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Abstract: With recent developments, smart grids assured for residential customers the opportunity
to schedule smart home appliances’ operation times to simultaneously reduce both the electricity bill
and the PAR based on demand response, as well as increasing user comfort. It is clear that the multi-
objective combinatorial optimization problem involves constraints and the consumer’s preferences,
and the solution to the problem is a difficult task. There have been a limited number of investigations
carried out so far to solve the indicated problems using metaheuristic techniques like particle swarm
optimization, mixed-integer linear programming, and the grey wolf and crow search optimization
algorithms, etc. Due to the on/off control of smart home appliances, binary-coded genetic algorithms
seem to be a well-fitted approach to obtain an optimal solution. It can be said that the novelty of
this work is to represent the on/off state of the smart home appliance with a binary string which
undergoes crossover and mutation operations during the genetic process. Because special binary
numbers represent interruptible and uninterruptible smart home appliances, new types of crossover
and mutation were developed to find the most convenient solutions to the problem. Although there
are a few works which were carried out using the genetic algorithms, the proposed approach is rather
distinct from those employed in their work. The designed genetic software runs at least ten times,
and the most fitting result is taken as the optimal solution to the indicated problem; in order to ensure
the optimal result, the fitness against the generation is plotted in each run, whether it is converged or
not. The simulation results are significantly encouraging and meaningful to residential customers
and utilities for the achievement of the goal, and they are feasible for a wide-range applications of
home energy management systems.

Keywords: home energy management; binary-coded genetic algorithms; optimal power scheduling;
demand response

1. Introduction

The gradual increase in electricity unit prices, for various reasons, brings an additional
burden, especially for households. Meanwhile, technological developments in this field
have brought new features to both the distribution of electrical energy and the use of
electrical household appliances. This has made it possible to control electrical household
appliances over the internet and to change the unit price of electricity for every hour, or
even for every 15 minutes by means of a smart grid. With these developments, taking into
account the usage characteristics of electrical household appliances and compromising
daily usage habits, a significant reduction in daily energy costs can be achieved under
the predefined constraints and conditions. This can be achieved by shifting the operating
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times of electrical household appliances to the optimal time intervals during the day,
based on electricity tariffs and the avoidance of overload. There are a limited number of
studies that have been conducted on this subject, and some of these studies are listed in the
subsection below.

1.1. Related Works

Setlhaolo and Xia carried out an investigation considering the combined demand side
management strategy for a limited number of houses from two aspects. The first one was
the energy management system (EMS). The EMS considers demand side management
strategies based on the minimization of consumer cost and the reduction of consumption
from the power system, as well as CO2 emission issues through the developed model [1].
Another investigation was carried out by Shakouri and Kazemi in [2]. In the paper, in order
to obtain for the household the lower energy costs, multi-objective mixed integer linear
programming (MILIP) was proposed. Additionally, the validation of the proposed model
based on some scenarios indicated that the reduction of daily energy costs could be on the
acceptable level [2].

