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Abstract: Global optimization of industrial plant configurations using organic Rankine cycles (ORC)
to recover heat is becoming attractive nowadays. This kind of optimization requires structural and
parametric decisions to be made; the number of variables is usually high, and some of them generate
disruptive responses. Surrogate models can be developed to replace the main components of the
complex models reducing the computational requirements. This paper aims to create, evaluate, and
compare surrogates built to replace a complex thermodynamic-economic code used to indicate the
specific cost (US$/kWe) and efficiency of optimized ORCs. The ORCs are optimized under different
heat sources conditions in respect to their operational state, configuration, working fluid and thermal
fluid, aiming at a minimal specific cost. The costs of 1449.05, 1045.24, and 638.80 US$/kWe and energy
efficiencies of 11.1%, 10.9%, and 10.4% were found for 100, 1000, and 50,000 kWt of heat transfer
rate at average temperature of 345 ◦C. The R-square varied from 0.96 to 0.99 while the number of
results with error lower than 5% varied from 88% to 75% depending on the surrogate model (random
forest or polynomial regression) and output (specific cost or efficiency). The computational time was
reduced in more than 99.9% for all surrogates indicated.

Keywords: organic Rankine cycle; thermodynamic; economic; optimization; surrogate model; meta-
model; heat recovery

1. Introduction

Energy, environmental, and economic issues have guided researchers into the opti-
mization of available energy sources. The use of waste heat and low temperature renewable
sources to generate electricity using organic Rankine cycles (ORCs) has gained attention in
the last decade. However, the use of organic substances as working fluid in power cycles
emerged in the mid-1820s when Thomas Howard replaced water with ether in a power
machine [1]. Since then, several works have reported the use organic fluids in Rankine
cycles and highlighted the contributions of Luigi d’Amelio, who developed an experimen-
tal turbine using ethyl chloride in 1954, and Harry Zvi Tabor and Lucien Bronicki, whom
tested small solar ORC units (2 kWe and 10 kWe) with monochlorobenzene in 1961 [2–4].

Over the years ORC systems have demonstrated some important advantages when
compared to conventional power generation technologies including: (1) lower operational
pressure; (2) supercritical cycles at lower temperature and pressure; (3) the possibility of
selecting positive condensing pressure; (4) the possibility of selecting a fluid appropriated
to the thermal source available; (5) efficient systems at small sizes; and (6) simpler cycle
configurations [5]. Due to the good features reported, the commercial use of ORCs is
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now available worldwide. ORMAT (1964) and Turboden (1970) established themselves as
pioneers in the ORC market and remain until now as big players in this field. However,
other companies can also be highlighted such as Exergy, Turbine Air Systems (TAS), General
Electric, Kaishan, Adoratec, among others. The total installed capacity of this technology
at the end of 2016 was 2701 MW, mainly applied to geothermal sources, which represents
74.8% of the ORC installed capacity [6,7].

Currently, organic Rankine cycles (ORC) still represent a promising alternative to
generate power from low and moderate temperatures [8,9]. In recent years, works have re-
ported ORC systems using various thermal sources such as geothermal [10–12],
biomass [13–15], solar thermal [16–19], and waste heat [20–23]. Optimization of ORC
configuration, operating condition, and fluid selection for different applications are exten-
sively reported in the literature and the objective function and heat source characteristics
strongly affect the results obtained.

Astolfi et al. [24] and da Silva et al. [25] proposed an optimization based on the maxi-
mum power output of ORCs applied to geothermal sources (from 120 ◦C to 180 ◦C) and to
a diesel engine flue gas (231 ◦C), respectively. Both concluded that the supercritical recuper-
ative configuration is the most adequate for the different fluids analyzed. Wang et al. [26],
Li et al. [27] and Mazetto et al. [28] optimized ORCs based on the maximization of power
and minimization of heat exchanger area (i.e., power to area ratio), considering the total
area of the heat exchangers as representative of investment cost. The authors presented
the best working fluids at each specific applications: R123 and R141b to exhaust gas at
temperatures between 100 ◦C and 220 ◦C [26]; R114 and R245fa to flue gas at 160 ◦C [27];
and R134a and R717 to recover heat from a hot diesel stream (140 ◦C) in a refinery [28].

