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Abstract: Seismic wave exhibits the characteristics of anisotropy and attenuation while propagating
through the fluid-bearing fractured or layered reservoirs, such as fractured carbonate and shale
bearing oil or gas. We derive a linearized reflection coefficient that simultaneously considers the
effects of anisotropy and attenuation caused by fractures and fluids. Focusing on the low attenuated
transversely isotropic medium with a vertical symmetry axis (Q-VTI) medium, we first express the
complex stiffness tensors based on the perturbation theory and the linear constant Q model at an
arbitrary reference frequency, and then we derive the linearized approximate reflection coefficient of
P to P wave. It decouples the P- and S-wave inverse quality factors, and Thomsen-style attenuation-
anisotropic parameters from complex P- and S-wave velocity and complex Thomsen anisotropic
parameters. By evaluating the reflection coefficients around the solution point of the interface of
two models, we analyze the characteristics of reflection coefficient vary with the incident angle
and frequency and the effects of different Thomsen anisotropic parameters and attenuation factors.
Moreover, we realize the simultaneous inversion of all parameters in the equation using an actual
well log as a model. We conclude that the derived reflection coefficient may provide a theoretical tool
for the seismic wave forward modeling, and again it can be implemented to predict the reservoir
properties of fractures and fluids based on diverse inversion methods of seismic data.

Keywords: fluids-bearing fractured reservoirs; Q-VTI effective medium model; seismic attenuated
anisotropic characteristics; AVOF reflection coefficient

1. Introduction

Development of seismic acquisition and processing technology makes it possible to
sufficiently employ useful information embedded in seismic data, e.g., amplitude variation
with offset, azimuth and frequency (AVO, AVAz, AVF), to estimate fluids and fractures. Re-
cently, many studies revealed that seismic wave exhibit velocity dispersion and anisotropy
while propagating in attenuated fractured media and attenuated finely layered media [1–9].
The seismic wave velocity dispersion refers to the phenomenon that the velocity varies
with the frequency, and it accompanies with the seismic wave amplitude attenuation,
which means amplitude decreases with the increase of distance. Therefore, the modeling
of frequency-dependent attenuation and anisotropy of seismic waves, and the inversion
for attenuation factors and anisotropic parameters using frequency-dependent seismic
amplitude data, may help improve the reliability of the detection of fractured reservoirs
and infilling fluids [10,11].

Under the assumption of static equivalent effective medium model, the rock physics
models are employed to model how fractures induce the frequency-independent anisotropy,
e.g., the linear slip model proposed by Schoenberg [12], the isolated fracture model of Hud-
son [13], the uniform pore model of Thomsen [1], and the model combining the linear slip
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model and anisotropic Gassmann equation proposed by Gurevich [14]. Meanwhile, Thom-
sen [1] demonstrates that the exchange of fluids between pores and fractures during the
seismic wave propagation can affect the anisotropic elastic properties. On the other hand,
dynamic equivalent medium models are proposed to describe how seismic wave propa-
gates in fractured rocks in the case of considering the effect of frequency variation [2–9].
Typically, Chapman [15] proposed a model which considers coupled fluid motion on both
the grain scale and fracture scale, which concludes that frequency-dependent anisotropy
and strong anisotropic attenuation can occur in the seismic frequency band when large
fractures are present, and it reveals that fracture and fluid properties can be estimated from
frequency-dependent seismic data.

To model how the seismic amplitude varies with incident angle and frequency, we
consider the effects of the parameters of anisotropy and attenuation on the reflection
coefficient. Under the assumption of slight changes in properties across the reflection
boundary, Aki and Richards [16] proposed linearized reflection coefficients which are
the analytical solutions of the Zoeppritz equations. However, it is complicated to solve
the Zoepprtitz equations that are extended to viscoelastic anisotropic media. Based on
the Born approximation, Shaw and Sen [17] presented an approach to derive linearized
reflection coefficients for arbitrary anisotropic media using the perturbation in stiffness
matrix of anisotropic media. Following them, Zong [18] derived the seismic wave scattering
coefficient in terms of P-wave and S-wave quality factors in a viscoelastic medium, Moradi
and Innanen [19,20] derived the expressions for scattering potentials of PP wave and
proposed a frequency-independent linearized reflection coefficient in the attenuated VTI
medium. Chen [21,22] presented a linearized azimuthal and frequency-dependent PP-
wave reflection coefficient in terms of dry rock elastic properties, dry fracture weaknesses
and a new indicator of oil-bearing fractured reservoirs. Pan [23] used Born formalism
and first-order perturbation assumption to derive a matrix-fluid-fracture decoupled-based
linearized PP-wave reflection coefficient for a fluid-saturated fractured porous medium.

