Intelligent Scheduling of Smart Home Appliances Based on Demand Response Considering the Cost and Peak-to-Average Ratio in Residential Homes
Abstract
:1. Introduction
1.1. Related Works
1.2. The Original Contribution
2. The System Architecture, Problem Definition and Applied Methods
2.1. System Architecture
2.1.1. Home EMS
2.1.2. Rooftop PV Generator
2.1.3. ESS
2.2. Problem Definition
2.3. Proposed Method
3. Results and Discussion
3.1. Single Objective Optimization
3.2. Bi-Objective Optimization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Setlhaolo, D.; Xia, X. Combined residential demand side management strategies with coordination and economic analysis. Electr. Power Energy Syst. 2016, 79, 150–160. [Google Scholar] [CrossRef]
- Shakouri, H.; Kazemi, A. Multi-objective cost-load optimization for demand side management of a residential area in smart grids. Sustain. Cities Soc. 2017, 32, 171–180. [Google Scholar] [CrossRef]
- Lokeshgupta, B.; Sivasubramani, S. Multi-objective home energy management with battery energy storage systems. Sustain. Cities Soc. 2019, 47, 101458. [Google Scholar] [CrossRef]
- Zhao, Z.; Lee, W.C.; Shin, Y.; Song, K.B. An optimal power scheduling method for demand response in home energy management system. IEEE Trans. Smart Grid 2013, 4, 1391–1400. [Google Scholar] [CrossRef]
- Hussain, I.; Ullah, M.; Ullah, I.; Bibi, A.; Naeem, M.; Singh, M.; Singh, D. Optimizing energy consumption in the home energy management system via a bio-inspired dragonfly algorithm and the genetic algorithm. Electronics 2020, 9, 406. [Google Scholar] [CrossRef]
- Sharifi, A.H.; Maghouli, P. Energy management of smart homes equipped with energy storage systems considering the PAR index based on real-time pricing. Sustain. Cities Soc. 2019, 45, 579–587. [Google Scholar] [CrossRef]
- Veras, J.M.; Silva, I.R.S.; Pinheiro, P.R.; Rabêlo, R.A.L.; Veloso, A.F.S.; Borges, F.A.S.; Rodrigues, J.J.P.C. A multi-objective demand response optimization model for scheduling loads in a home energy management system. Sensors 2018, 18, 3207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, H.M.; Javaid, N.; Iqbal, S.; Hasan, Q.U.; Aurangzeb, K.; Alhussein, M. An efficient demand side management system with a new optimized home energy management controller in smart grid. Energies 2018, 11, 190. [Google Scholar] [CrossRef] [Green Version]
- Jordehi, A.R. Binary particle swarm optimisation with quadratic transfer function: A new binary optimisation algorithm for optimal scheduling of appliances in smart homes. Appl. Soft Comput. J. 2019, 78, 465–480. [Google Scholar] [CrossRef]
- Zhu, J.; Lin, Y.; Lei, W.; Liu, Y.; Tao, M. Optimal household appliances scheduling of multiple smart homes using an improved cooperative algorithm. Energy 2019, 171, 944–955. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, L.; Yao, G.; Bu, S. Pricing-based demand response for a smart home with various types of household appliances considering customer satisfaction. IEEE Access 2019, 7, 86463–86472. [Google Scholar] [CrossRef]
- Waseem, M.; Lin, Z.; Liu, S.; Sajjad, I.A.; Aziz, T. Optimal GWCSO-based home appliances scheduling for demand response considering end-users comfort. Electr. Power Syst. Res. 2020, 187, 106477. [Google Scholar] [CrossRef]
- Yahia, Z.; Pradhan, A. Multi-objective optimization of household appliance scheduling problem considering consumer preference and peak load reduction. Sustain. Cities Soc. 2020, 55, 102058. [Google Scholar] [CrossRef]