Astolfi et al. [24] drew attention to the increase in the area of heat exchangers in
supercritical and recuperative cycles and the importance of evaluating cost indicators;
in [29], the same authors used total cost per power (€/kWe) to optimize an ORC for a
geothermal source with temperatures between 120 ◦C and 180 ◦C. The authors concluded
that the supercritical configuration provides the best performance from the thermodynamic-
economic point of view. Garg e Orosz [18], on the other hand, used the specific cost divided
by heat transfer effectiveness as an objective function for thermal sources with temperatures
between 75 ◦C and 275 ◦C and installed capacity of 5 kWe, 50 kWe, and 500 kWe. Pure fluids
and mixtures were evaluated and R134a and R152a were the best choices for all scenarios.

Feng et al. [30] and Song et al. [31] used a multi-objective optimization to maximize
the exergy efficiency and minimize both payback time and levelized cost of energy (LCOE).
They concluded that recuperative ORCs perform better than non-recuperative ORCs for
the application reported (i.e., pressurized air at 150 ◦C and 5 bar). Song et al. [31], in turn,
indicated a significant decrease in payback period when a supercritical ORC was selected
in comparison to a subcritical ORC for a geothermal source at 180 ◦C.

The simultaneous thermodynamic-economic optimization of ORCs within broader
systems such as optimizations involving heliothermic power plants, cogeneration plants
and integration among chemical or industrial plants and ORCs can be expensive in com-
putational terms. For these applications, surrogates, metamodels or response surface
models can be used to replace the complex thermodynamic-economic codes by simpler and
faster functions [32] relating the objective with the decision variables of the optimization
problem [33–36]. The literature on the application of surrogate models in optimized power
plant structure and operation is still scarce.

Rashidi et al. [37] performed three distinct optimizations to determine the maximum
energy efficiency, exergy efficiency and specific power output of a supercritical recuper-
ative ORC based on an artificial neural network (ANN) response surface. Luo et al. [38]
optimized a heliothermic plant based on 12 decision variables, aiming at minimization
of the LCOE, using the System Advisor Model (SAM) [39]. The relation between input
variables and LCOE were approximated by a fourth-order function. De Araujo [40] applied
surrogate models to represent the specific cost of a ORC, a Kalina cycle and a conventional
Rankine cycle in a superstructure used to recover the waste heat from an internal com-
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bustion engine. Kazemian and Gandjalikhan Nassab [41] used a second order auxiliary
function as surrogate to determine operating and design parameters for a gas turbine
optimized in terms of efficiency and power.

This paper presents a comprehensive thermodynamic-economic optimization of struc-
ture, operating condition, working fluid and thermal oil for ORCs using heat sources from
100 kWt to 50 MWt at 70 ◦C to 350 ◦C. Two surrogate models are used to replace the
thermodynamic-economic code in order to obtain quicker predictions for the optimized
specific cost and efficiency. Thus, the novelty of this paper relies on:

• Appling surrogate techniques to replace an entire optimization model instead of part
of it as usually reported in the literature;

• Evaluating the effect of different inputs used to represent heat source characteristics
on the surrogates;

• Making a comparison between stochastic and deterministic surrogates.

2. Methodology

The thermodynamic-economic model can choose between subcritical, Figure 1, and
supercritical configuration, Figure 2, with or without recuperation. The working fluid is
indicated in green, thermal fluid (i.e., heat source) in red, and cooling water is represented in
blue. These four configurations were named: subcritical or basic ORC (BORC), supercritical
ORC (SORC), basic recuperative ORC (BRORC) and supercritical recuperative ORC (SRORC).

Figure 1. Subcritical ORC (a) configuration and (b) T-s diagram.

Figure 2. Supercritical ORC (a) configuration and (b) T-s diagram.

Six working fluids are tested based on the commercial ORCs fluids available on
market [6,42]. Their main environmental and safety indicators are summarized in Table 1.
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Table 1. Thermodynamic and environmental features of selected working fluids.