In the present study, we focus on the case of Q-VTI medium with low-loss attenuation
and weak anisotropy, which means we neglect the term proportional to higher orders of
the attenuation factors and Thomsen anisotropic parameters, and we let P-wave, SV-wave
and SH-wave propagate in the linear constant Q attenuation reference media. We express
the PP wave scattering potentials and derive the linearized frequency-dependent reflection
coefficient for the Q-VTI medium. Utilizing the reflection coefficients, we analyze the
variation of reflection coefficients with the incident angle and angular frequency in two
reservoir models, and we also model how the attenuation factors and Thomsen anisotropic
parameters affect the reflection coefficients. We conclude that, combining the rock physics
effective model, the derived reflection coefficient may provide a theoretical tool to model
how pore-, fracture-, and fluid-related parameters (e.g., porosity, fracture density, fluid
modulus) affect the seismic wave amplitude, and can also be employed to estimate these
parameters from incident angel- and frequency-dependent seismic data.

2. Theories and Methods
2.1. Approximation of Frequency-Dependent Complex Stiffness Tensors for Q-VTI Model

Seismic wave velocity in viscoelastic media is expressed as a function of v0, a phase
velocity at an arbitrary reference frequency ω0, and Q, a quality factor describing absorption
and attenuation. Kjartansson [24] derives the complex and frequency-dependent phase
velocity ṽ based on the linear constant Q model as,

ṽ(ω) = v0

(
i

ω

ω0

) 1
π Q−1

, (1)

where, the accent mark ‘~’ indicates the complex velocity in viscoelastic medium. Using
Equation (1), the quality factor is computed as Q = ṽRe/ṽIm, where ṽRe and ṽIm are the
real and imaginary parts of the complex velocity ṽ.
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We approximate the complex velocity using the Maclaurin series expansion of the
exponential function, and preserve the first two terms of the expansion. The complex
velocity is given by,

ṽ(ω) ≈ v0

[
1 +

1
π

Q−1 ln
(

i
ω

ω0

)]
. (2)

Similar to the derived approximate complex velocity, we express the complex stiffness
tensor c̃I J as,

c̃I J(ω) = c0
I J

[
1 +

2
π

Q−1
I J ln

(
i

ω

ω0

)]
, (3)

where, c0
I J is the elastic stiffness tensor at an arbitrary reference frequency ω0, and Q−1

I J is
the corresponding inverse quality factors.

A consistent description of P-wave property in VTI medium with weak anisotropy is
given in terms of Thomsen anisotropic parameters [25,26]. For Q-VTI media, the complex
Thomsen parameters are given by,

ε̃ = c̃11−c̃33
2c̃33

γ̃ = c̃66−c̃44
2c̃44

δ̃ = (c̃13+c̃44)
2−(c̃33−c̃44)

2

2c̃33(c̃33−c̃44)

(4)

where, the Thomsen-style attenuation-anisotropic parameters εQ, γQ and δQ are given by
Zhu and Tsvankin [27,28] as,

εQ =
Q−1

11 −Q−1
33

Q−1
33

γQ =
Q−1

66 −Q−1
44

Q−1
44

δQ =
(Q−1

13 +Q−1
44 )

2−(Q−1
33 −Q−1

44 )
2

2Q−1
33 (Q−1

33 −Q−1
44 )

(5)

The parameters εQ and γQ represent the difference between the horizontal and vertical
attenuation coefficients of P- and SH-waves, respectively, however, δQ is defined through
the second derivative of the P-wave attenuation coefficient in the symmetry direction,
which refers to the coupling between the attenuation and velocity anisotropy.