The authors in [3] performed the study on home energy management for residential
consumers. The aim of the investigation was to decrease both their electricity bills and
the peak load demand of utility companies. It was assumed that it can be achieved with
a smart energy storage system (ESS) [3]. Zhao et al. were other investigators studying
home EMS to schedule power consumption in households in order to obtain a reduction
of electricity bills and improve the peak-to-average ratio [4]. Paterakis et al. conducted
another study on the home EMS to define the optimal schedule of appliances for the
day of a smart household under hourly pricing, and to reduce peak power based on
demand response (DR) strategies [5]. The authors in [6] proposed a new procedure to
propose the schedule of power consumption in homes equipped with ESS. In this article,
the aim of power scheduling was to reduce electricity bills and improve the peak-to-
average ratio. In the investigation, the comfort of the residents was considered [6]. The
authors of [7] investigated the process of the scheduling of the loads in a home EMS.
This approach considers the multi-objective demand response optimization model. The
indicated approach determines the scheduling of home appliances (HA) considering
the non-dominated sorted genetic algorithm (GA). The authors in [8] presented a new
home EMS controller. The proposed device is based on the genetic harmony search
algorithm. The aim of the controller is to reduce electricity bills and the peak-to-average
ratio, and to maximize user comfort. The investigated range considers a single home
and multiple homes. In the investigation, real-time electricity pricing and critical peak
pricing tariffs were applied. The author in [9] studied interruptible appliances (e.g., electric
water heaters), although some researchers consider the problem of optimal scheduling
for non-interruptible appliances; this problem was commonly formulated with integer
decision variables. Zhu et al. in [10] carried out an investigation to consider the efficient
solution of a complex combinatorial problem. The aim of the investigation was to define
a schedule of household appliances in multiple smart homes. In the investigation, the
improved cooperative heuristic approach was considered. The presented results confirmed
that the proposed algorithm worked correctly. The article [11] proposed a satisfaction
model for different types of household appliances. The aim of the optimization was the
minimization of the energy costs. Different demand response strategies were considered
e.g., demand limit based or injection limit. The article [12] presented an approach based on
the fusion of the grey wolf and crow search optimization algorithm. In the investigation,
the cost of electricity decrease, the extension of the users’ comfort, and the minimization
of the peak-to-average ratio for HA in the presence of real-time price signals using the
indicated technique were taken into account. Adika and Wang proposed the new approach
to residential customer-based demand-side management for smart charging and appliance
scheduling in order to avoid overloading the power consumption, and to minimize the
energy cost [11]. El-Baz and Tzscheutschler presented an algorithm that makes a simple,
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efficient, day-ahead electrical load prediction for any energy management system without
requiring statistical or historical data, or using any kind of measurement sensors [12]. The
authors in [13] performed an experimental study of the problem of scheduling HA from
realistic points of view. Additionally, the problem of scheduling residential loads on the
basis of the minimization of the cost of electricity was solved for consumer preferences [13].
Bouakkaz et al. presented a work that aims to propose the optimal strategy to schedule
energy consumption to support homeowners in the reduction of energy costs, as well as
saving energy in a residential home. The investigated objects were connected to a microgrid
composed of a power grid system and photovoltaic and battery ESS [14]. Merdanoglu
et al. investigated a model that solves the optimal scheduling problem embedded in a
home EMS, enabling users to overcome the major obstacles in the implementation of DR
programs. The investigation proposed the method of finding the minimum energy cost
based on time-varying prices, the generation from RES, the usage demand for each HA,
the battery ESS capacity and the grid constraints [15]. The authors in [16] proposed a new
home energy management architecture with a renewable energy source and ESS, as well
as the power grid, and in this home energy management, some mathematical models for
the energy cost and peak-to-average ratio should be minimized. The applied solution is
based on particle swarm optimization (PSO) and binary PSO during the day [16]. The
results obtained from [16] clearly show that the proposed scheme worked well with the
daily total electricity cost and the peak-to-average ratio, in comparison to those of similar
works. Ahmad et al. worked to minimize the electricity bill using the scheduling of the HA
and ESS in response to the dynamic pricing of the electricity market. In this study, different
metaheuristic algorithms were applied, e.g., GA, binary PSO, wind-driven optimization,
bacterial foraging optimization and hybrid PSO algorithms. The results corresponding to
each algorithm were compared to each other through the proposed scheme [17]. It was
seen that [17] is an exemplary study to test the validity of the approach and the scheme we
propose compared to the studies given above; the results were produced considering the
data used here, and necessary comparisons were made to obtain a better improvement in
the problem of home energy management. The summary in terms of objectives, tariffs, and
methods of investigated literature is given in Table 1.

Table 1. Summary in terms of objectives, tariffs, and methods of investigated literature.