Fluid Molecular Formula Type ODP GWP Safety Group
Evaporation

Temperature 1

(◦C)

Critical
Temperature

(◦C)

Critical
Pressure

(bar)

D4 C8H24O4Si4 Dry 0 - A2 175.74 313.35 13.47
R134a C2H2F4 Wet 0 1370 A1 −26.07 101.06 40.59
R245fa C3H3F5 Isentropic 0 1050 B1 15.05 153.86 36.51

Ammonia NH3 Wet 0 0 B2 −33.32 132.25 113.33
R1233zd C3H2ClF3 Isentropic 0 1 A1 18.26 166.45 36.24

SES36 C4H5F5 + [CF(CF3)CF2O]x(CF2O)y Dry 0 3710 A1 35.72 177.55 28.49
1 At 1 atm.
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Syltherm 800 and Dowtherm A are selected as thermal fluids as they are widely
used in solar thermal systems [43] and as ORC intermediary heat transfer fluid [44], both
considered stable up to 400 ◦C and with melting point at −40 and 12 ◦C, respectively. As
the heat exchanger used to heat the thermal fluid varies with the heat source characteristics,
it was not considered in the thermodynamic-economic models.

The range of this application is defined by the inputs: (1) thermal fluid inlet temper-
ature (T8), (2) thermal fluid outlet temperature (T11), and (3) heat transfer rate from the
thermal fluid to working fluid (

.
Q8–11) as indicated in Table 2.

Table 2. Input lower and upper bounds.

Input Parameter Lower Bound Upper Bound

T8 60 ◦C 340 ◦C
T11 70 ◦C 350 ◦C

.
Q8−11 100 kWt 50,000 kWt

2.1. Thermodynamic Model

The ORCs are modeled in steady state condition, potential and kinetic energy vari-
ations as well as energy loss to the environment from pipes and heat exchangers are
neglected. Heat exchanges pressure drop, pinch point temperature difference and the
minimum vapor quality during expansion are calculated and imposed as optimization
constraints. Table 3 indicates the main parameters used for modeling the ORCs.

Table 3. ORC thermodynamic parameters.

Parameter Description Value Reference

T0 Ambient dry bulb temperature 27.1 ◦C
p0 Ambient pressure 1.007 bar
Rh Ambient relative humidity 79.9%

ηT,ise Expander isentropic efficiency 53% [45]
ηP,ise Pump isentropic efficiency 70% [45]
ηm Transmission efficiency 95% [45]
ηe Generator/motor efficiency 90% [45]
T12 Cooling fluid inlet temperature 40 ◦C
T14 Cooling fluid outlet temperature 50 ◦C

The isentropic efficiencies for the turbine (ηT,ise) and the pump (ηP,ise) are given in
Equations (1) and (2), respectively, while energy balances for these components are given
in Equations (3) and (4).

ηT,ise =
h1 − h2

h1 − h2,ise
(1)

ηP,ise =
h5,ise − h4

h5 − h4
(2)

.
WT =

.
mw f (h1 − h2) (3)

.
WP =

.
mw f (h5 − h4) (4)

Minimum quality of working fluid (xT,min) during expansion is verified dividing the
turbine in ten small-stages and calculating the quality in each small-stage. The small-stages
have constant polytropic efficiency (ηT, poly) and pressure ratio (prT,ss) as presented in
Equation (5) [46]. Turbine reheat factor (RHT) measures the inefficiency of the complete
expansion [46] and it is calculated using Equation (6) in which ∆hss,ise is the isentropic
small-stage enthalpy difference.

ηT,poly =
ηT,ise

RHT
(5)
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RHT =
∑ ∆hss,ise

h1 − h2,ise
(6)

The energy balance for all heat exchangers is calculated based on Equation (7), in
which the subscribe c is related to heat exchanger cold side, h to hot side, in to heat
exchanger inlet, and out to outlet.

.
mc(hc,out − hc,in) =

.
mh(hh,in − hh,out) (7)

Cooling tower energy balance, fan power consumption (
.