We stress that in this study we consider the Q-VTI medium with constant attenu-
ation and weak anisotropy (i.e., |ε|, |δ|, |γ| � 1), which means the second and higher
orders of quality factors and Thomsen parameters are neglected in the approximation
process of the complex tensors. Consequently, the components of frequency-dependent
complex stiffness tensor c̃I J(ω) are expressed in terms of two inverse quality factors, three
Thomsen anisotropy parameters and corresponding Thomsen-style attenuation-anisotropic
parameters,

c̃11 = ρv2
p(1 + 2ε) + ρv2

pQ−1
p (1 + 2ε + εQ)Iω

c̃13 = ρv2
p(1 + δ)− 2c55 + ρv2

pQ−1
p (1 + δ + δQ)Iω − 2ρv2

s Q−1
s Iω

c̃33 = ρv2
p + ρv2

pQ−1
p Iω

c̃55 = ρv2
s + ρv2

s Q−1
s Iω

c̃66 = ρv2
s (1 + 2γ) + ρv2

s Q−1
s (1 + 2γ + γQ)Iω

(6)
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where, Iω = 2
π ln ω

ω0
+ i. The approximate results above decouple the effective factors

from the complex tensors and distinguish the real and imaginary parts, elasticity and
attenuation parameters.

2.2. Approximation of Frequency-Dependent Reflection Coefficient for Q-VTI Model

A scattering model of seismic wave interaction in an attenuated anisotropic medium is
shown in Figure 1, which consists of a homogeneous reference medium and perturbations
described by eleven properties. Taking density as an example, the term ∆ρ = ρ− ρ0 in
Figure 1, represents the perturbation in density, which represents the difference between
the rock density ρ and the reference density ρ0.
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Figure 1. Schematic of seismic wave propagate in an attenuation anisotropy medium based on the
perturbation theory. It is characterized by three elastic parameters P-wave velocity α, S-wave velocity
β and density ρ; two viscoelastic parameters P-wave quality factor QP and S-wave quality factor QS;
three anisotropic Thomsen parameters ε, γ, δ and corresponding attenuation Thomsen parameters
εQ, γQ, δQ. Note that the subscript ‘0′ stands for the properties of background (reference medium)
and the mark ‘∆’ stands for the properties of small perturbation.

Hence, the complex stiffness matrix of the Q-VTI medium can be re-expressed as the
sum of the anisotropic perturbation and the stiffness matrix of a homogeneous isotropic
background based on the perturbation theory. It has been shown in the Appendix A
Equation (A1).

Since the quasi-Zoeppritz equation of Q-VTI medium is very complicated, we aim to
derive the approximation reflection coefficient for P-to-P wave based on the Born approx-
imation. A relationship between the reflection coefficient and the scattering functions is
given by Shaw and Sen [29], and we extend it to the attenuated anisotropic medium in the
present study,

R̃(θ, ω) =
1

4ρ0 cos2 θ
S̃(r0), (7)

where, ρ0 is the density of the background medium, and S̃(r0) is the scattering function
related to the perturbations of stiffness tensors and density, which is given by,

S̃(r0) = ∆ρξ + ∆c̃I JηI J , (8)

where, ξ = tmt′m
∣∣
r=r0

, ηI J = t′m p′ntk pl
∣∣
r=r0

. t and p are the polarization and the slowness
vectors, respectively, which are given in the Equation (A2). ∆ρ and ∆c̃I J represent the
perturbation in density and complex elastic stiffness, respectively. The position vector r0 is



Energies 2021, 14, 8506 5 of 18

the point on a horizontal interface separating two weak anisotropic media, where Snell’s
law of reflection for a source-receiver pair is satisfied. The subscripts I and J refer to Voigt’s
concise notation.

The Einstein summation convention over repeated indices applies to Equation (8),
and the scattering function for the frequency-dependent Q-VTI medium is written as,

S̃(r0) = ∆ρ cos 2θ +
1
α2

0

[
∆c̃11 sin4 θ + 2(∆c̃13 − 2∆c̃55) sin2 θ cos2 θ + ∆c̃33 cos4 θ

]
. (9)

Substituting the Equation (10) into Equation (7), we finally obtain the linearized
approximate incident angle and frequency dependent PP-wave reflection coefficient (AVOF)
for the Q-VTI medium,

R̃QVTI
PP (θ, ω) = Ã(ω) + B̃(ω) sin2 θ + C̃(ω) sin2 θ tan2 θ, (10)

where,

Ã(ω) = 1
2

[(
∆ρ
ρ0

+ ∆α
α0

)
+ 1

2 ∆Q−1
P Iω

]
B̃(ω) = 1

2

[
∆α
α0
− 4 β2

0
α2

0

(
∆ρ
ρ0

+ 2 ∆β
β0

)
+ ∆δ + 1

2

(
∆Q−1

P − 8 β2
0

α2
0

∆Q−1
S + 2Q−1

P0 ∆δQ

)
Iω

]
C̃(ω) = 1

2

[
∆α
α0

+ ∆ε + 1
2

(
∆Q−1

P + Q−1
P0 ∆εQ

)
Iω

] (11)