Objective Tariff Algorithm References

Cost TOU, RTEP MILP [15]
cost & PAR TOU, RTEP MILP, GA, NSGA-II, GHSA, GWCSO [2–8,12,16,17]

cost & comfort TOU, RTEP DA, NSGA-II, QBPSO, PSO, MILP [5,9–11]
cost & consumption TOU, RTEP MINLP, MILP, PSO [1,13,14]

1.2. The Original Contribution

The aim of this study is to perform a minimization of the daily total electricity bill
and the peak-to-average ratio by optimizing the start times of the shiftable smart HA
on the basis of hourly day-ahead real-time electricity pricing using binary-coded genetic
algorithms. The designed home energy management system includes smart HA, a power
grid, a solar PV generator, and ESS; in this system, surplus energy is sold to a power
grid when it is most expensive, and deficit energy is purchased from the power grid at
time slots when it is least expensive if possible. There are also a few constraints in the
energy storage system, in which amounts of charging and discharging are not allowed
to be more than 0.3 kWh in a single time slot. Thus, the optimization problem under
consideration was solved for the optimal start times of the shiftable appliances in the home
EMS using the binary-coded genetic algorithm approach. The results are compared to those
obtained from few metaheuristic algorithms, and it appears that there is a considerable
improvement, reducing both the electricity bill and peak-to-average ratio under similar
conditions. This may be explained because, unlike the other meta-heuristic algorithms, the
binary-coded genetic algorithms have more powerful genetic operators—such as selection,
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crossover, mutation, and elitism—to produce a variety of possible solutions and then refine
them to reach the best possible solution over generations. It can be said that this work
has contributed to this field of study, showing that binary-coded genetic algorithms with
powerful genetic operators are highly efficient in improving the daily total electricity bill
and peak-to-average ratio, as well as the comfort of the home.

2. The System Architecture, Problem Definition and Applied Methods

In this part of article, the system architecture, problem definition, and the applied ap-
proach to solve the defined optimization are detailed based on the real-time
pricing scheme.

2.1. System Architecture
2.1.1. Home EMS

In general, a basic home EMS is composed of the metering infrastructure, smart
metering, a home gateway, an energy management controller, smart HA, ESS, and a solar
PV generator, as shown in Figure 1. In this architecture, the smart metering infrastructure
covers a major role in supplying two-way communication between the smart meter and the
utility for real-time electricity pricing. The smart meter installed between the infrastructure
metering and the energy management controller is used to read energy consumption data,
process it, and send it to the energy management controller for further handling. In this
investigation, the smart household appliances are mainly divided into two groups: shiftable
and non-shiftable. For instance, a washing machine or dishwasher is a shiftable home
appliance, as it is operated in any time slot in the day. However, a refrigerator or lighting is
a non-shiftable home appliance, because it must be operated in certain time slots during
the day. Once the optimization procedure is complete, the optimal operating times of the
switchable appliances are transmitted to the energy management controller for scheduling
at the beginning of the day. The smart meter and the home gateway communicate with each
other through Wi-Fi in the home local area network. The energy management controller in
the home gateway schedules the operation time of the appliances after receiving a real-time
electricity price signal from the utility.
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Figure 1. Basic architecture of the HEMS with a wireless home area network.

Because the first objective aims to reduce the daily electricity bill, shiftable HA—such
as a washing machine, a dishwasher or a dryer for clothes—are expected to operate in
the time slots when the electricity price is lowest; hence, this may lead to the overload of
distribution lines and an increase in power losses beyond the typical values. However,
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householders usually prefer to operate them in the most convenient times for themselves,
regardless of the maximum daily total electricity cost. For instance, the householders may
intend to use the dishwasher after lunch, the washing machine in the morning, or the
clothes dryer in the evening. It is obvious that there is a trade-off between the electricity
cost, the householder’s comfort, and the peak-to-average ratio. It is seen here that there
are three objectives to be optimized, but among them the daily total electricity cost and a
peak-to average ratio are more influential. Thus, it is essential to focus reasonably on these
two objectives to be optimized, both in single and multiple cases. Table 2 shows the smart
household appliances and their possible start- and end-time slots [17].

Table 2. Start, end and operation times of the appliances in use.