WCT) and pressure variation
(∆PCT) are calculated according to the Equations (8)–(10) [47–49], respectively. The enthalpy
of saturated air leaving the cooling tower (hair,sat,out) is calculated at average cooling tower
water temperature (45 ◦C) according to equation presented in Cortinovis et al. [48], while
enthalpy (hair,in) and density (ρair,in) of humid air are calculated as proposed by Pontes,
Yamauchi, and Silva [49]. Cooling tower fill height (Z) is given in Equation (11) in which
.

m′c f is the cooling water mass flow rate and cp is the specific heat at the subscribed state.
The integral at right-hand side of the Equation (11) is calculated based on Simpsons rule [47]
and cooling tower mass transfer coefficient (Ka) is described in Cortinovis et al. [48].

.
mc f (h14 − h12) = mair(hair,sat,out − hair,in) (8)

.
WCT =

(1 + Rh)mair
2.98ρair,in

(9)

∆pCT = 10−5(3 + Z)gρ12 (10)

ZKa
.

m′c f cp,12
=
∫ T14

T12

dT
(hair,sat − hair)

(11)

The rate in which heat is transferred from thermal fluid (
.

Q8−11), the net electrical
power (

.
Wnet), and the cycle efficiency (ηORC,e) are given in Equations (12)–(14). The

subscribe c f is related to the cooling fluid.

.
Q8−11 =

.
mht f (h11 − h8) (12)

.
Wnet = ηmηe

.
WT −

( .
WP +

.
WP,c f +

.
WF,c f

)
ηmηe

(13)

ηORC =

.
Wnet
.

Q8−11

(14)

Finally, the input parameters used to characterize the heat source, Table 2 can be
represented by exergy transfer rate, Equation (15), or using the rate of heat transfer (

.
Q8−11)

together with the average thermodynamic temperature (Tht f ,mean), Equation (16), instead
of T8 and T11.

.
B =

.
Q8−11

(
1−

Tht f ,mean

T0

)
(15)

Tht f ,mean =
h11 − h8

s11 − s8
(16)

2.2. Plate Heat Exchangers Models

Plate heat exchangers (PHE) are commonly used in ORCs and were chosen due to
their modular and compact format which usually provides high effectiveness [50,51] and



Energies 2021, 14, 8456 7 of 16

low cost per area [52]. The rate in which heat is transferred from the thermal fluid to the
working fluid, Equation (7), can also be written according to Equation (17).

.
Q = UA∆Tmean (17)

The total heat exchanger area (A) is given in Equation (18) and the mean temperature
difference (∆Tmean) is shown in Equation (19). In Equation (18) W is the plate width, L is
the plate length and Npl is the number of plates.

A = WLφ
(

Npl − 2
)

(18)

∆Tmean = LMTD =
∆Tin − ∆Tout

ln ∆Tin
∆Tout

(19)

The overall heat transfer coefficient (U) depends on the thermal resistances and can be
calculated according to the Equation (20), in which t is the plate thickness, kpl is the plate
conductivity, and hc is the convection coefficient at the subscribed side.

1
U

=
t

kpl
+

1
hcc

+
1

hch
(20)

Characterization of the convection coefficient depends on the phase of the fluid at
each heat exchanger side, Table 4 summarizes the equations used in each case.

Table 4. Convection coefficient equation for each phase of the working, thermal and cooling fluids.

Condition Equation Reference

No phase change h = 0.122 k
Dh

Pr1/3
(

f Re2sen2β
)0.374( µ

µw

)1/6 [53]

Evaporation h = 5.323 k
Dh

Pr1/3Reeq
0.42 [54]

Condensation h = 4.118 k
Dh

Pr1/3Reeq
0.42 [55]

Supercritical state h = 0.0183 k
Dh

Pr0.5Re0.82 ρw
ρ

0.3 cp
cp

n
[56]

Plate heat exchanger pressure loss (∆p), Equation (21), is calculated as a sum of friction
pressure loss (∆p f ric), Equation (22), port pressure loss (∆pport), Equation (23), elevation
pressure loss (∆pele), Equation (24), and acceleration pressure loss (∆pace), Equation (25).
The first three components are present in all heat exchangers while acceleration pressure
loss is applicable only when there is a change in fluid quality.