in which, the first term Ã(ω) denotes the amplitude of P-wave at zero offset or normal
incidence, the second term B̃(ω) sin2 θ characterizes reflection coefficient at intermediate
angles, and the third term C̃(ω) sin2 θ tan2 θ describes the result approached to critical
angle. Similar to the analysis of amplitude versus offset (AVO) in the isotropic elastic
medium, the coefficient Ã(ω) is called intercept, B̃(ω) is called gradient and the third
coefficient C̃(ω) is called curvature. The derived reflection coefficients involve three elastic
parameters P-wave velocity α, S-wave velocity β and density ρ; two attenuation parameters
P-wave inverse quality factor Q−1

P and S-wave inverse quality factor Q−1
S ; two Thomsen

anisotropic parameters ε, δ; and two Thomsen-style attenuation-anisotropic parameters
εQ, δQ. The subscript ‘0′ stands for the properties of background (reference medium)
and the mark ‘∆’ stands for the properties of small perturbation. We normally take the
average value and the difference value of two layers as the background and perturbation
properties, respectively.

Note that, if we neglect frequency dispersion and attenuation, Equation (11) becomes
the linearized reflection coefficient for elastic VTI medium derived by Rüger [30,31]. If we
let the perturbation of anisotropy be zero, Equation (11) is exactly the same as the linearized
PP-wave reflection coefficient for elastic isotropic media given by Shuey [32].

In addition, we obtain the form of reflectivity of each parameters using the Equation (11)
to exhibits their contributions,

R̃QVTI
PP (θ, ω) = RISO

PP (θ) + RQISO
PP (θ, ω) + RANI

PP (θ) + RQANI
PP (θ, ω), (12)

where,
RISO

PP (θ) = sec2 θRP − 8g sin2 θRS + (1− 4g sin2 θ)RD

RQISO
PP (θ, ω) = 1

4 sec2 θ Iω∆Q−1
P − 2g sin2 θ Iω∆Q−1

S

RANI
PP (θ) = 1

2 sin2 θ∆δ + 1
2 sin2 θ tan2 θ∆ε

RQANI
PP (θ, ω) = 1

2 Q−1
P0 sin2 θ Iω∆δQ + 1

4 Q−1
P0 sin2 θ tan2 θ Iω∆εQ

(13)

where, RP = 1
2

∆α
α0

, RS = 1
2

∆β
β0

, RD = 1
2

∆ρ
ρ0

, g =
β2

0
α2

0
, Iω = 2

π ln ω
ω0

+ i.
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Similar to the approximate formula of elastic isotropic reflection coefficient proposed
by Aki-Richards [14], this is the mathematical bridge and basis for obtaining all elastic,
attenuated and anisotropic parameters of Q-VTI model through simultaneous inversion.

3. Test and Analysis
3.1. Characteristics of Reflection Coefficients for Q-VTI Model

To analyze the characteristics of reflection coefficients, we compute the reflection
coefficients around the solution point of the interface of two models using the derived
reflection coefficient equation. Parameters of two models are shown in Tables 1 and 2
separately. For Model 1, we take the mud shale as the upper layer and oil shale as the lower
layer, and for Model 2, we take the mud shale as the upper layer but calcareous sandstone as
the lower layer. The properties of background and perturbation are the average value and
the difference value of two layers, respectively. The elastic and anisotropic parameters of
two models come from the compiled table of Thomsen [25] about the measured anisotropy
in sedimentary rocks.

Figures 2 and 3 show the variation of reflection coefficients with the incident angle θ
and frequency f for Model 1 and 2, respectively. We consider four cases of (1) elastic
isotropy, (2) elastic anisotropy, (3) attenuated isotropy, and (4) attenuated anisotropy to
compute the reflection coefficients using the derived reflection coefficient equation. The
results show in sub-Figure (a,b), (c,d), (e,f) and (g,h), respectively and the value of colors
represent in corresponding colorbars, where sub-Figure (a,c,e,f) and (b,d,f,h) exhibit the
real part and the imaginary part of reflection coefficients separately. We stress that all
parameters of the same properties on the vertical axis have the same scale so that the
different degree of various influence can be observed directly.