Appliance Type Power (kW) Length * Start * End *

Washing machine

Shiftable

0.80 5 1 24
Air conditioner 1.30 10 1 24

Dryer for cloathes 0.70 4 1 24
Water heater 1.00 8 1 24
Dishwasher 0.20 3 1 24

Personnel computers

Non-Shiftable

0.20 18 7 24
Security cameras 0.10 24 1 24
Microwave oven 0.50 7 14 20

Refrigerator 0.90 20 3 22
TV 0.20 8 15 22

Lighting 0.10 6 17 22

* LENGHT is the duration of the work cycle, which is the number of time slots that must be scheduled for each appliance; these slots are
consecutive only if the appliance is an uninterruptible load. START is the first time slot in which the work cycle of an appliance can start;
it is not possible to schedule the start before START. END is the last time slot in which the work cycle of an appliance can end; it is not
possible to schedule the end after END.

2.1.2. Rooftop PV Generator

The generation of electricity by a photovoltaic panel is highly dependent on the
irradiance around the site where the system was built. The maximum power that can be
extracted from a PV panel is usually given by the manufacturer’s datasheet. However, in
some cases it can be changed on the basis of the ambient conditions, e.g., the irradiance
level and temperature, etc. The estimated power generation by a PV system in any time
instant can be determined by the I-V and P-V characteristics after a manipulation. As can
be seen from Figure 1, the rooftop photovoltaic panels generate a maximum of 3 kW power
at certain times in a day. The maximum power output of the PV is defined on the basis of
the maximum power point tracking system at any time instant. The power generated by
the panels is first used to partly or fully supply smart home appliances, and then to charge
the ESS if there is surplus power. The battery bank stores both the surplus energy from
the rooftop PV system and the cheapest energy from the utility, if it is not fully charged at
the slot.

2.1.3. ESS

The ESS has a capacity of 3 kWh, and it is charged from the photovoltaic system when
surplus energy is available, and the grid when the electricity price is the lowest in a day. The
energy storage system is preferred for use when the electricity price is the most expensive,
and when it is urgently needed. However, the disadvantage of the photovoltaic-energy
storage system is that it has a limited lifetime and requires periodic maintenance. In this
investigation, the energy storage system can be formulated as follows:

Let Bs , B(t)
c , B(t)

d , ηc, ηd, Bmax
c and Bmin

d be the storage capacity of the battery bank,
the charging energy during the tth slot, the discharging energy during the tth slot, the
charging efficiency, the discharging efficiency, the maximum energy charging level and the
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minimum energy discharging level, respectively. The state of charge of the energy storage
system during the tth slot can be expressed as

B(t)
b = B(t−1)

b + ηcB(t)
c −

B(t)
d

ηd
(1)

where B(t)
b ≤ Bs. It should be noted that the battery cannot be charged or discharged

at the same slot, hence B(t)
c > 0, B(t)

d = 0 or B(t)
c = 0, B(t)

d > 0. Table 3 illustrates the
characteristics of the energy storage system.

Table 3. The characteristics of the ESS in use [17].

Parameter Value

Roundtrip Efficiency 0.95
Charging Efficiency 0.95

Discharging Efficiency 0.95
Maximum Energy Capacity 3 kWh
Minimum Energy Capacity 0.5 kWh

Initially Stored Energy 0.5 kWh
Max. Charging/Discharging Energy 0.3 kWh

2.2. Problem Definition

In order to formulate the optimization problem, one day is divided into 24 equally
spaced time slots, and the minimum time resolution is an hour. Let T denote a set of time
slots; it can be defined by

T = {1, 2, 3, . . . , 120}∀t ∈ T (2)

Let A denote a set of the interruptible, uninterruptible and baseline household appli-
ances:

A = {a1, a2, a3, . . . , ai, . . . , a16} (3)

where ai is the ith appliance of the set.
The power consumption vector for appliance ai can be defined as