- Bouakkaz, A.; Mena, A.J.G.; Haddad, S.; Ferrari, M.L. Efficient energy scheduling considering cost reduction and energy saving in hybrid energy system with energy storage. J. Energy Storage 2021, 33, 101887. [Google Scholar] [CrossRef]
- Merdanoğlu, H.; Yakıcı, E.; Doğan, O.T.; Duran, S.; Karatas, M. Finding optimal schedules in a home energy management system. Optim. Eng. 2020, 182, 106229. [Google Scholar] [CrossRef]
- Mouassa, S.; Bouktir, T.; Jurado, F. Scheduling of smart home appliances for optimal energy management in smart grid using Harris-hawks optimization algorithm. Optim. Eng. 2021, 22, 1625–1652. [Google Scholar] [CrossRef]
- Ahmad, A.; Khan, A.; Javaid, N.; Hussain, H.M.; Abdul, W.; Almogren, A.; Alamri, A.; Niaz, I.A. An optimized home energy management system with integrated renewable energy and storage resources. Energies 2017, 10, 549. [Google Scholar] [CrossRef] [Green Version]
Objective | Tariff | Algorithm | References |
---|---|---|---|
Cost | TOU, RTEP | MILP | [15] |
cost & PAR | TOU, RTEP | MILP, GA, NSGA-II, GHSA, GWCSO | [2,3,4,5,6,7,8,12,16,17] |
cost & comfort | TOU, RTEP | DA, NSGA-II, QBPSO, PSO, MILP | [5,9,10,11] |
cost & consumption | TOU, RTEP | MINLP, MILP, PSO | [1,13,14] |
Appliance | Type | Power (kW) | Length * | Start * | End * |
---|---|---|---|---|---|
Washing machine | Shiftable | 0.80 | 5 | 1 | 24 |
Air conditioner | 1.30 | 10 | 1 | 24 | |
Dryer for cloathes | 0.70 | 4 | 1 | 24 | |
Water heater | 1.00 | 8 | 1 | 24 | |
Dishwasher | 0.20 | 3 | 1 | 24 | |
Personnel computers | Non-Shiftable | 0.20 | 18 | 7 | 24 |
Security cameras | 0.10 | 24 | 1 | 24 | |
Microwave oven | 0.50 | 7 | 14 | 20 | |
Refrigerator | 0.90 | 20 | 3 | 22 | |
TV | 0.20 | 8 | 15 | 22 | |
Lighting | 0.10 | 6 | 17 | 22 |
Parameter | Value |
---|---|
Roundtrip Efficiency | 0.95 |
Charging Efficiency | 0.95 |
Discharging Efficiency | 0.95 |
Maximum Energy Capacity | 3 kWh |
Minimum Energy Capacity | 0.5 kWh |
Initially Stored Energy | 0.5 kWh |
Max. Charging/Discharging Energy | 0.3 kWh |
Type | Appliance | OT | SOO |
---|---|---|---|
Shiftable | Washing machine | 5 | 14 |
Air conditioner | 10 | 3 | |
Dryer for clothes | 4 | 19 | |
Water heater | 8 | 3 | |
Dishwasher | 3 | 3 |
Type | Appliance | OT | BOO |
---|---|---|---|
Shiftable | Washing machine | 5 | 7 |
Air conditioner | 10 | 1 | |
Dryer for clothes | 4 | 12 | |
Water heater | 8 | 1 | |
Dishwasher | 3 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tutkun, N.; Burgio, A.; Jasinski, M.; Leonowicz, Z.; Jasinska, E. Intelligent Scheduling of Smart Home Appliances Based on Demand Response Considering the Cost and Peak-to-Average Ratio in Residential Homes. Energies 2021, 14, 8510. https://doi.org/10.3390/en14248510
Tutkun N, Burgio A, Jasinski M, Leonowicz Z, Jasinska E. Intelligent Scheduling of Smart Home Appliances Based on Demand Response Considering the Cost and Peak-to-Average Ratio in Residential Homes. Energies. 2021; 14(24):8510. https://doi.org/10.3390/en14248510
Chicago/Turabian StyleTutkun, Nedim, Alessandro Burgio, Michal Jasinski, Zbigniew Leonowicz, and Elzbieta Jasinska. 2021. "Intelligent Scheduling of Smart Home Appliances Based on Demand Response Considering the Cost and Peak-to-Average Ratio in Residential Homes" Energies 14, no. 24: 8510. https://doi.org/10.3390/en14248510
APA StyleTutkun, N., Burgio, A., Jasinski, M., Leonowicz, Z., & Jasinska, E. (2021). Intelligent Scheduling of Smart Home Appliances Based on Demand Response Considering the Cost and Peak-to-Average Ratio in Residential Homes. Energies, 14(24), 8510. https://doi.org/10.3390/en14248510