In the case of elastic isotropic assumption, the derived reflection coefficient becomes
the linearized P-P reflection coefficient given by Aki and Richards [16]. Therefore, the
reflection coefficients are real numbers and controlled only by P-wave velocity α, S-wave
velocity β and density ρ. In Figure 2a, we observe the real parts of reflection coefficients
increase with the incident angle but frequency-independent. It exhibits the fourth AVO
type in the case of the interface separating the mud shale and oil shale model. In Figure 2b,
we observe that the imaginary parts of reflection coefficients are equal to zero.

Table 1. The parameters of attenuated anisotropic model 1.

Layer α
(km/s)

β
(km/s)

ρ
(g/cm3) ε δ Q−1

P Q−1
S εQ δQ

Mud-shale 5.073 2.998 2.68 0.010 0.012 0.001 0.001 0.001 0.001
Oil-shale 4.231 2.539 2.37 0.200 0.100 0.205 0.118 0.046 0.025

Table 2. The parameters of attenuated anisotropic model 2.

Layer α
(km/s)

β
(km/s)

ρ
(g/cm3) ε δ Q−1

P Q−1
S εQ δQ

Mud-shale 5.073 2.998 2.68 0.010 0.012 0.001 0.001 0.001 0.001
Calcareous
Sandstone 5.460 3.219 2.69 0.000 −0.264 0.177 0.056 −0.025 0.050
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anisotropy separately. Different reflection coefficient values represent in corresponding colorbars.
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(a,b), (c,d), (e,f) and (g,h) show the real part and imaginary part of reflection coefficients in four cases
of assumption: (1) elastic isotropy, (2) elastic anisotropy, (3) attenuated isotropy, and (4) attenuated
anisotropy separately. Different reflection coefficient values represent in corresponding colorbars.

The derived reflection coefficient is exactly the same as the reflection coefficient
proposed by Rüger [30,31] when we only take the effect of anisotropy into consideration.
The reflection coefficients are frequency-independent, as shown in Figure 2c, and the
imaginary parts are also zero, as shown in Figure 2d. We conclude that the anisotropic
parameters ε, δ just affect the value of reflection coefficients, however, the AVO type is the
same as Figure 2a.

It shows slightly difference in the case of attenuated isotropic assumption. The
reflection coefficients become complex numbers, and vary with both incident angle and
frequency, as shown in Figure 2e. We emphasize that the AVO type has not been changed



Energies 2021, 14, 8506 9 of 18

by the attenuation parameters Q−1
p , Q−1

s . In Figure 2f, we observe the imaginary part of
reflection coefficients vary with incident angle but frequency-independent.

Figure 2g,h show the characteristics of the complex reflection coefficients in the case of
attenuated anisotropic assumption, which are the similar to the results of reflection coeffi-
cients for the attenuated isotropic assumption. We observe the Thomsen-style attenuation-
anisotropic parameters εQ, δQ have litter effect in larger incident angles and higher fre-
quency on the reflection coefficients.

Then, we compute the reflection coefficients around the solution point of the interface
separating the mud shale and calcareous sandstone. The same characteristics appear in
this model, as shown in Figure 3. We observe the reflection coefficients decrease with the
incident angle but frequency-independent in Figure 3a. It exhibits the second AVO type
in the case of model 2 due to P-wave velocity α, S-wave velocity β and density ρ. The
anisotropic parameters ε, δ also only affect the value of reflection coefficients and the AVO
type doesn’t change, as shown in Figure 3c. Figure 3e–h show that the reflection coefficients
are complex numbers and the real parts vary with frequency caused by the attenuation.
However, the Thomsen-style attenuation-anisotropic parameters εQ, δQ contribute much
smaller to the reflection coefficient than Q−1

p and Q−1
s because they exist in the terms of

high order.
In the following, we focus on the effect of the crucial parameters of anisotropy ε, δ

and attenuation Q−1
p , Q−1

s . We proceed to the analysis of how perturbations in anisotropic
parameters and attenuation factors affect reflection coefficients. The P-wave velocity α,
S-wave velocity β and density ρ are set up as the same as the model 1 (Table 1), and nine
groups of perturbations in anisotropic ∆δ, ∆ε and six groups of perturbations in attenuation
∆Q−1

p , ∆Q−1
s , as shown in Tables 3 and 4. Using the derived reflection coefficient equation,

we obtain the reflection coefficients variation with incident angle and frequency in the case
of different perturbations.

Table 3. The effect of elastic anisotropic perturbation on the reflection coefficient.