∆p = ∆p f ric + ∆pport + ∆pele + ∆pace (21)

∆p f ric =
2G2

pl Npas fcLe f

ρDh
(22)

∆pele = ρgLe f (23)

∆pport =
1.4NpasGport

2

2ρ
(24)

∆pace = G2
pl(xin − xout)(1/ρv − 1/ρl) (25)

The equations used to calculate friction coefficient were divided in three cases de-
pending on phase of the fluid: no phase change and supercritical state, condensation, and
evaporation. Table 5 shows the equations used in each case.
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Table 5. Friction coefficient equation for each phase of the working, thermal and cooling fluids.

Condition Equation Reference

No phase change/Supercritical state fc =
Kp

Rem
[50]

Evaporation fc =
3.81×104 Fr f

Re0.9(ρl /ρv)
0.16

[57]

Condensation fc = 94.75Reeq
−0.0467Rel

−0.4Bo0.5(p/pcrit)
0.8 [55]

Thermodynamic, heat transfer, and pressure loss models were implemented using a
Python code. The thermophysical properties are obtained using REFPROP v.10 [58] and
CoolProp [59] with the exception for the transport properties of Solkatherm (SES36) for
which extended corresponding states [59] using propane as reference fluid [60,61] are used.

2.3. Economic Model

The economic model for all components is given in Equation (26) according to
Bejan et al. [62]. The reference cost (Cre f ), reference capacity (Xre f ) and the exponent
α were obtained using Thermoflex® [63]. In this equation, fp is a pressure factor, fm is the
material factor, and X is the equipment capacity. The Chemical Engineering Plant Cost In-
dex (CEPCI) used in the reference is the current value, and thus the ratio CEPCIre f /CEPCI
is equal to 1.

C = fp fmCre f

(
X

Xre f

)α(
CEPCI

CEPCIre f

)
(26)

Plant total cost is defined according to Equation (27) in which Nequip is the number of
ORC components.

Ctot =

Nequip

∑
i=1

Ci (27)

2.4. Thermodynamic-Economic Optimization

The minimization of total cost per installed capacity (i.e., specific cost) was chosen
as the objective function as indicated in Equation (28). The optimization constraints are
presented in Table 6.

minsc =
Ctot
.

Wnet
(28)

Table 6. Optimization constraints.

Constraint Range

Pinch point temperature difference ≥4 ◦C
Turbine pressure difference ≥3 bar
Quality during expansion ≥0.8

Heat exchangers pressure drop ≤0.6 NHX

The decision variables and their lower and upper bounds are shown in Table 7.
Decision variables p2, p1, T1 e Ty were chosen since they represent operational aspects
affecting the pumps, turbine and cooling tower power as well as the heat exchangers areas.
On the other hand, the decision variables Wevap, Wcond, Wrec, vevap, vcond, and vrec are project
parameters related to the ORC heat exchangers area and pressure loss.
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Table 7. Lower and upper bounds of decision variables.

Variable Description Lower Bound Upper Bound Unit

p1 Evaporation pressure 4.01325 42 bar
p2 Condensation pressure 1.01325 pcrit bar
T1 Turbine inlet temperature T5 + 1 T8 − 4 ◦C

Ty Recuperator outlet temperature at cold side T5 + 1 T2 − 4 ◦C

Wevap Evaporator plate width 0.3048 4.572 m

Wcond Condenser plate width 0.3048 4.572 m

Wrec Recuperator plate width 0.3048 4.572 m

vevap Evaporator working fluid velocity 0.2 2.0 m/s

vcond Condenser working fluid velocity 0.2 2.0 m/s

vrec Recuperator working fluid velocity 0.2 2.0 m/s

ORC optimization was carried out using a jMetalPy [64] genetic algorithm (GA) with a
stopping criterion of 3000 generations. The four configurations (i.e., BORC, BRORC, SORC,
and SRORC) using six working fluids and two thermal fluids were optimized separately
for each combination of input parameters.

