proposed hybrid modulation
strategy can allocate the power flexibily between different ports without give birth to
low frequency harmonic content. The framework presents an overall solution for HESS
covering hardware configuration and control strategy, which is a significant theoretical
guide for the construction of HESS. In the future work, the equivalent frequency of the
inverter switches need to be reduced to decrease the switching loss. Furthermore, different
circuit configurations can be further investigated under the proposed power distribution
strategy and more factors will be taken into consideration to improving the stability of the
proposed strategy.
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