Anisotropic Perturbation 1 2 3

∆δ 0.3 0 −0.3
∆ε 0.2, 0, −0.2 0.2, 0, −0.2 0.2, 0, −0.2

Table 4. The effect of attenuated isotropic perturbation on the reflection coefficient.

Attenuated Perturbation 1 2 3

∆Q−1
P 0 0.02 0.2

∆Q−1
S 0 0, 0.012 0, 0.012, 0.12

We first consider the effect of perturbations in anisotropy ∆δ and ∆ε on the reflection
coefficients, as shown in Figure 4. For this case, the derived linearized reflection coefficient
is equal to the reflection coefficient proposed by Rüger [30,31] because the attenuation
parameters are neglected. In Figure 4a we observe the reflection coefficients are frequency-
independent, and in Figure 4b we observe the imaginary part of reflection coefficients are
equal to zero. In Figure 4a, the intercept of reflection coefficients is a constant, and equals
to the result computed for the isotropic model (the red solid line). By comparing three sets
of the same type of lines (dashed lines, solid lines and doted dashed lines), respectively, we
observe the gradients of curves vary with ∆δ. For example, the gradients of blue dashed
line, red dashed line and black dashed line increase with ∆δ when ∆ε is equal to a constant
0.2, but the curvature of them are the same. In the meanwhile, we observe the curvatures
vary with ∆ε by comparing three sets of same color of lines (black lines, red lines, and blue
lines), respectively. For example, the curvatures of black doted dashed line, black solid line
and black dashed line increase with ∆ε when ∆δ is equal to a constant 0.3, but the gradient
of them is a constant. It appears the same characteristics in the rest groups.
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Figure 4. The effect of anisotropic parameters ∆ε and ∆δ on the reflection coefficients. At this point,
the reflection coefficients are real numbers and frequency-independent. (a) shows the real part of it
in nine combinations of anisotropy parameters, and (b) shows the imaginary part equal to zero.

Next, we analyze the effect of perturbations in P- and S-wave attenuation factors
∆Q−1

p , ∆Q−1
s on the reflection coefficients, as shown in Figure 5. For this case, we neglect

the parameters of anisotropy and attenuation anisotropy. Figure 5a–f show the real and
imaginary parts of reflection coefficients computed using six combinations of attenuation
parameters presented in legend in three case of frequency: (1) 5 Hz, (2) 25 Hz and (3) 65 Hz.
We mention that the reference frequency is 25 Hz. In Figure 5, we observe that the reflection
coefficients are complex numbers, and the real part is frequency-dependent; however, the
imaginary part is frequency-independent.

Figure 5a shows the effect of ∆Q−1
p , ∆Q−1

s on the real part of reflection coefficients
when the frequency is equal to 5 Hz. The red solid line represents the result computed
for the elastic isotropic model because the attenuation parameters are equal to zero. By
comparing the solid line of red, black and blue, the intercept, gradient and curvature of
them all decrease with the inverse quality factor of P-wave ∆Q−1

p . Three blue lines illustrate
the inverse quality factor of S-wave ∆Q−1

s only affects the gradient of the real parts and
increases it. Figure 5c shows the real part of reflection coefficients are equal to the result
of elastic isotropic assumption in 25 Hz since the natural logarithm of frequency term
becomes zero when the frequency we took is equal to reference frequency. Figure 5e shows
the effect of ∆Q−1

p , ∆Q−1
s on the real part of reflection coefficients when the frequency is

equal to 65 Hz. By comparing the solid line of red, black and blue, the intercept, gradient
and curvature of them all increase with the inverse quality factor of P-wave ∆Q−1

p . Three
blue lines illustrate the inverse quality factor of S-wave ∆Q−1

s only affects the gradient of
the real parts but decreases it.

We conclude the imaginary part of reflection coefficients are frequency- independent,
as shown in Figure 5b,d,e. By comparing the solid line of red, black and blue, the intercept,
gradient and curvature of the imaginary parts all increase with the inverse quality factor
of P-wave ∆Q−1

p . However, the gradient of the imaginary part decreases with the inverse
quality factor of S-wave ∆Q−1

s which is illustrated by three blue lines.
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Figure 5. The effect of attenuation parameters ∆Q−1
p and ∆Q−1

s on the reflection coefficients. At
this point, the reflection coefficients are complex numbers and frequency-dependent. (a–f) show
the real part and imaginary part of reflection coefficients in three cases of 5 Hz, 25 Hz and 65 Hz
separately. Different lines exhibit the results of six combinations of attenuation parameters. The
reference frequency is set to 25 Hz.