2.5. Surrogates for Optimized ORCs

The results obtained by the optimization together with the respective inputs are used
to create surrogate models for quicker evaluation of optimized ORC specific cost (sc) and
efficiency (ηORC). The inputs and outputs used for training and validation of surrogate
models are listed in Table 8.

Table 8. Input and output variables for training the surrogate models.

Variable Input/Output Type

Heat transfer fluid Input Categorical
Working fluid Input Categorical

ORC configuration Input Categorical
Thermal fluid inlet temperature (T8) Input Numeric

Thermal fluid outlet temperature (T11) Input Numeric
Rate of heat transfer (

.
Q8−11) Input Numeric

Specific cost (sc) Output Numeric
Electrical efficiency (ηe) Output Numeric

Random forest (RF) [65,66] and the polynomial regression (PR) [67] were selected as
surrogate algorithms, which correspond to a non-parametric and a parametric method [68],
respectively. Both are implemented in scikit-learn [69], a python module for predictive
data analysis. In the case of PR surrogate, min-max-scaler [70] and power transformer [71]
were required to normalize each input. The RF, on the other hand, did not require any
transformation. Cross-validation [72] was applied with ten subsets of input/output for
estimation of model performance.

3. Results and Discussion
3.1. Thermodynamic-Economic Optimization

Figures 3 and 4 show the ORCs minimum specific costs as function of heat source
average temperature for three cases of heat transfer rate (100, 1000, and 50,000 kWt). While
Figure 3 indicates the ORCs configurations, Figure 4 indicates their working fluids.
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Figure 3. ORC configurations for minimum specific costs.

Figure 4. ORC working fluids for minimum specific costs.

It is possible to observe that the ORCs specific costs decrease with the increase in
the heat transfer rate due to reduction in the specific costs of equipment. The ORCs
specific costs also decrease with the increase in the average temperature in which the
heat is transferred due to the increase in the cycle efficiency. The minimum specific costs
found were 1449.05, 1045.24, and 638.80 US$/kWe with energy efficiency of 11.1%, 10.9%,
and 10.4% at the maximum average temperature of 345 ◦C. For the minimum average
temperature of 93 ◦C, the specific costs were 4238.45, 2857.46, and 1501.09 US$/kWe
with energy efficiency of about 2.5% for all cases at heat transfer rates of 100, 1000 and
50,000 kWt, respectively.

As shown in Figure 3, SRORC (blue) provides the lowest costs across most tempera-
tures at 50,000 kWt, while BRORC (green) achieves the lowest values mainly at 100 and
1000 kWt. BORC (orange), on the other hand, provides low costs for the lower temperatures
since there is almost no room for superheated vapor at both turbine inlet and outlet at
these temperatures.

From Figure 4, it is possible to note that the isentropic fluids, R1233zd (orange) and
R245fa (red), dominate the applications at higher temperatures while wet fluids, R134a



Energies 2021, 14, 8456 11 of 16

(blue) and ammonia (green), are the most reasonable fluids for the lower temperature
region which agrees with their lower critical temperatures (Table 1). It is also important
to stress that working fluid selection is more dependent on temperature than on heat
transfer rate. Different fluid selection for different heat transfer rates at same temperature
is possible, however. It may occur since the overall heat transfer coefficient may play a
significant role as the heat exchangers specific cost (USD/m2) changes with size.

3.2. Surrogates for Optimized ORCs

Surrogate and thermodynamic-economic models responses for the specific cost were
assessed for three input groups representing the same thermodynamic condition: (1) heat
input and output temperature (T8 and T11) and heat transfer rate (

.
Q8−11); (2) average

temperature of heat transfer (Th,mean) and heat transfer rate (
.

Q8−11); and (3) exergy transfer
rate (

.
B), Figures 5–7, respectively. This comparison aims to evaluate the surrogate error

as heat source condition is represented by a different number of inputs. Furthermore,
heuristic (random forest regression, RF) and deterministic (polynomial regression, PR)
surrogates were also assessed so that different search codes can be contemplated.

Figure 5. Thermodynamic-economic vs. surrogate model response using
.

Q8−11, T8 and T11 as input to determine the
minimal specific cost: (a) random forest regression and (b) polynomial regression.