3.2. Inversion Test for Q-VTI Model

We use the synthetic seismic data to verify the feasibility of the proposed equation
for inversion. At first, we choose a well logging data to build a fractured model which is
shown in Figure 6. We find that the places with high calcite content developing pores and
fractures bearing fluids, and there is no good correspondence of the basis elastic parameters
P- and S-wave velocity with it.

Then, we calculate the complex stiffness matrix using Chapman model [4–6] and
further obtain the P- and S-wave velocity, density, inverse quality factors, anisotropic
parameters and Thomsen-style attenuated anisotropic parameters. As is shown in Figure 7,
we acquire these new parameters which is vary with different frequency and incident angle.
The P- and S-wave velocities exhibit in this figure are their real parts, and the P- and S-wave
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velocity we estimated match well with the measured value except some differences in the
place of pore, fracture and fluid anomaly. Significantly, the inverse quality factors of P- and
S-wave show obvious differences in both frequency and incident angle especially in pore,
fracture and fluid anomaly. These small differences are apparent because they are orders
of magnitude smaller. They represent the ratio of the imaginary and real parts of P- and
S-wave velocity, which is reflect the attenuation characteristics of P- and S-wave. What’s
more, the trends of Q−1

p , Q−1
s and ε are more consistent with that of porosity, fracture

density and fluid saturation than α and β.
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Next, we generate synthetic seismic data in small incident angles utilizing Ricker
wavelets with different frequencies, as is shown in Figure 8. We add Gaussian random
noise into the synthetic seismic data to generate noisy seismic data of signal-to-noise ratio
being 5. The result is shown in Figure 9 and used as the observed seismic data for inversion
through the Equation (12).

Figure 10 plots comparisons between true values of model and inversion results of
each parameter. We take the average value estimated by the Chapman model as the true
value for comparison, and calculate the relative error of each inverted parameter, as shown
in Figure 11. We observe a close match between inversion results and true values given
data with a moderate noise.
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4. Result and Discussion

It is possible to obtain relatively simple approximations for the PP-wave reflection
coefficient of the linear constant Q-VTI model under the assumption of weak anisotropy
and low-loss attenuation of velocities. One of the advantages is the Q-VTI model considers
frequency dispersion and anisotropy of velocities at the same time. Another advantage
is the equation decouple the inverse quality factors of P- and S-wave and the Thomson-
style attenuation anisotropic factors from the complex velocities and Thomson anisotropy
parameters. Based on the derived reflection coefficient, we analyze some characteristics of
reflection coefficients in the case of different reservoirs and groups of parameters.

The type of AVO is determined by the differences in P-wave velocity, S-wave velocity
and density across the interface. Both the anisotropic parameters and the attenuation
parameters only change the value of the reflection coefficient; however, they don’t affect
the type of AVO. The perturbations of anisotropy ∆δ and ∆ε contribute to the gradient and
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the curvature. The perturbations in attenuated anisotropy ∆δQ and ∆εQ also contribute to
the gradient and the curvature, but the contribution is much smaller than that of ∆δ and
∆ε. The attenuation factor of P-wave ∆Q−1

p affects the intercept, gradient and curvature at
the same time, however, the attenuation factor of S-wave ∆Q−1

s only affects the gradient.
The reflection coefficients become complex numbers when we consider the effect of

the attenuation, in which the real part represents the amplitude and the imaginary part
represents the phase. The real parts of reflection coefficients vary with the frequency caused
by the attenuation terms, however, the imaginary parts are frequency-independent. The
real part of reflection coefficient is inversely proportional to ∆Q−1

p but proportional to
∆Q−1

s because the natural logarithm of frequency term is negative when the frequency is
less than the reference frequency. In the same way, the real part of reflection coefficient is
proportional to ∆Q−1

p but inversely proportional to ∆Q−1
s because the natural logarithm of

frequency term is positive when the frequency is greater than the reference frequency. In
particular, the reflection coefficient to be equivalent to the elastic cases because the natural
logarithm of frequency term becomes zero when the frequency we took is equal to the
reference frequency.

The contribution of the attenuation anisotropic term that the high order to the reflection
coefficient is very small compared with other properties. In the meanwhile, the value of
third term which affects the reflection coefficient at a large incident angle is much smaller
than the first two terms when the P-wave incident at a small angle.