Figure 6. Thermodynamic-economic vs. surrogate model response using
.

Q8−11, and Th,mean as input to determine the
minimal specific cost: (a) random forest regression and (b) polynomial regression.
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Figure 7. Thermodynamic-economic vs. surrogate model response using
.
B as input to determine the minimal specific cost:

(a) random forest regression and (b) polynomial regression.

It is clear from Figures 5–7 that some information is lost as the number of inputs
decreases even though the heat source capacity to generate work can be represented by
the three input groups. This lost information is related the sensibility of specific cost to
temperatures and heat transfer rate in a magnitude different from that of exergy calculation.

Table 9 shows that random forest surrogate performs slightly better than polynomial
regression for all cases. This can be explained by the presence of many discontinuities
during optimization (e.g., the presence or not of recuperator, working fluid type and
ORC configuration). These discontinuities are better represented by heuristic models than
by deterministic ones. Additionally, as the ORCs were optimized to provide the lowest
specific cost, a weaker adherence is found for ORC efficiency. Nevertheless, the results
indicate that surrogates can replace complex thermodynamic-economic models in broader
optimization codes using deterministic or heuristic search methods. The errors that arise
from these simplified representations must be properly analyzed. Although high R-squares
are obtained (0.96–0.99), the number of cases with error lower than 5% can be as low as
75% depending on the surrogate, which may be prohibitive in some applications.

Table 9. Performance indicators for efficiency surrogate models.

Model Input
Data Output Training

R-Square
Validation
R-Square

Cases with
Error ≤ 5%

RF
.

Q8−11, T8 and T11 Specific cost 0.98 ± 0.00 0.97 ± 0.00 (88.10 ± 0.42)%
PR

.
Q8−11, T8 and T11 Specific cost 0.96 ± 0.00 0.96 ± 0.00 (75.01 ± 0.99)%

RF
.

Q8−11, T8 and T11 Efficiency 0.99 ± 0.00 0.98 ± 0.00 (81.18 ± 0.86)%

PR
.

Q8−11, T8 and T11 Efficiency 0.97 ± 0.00 0.97 ± 0.00 (75.72 ± 0.54)%

Finally, the use of surrogates resulted in a significant reduction in processing time.
While the thermodynamic-economic optimization requires around 723.2359 s to provide
the efficiency and specific cost for a single application, RF and PR surrogates require only
0.0309 s and 0.0843 s, respectively, in a i5-10400F (4.3 GHz, 6 cores, 12 threads).
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4. Conclusions

A detailed thermodynamic-economic model for optimization of ORCs was developed.
Fluid selection and operational optimization were carried out to minimize specific cost for
four ORC configurations subjected to a wide range of heat sources.

Optimizations revealed that R1233zd and R245fa were usually selected as the best
working fluids for higher average temperatures while SRORC and BRORC were selected
as best configurations in these conditions. For thermal sources with lower average temper-
atures, ammonia and R134a fluids and BORC configuration presented the lowest specific
costs in most cases. The minimized specific costs ranged from 4238.45 to 638.80 US$/kWe
while the energy efficiency varied from 2.5 to 11.1% as the heat source conditions varied
from 100 kWt at 93 ◦C to 50,000 kWt at 345 ◦C, respectively.

Even though exergy transfer rate perfectly represents the capacity to generate work of
a given heat source, there is loss of information when temperatures and heat transfer rate
are grouped in a single input. This grouping of properties produces a negative impact on
surrogates capacity to mimic the thermodynamic-economic model, especially when the
objective function is an economic indicator.

The surrogates employing heat transfer rate and thermal fluid inlet and outlet tem-
peratures provided R-square from 0.96 to 0.99. However, deeper evaluation of the error
reveals that only 81% and 75% of the results were within a 5% of error range for RF and
PR, respectively, what maybe be prohibitive in some applications. On the other hand,
the processing time has been significantly reduced with the use of surrogate (99.996%
and 99.988% for RF and PR models, respectively). This reduction allows the use of this
optimization approach within broader and more complex optimization codes.
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