We observe that the relative error of inverse quality factors seems to be large, which
is still caused by their relatively small order of magnitude than other parameters, but the
trend of their inversion results is completely consistent with the true values. Thus, we
still regard the inversion test shows a well result to verify the feasibility of the proposed
equation. In addition, the attenuated and anisotropic parameters are not only the better
indicators of pores, fractures and fluids than the P- and S-wave velocity, but also enable us
to avoid further inversion of physical parameters such as porosity, fracture density and
fluid saturation.

5. Summary and Conclusions

Under the assumption of low-loss attenuation and weak anisotropy of velocities, we
derive the linearized approximate frequency-dependent reflection coefficient based on the
linear constant Q-VTI model. We observe that the reflection coefficient is related to the
parameters of anisotropy and attenuation simultaneously, and varies with both the incident
angle and frequency. It appears that the analysis of the AVOF characteristics may guide us
to identify the characteristics of anisotropy and attenuation in the real working area, and
we can take full advantage of the seismic data of different incident angles and frequencies
to predict the fluid-filled pores and fractures in the reservoirs using our derived reflection
coefficient equation.

Moreover, the attenuated anisotropic medium is more suitable for modeling how
seismic wave propagates in underground layers than that proposed under the assumption
of elastic isotropic or anisotropic medium. Focusing on the attenuated anisotropic medium,
we consider the effects of Thomsen parameters that are related to anisotropy caused by
fractures and the attenuation factors that are sensitive to attenuation caused by intrinsic
attenuation and the fluid-filled in pores and fractures on the reflection coefficient, which
may provide more useful information for detecting fractures and fluids using the observed
seismic data. We conclude that we present a valuable expression of reflection coefficient,
which can be employed for the analysis of seismic wave response modeling for different
types of reservoirs, and the derived reflection coefficient can also guide the inversion
for the properties that are related to fractures and fluids using frequency components of
seismic amplitudes.
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Appendix A

The complex stiffness matrix of the Q-VTI medium can be re-expressed as the sum
of the anisotropic perturbation and the stiffness matrix of a homogeneous isotropic back-
ground based on the perturbation theory.

c̃QVTI =



c̃11 c̃11 − 2c̃66 c̃13 0 0 0
c̃11 − 2c̃66 c̃11 c̃13 0 0 0

c̃13 c̃23 c̃33 0 0 0
0 0 0 c̃55 0 0
0 0 0 0 c̃55 0
0 0 0 0 0 c̃66



=



c̃0
33 c̃0

33 − 2c̃0
55 c̃0

33 − 2c̃0
55 0 0 0

c̃0
33 − 2c̃0

55 c̃0
33 c̃0

33 − 2c̃0
55 0 0 0

c̃0
33 − 2c̃0

55 c̃0
33 − 2c̃0

55 c̃0
33 0 0 0

0 0 0 c̃0
55 0 0

0 0 0 0 c̃0
55 0

0 0 0 0 0 c̃0
55



+



∆c̃33 ∆c̃33 − 2∆c̃55 ∆c̃33 − 2∆c̃55 0 0 0
∆c̃33 − 2∆c̃55 ∆c̃33 ∆c̃33 − 2∆c̃55 0 0 0
∆c̃33 − 2∆c̃55 ∆c̃33 − 2∆c̃55 ∆c̃33 0 0 0

0 0 0 ∆c̃55 0 0
0 0 0 0 ∆c̃55 0
0 0 0 0 0 ∆c̃55



+



c̃11 − c̃33 c̃12 − c̃33 + 2c̃55 c̃13 − c̃33 + 2c̃55 0 0 0
c̃12 − c̃33 + 2c̃55 c̃11 − c̃33 c̃13 − c̃33 + 2c̃55 0 0 0
c̃13 − c̃33 + 2c̃55 c̃13 − c̃33 + 2c̃55 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 c̃66 − c̃55



(A1)

where, the stiffness coefficients in the square brackets on the right-hand side represent
isotropic attenuated background, isotropic attenuated perturbations and anisotropic atten-
uated perturbations, respectively.
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The polarization vectors and slowness vectors corresponding the incident and reflected
waves are given by,

t = [sin θ cos ϕ, sin θ sin ϕ, cos θ]

t′ = [− sin θ cos ϕ,− sin θ sin ϕ, cos θ]

p = (1/ṽ)[sin θ cos ϕ, sin θ sin ϕ, cos θ]

p′ = (1/ṽ)[− sin θ cos ϕ,− sin θ sin ϕ, cos θ]

(A2)
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