Pai =
[

p(1)ai , p(2)ai , . . . , p(t)ai , . . . , p(120)
ai

]
(4)

where p(t)ai is the average power consumption for appliance ai during the tth interval.
Let αai ε T and βai ε T be the start and end times of the operation interval respectively,

and αai < βai for appliance ai. Similarly, let lai be the operation length of appliance ai;
thus, lai must satisfy the constraint βai − αai ≤ lai . It should be emphasized that the
larger βai − αai , the more possible solutions to the problem. Now, we need to assume that
appliance ai operates during lai without interruption. Let sai and eai be the start and end
times of appliance ai, respectively; hence eai = sai + lai and αai ≤ sai ≤ βai − lai .

Now, the power consumption for appliance ai during the tth interval can be expressed as

P(t)
ai =

{
Prai , t ∈ [sai , sai + lai ]

0, t /∈ [sai , sai + lai ]
(5)

where Pai is the average power consumption in kW.
The total daily power consumption can be calculated by

Ptotal =
120

∑
t=1

((
13

∑
i=1

p(t)ai

)
+

(
5

∑
j=1

p(t)bj

))
(6)
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where Pbj
is the average power consumption for the jth fixed time operated appliance in kW.

Although there was a considerable improvement in the reduction of the daily cost,
householder comfort inevitably decreased. Therefore, it is necessary to reduce the delay
time in the scheduled operation as much as possible using the multi-objective optimization
approach. The delay time for appliance ai can be calculated by

Dai = (sai )sch − (sai )unsch (7)

where (sai )sch and (sai )unsch are the start times for appliance ai in the scheduled and
unscheduled operations, respectively.

If the electricity cost is the only objective, the fitness function can be expressed as

fcos t = Min

(
24

∑
t=1

((
5

∑
i=1

p(t)ai

)
+

(
6

∑
j=1

p(t)bj

)))
(8)

If the delay ratio is only objective, the fitness function can be expressed as

fPAR = Min

 Max
((

∑5
i=1 p(t)ai

)
+
(

∑6
j=1 p(t)bj

))
1

24 ∑24
t=1

((
∑5

i=1 p(t)ai

)
+
(

∑6
j=1 p(t)bj

))
 (9)

If the cost and the peak-to-average-ratio are the only two objectives, the fitness function
can be expressed as

f = Min(ω1 fcos t + ω2 fPAR ) (10)

where ω1 = 1/3 and ω2 = 2/3.

2.3. Proposed Method

The BCGA is highly fitted for solving the single objective and multi-objective opti-
mization problems for the optimal start times of the shiftable appliances. The flowchart
of BCGA method is presented in Figure 2. First, the start times of the shiftable appliances
were generated by random binary strings, and their fitness values were calculated by
the fitness function. The most fitted individuals were selected through the tournament
selection mechanism, and the selected individuals were copied to the mating pool. A
single point crossover was implemented on the selected population with a probability
of 0.8, and the inverse mutation operation was applied to the current population, with a
probability of 0.1. The elitist strategy was implemented on the mutated population to keep
the best solution through the generations. The indicated process is repeated by the time
the number of generation reaches the maximum number of generation, and the naturally
possible solutions are improved through the successive generations, as expected. During
the genetic process, the population size and the maximum number of generation were 200
and 300, respectively.
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3. Results and Discussion

In the above section, the simulation results obtained by the applied method are
presented. This simulation includes daily energy cost minimization based on the electricity
prices shown in Figure 3, after the use of electrical appliances in a typical house during the
day. Divided into 24 equal time slots, the first time slot of the day indicates the 00–01-h
interval, the second time slot shows the 01–02-hour interval, and so on. In this study,
the optimization process includes: (I) minimizing the daily total energy cost, and (II)
minimizing both the daily total energy cost and the PAR. Hence, the optimization problem
was solved for an optimal solution for a single objective and two objectives within the
framework of the specified conditions. As in the previous study [17], we have a 3 kWh-
energy storage system and a 2 kW-solar PV system connected to the main grid. The power
demand for the smart home appliances was first met from the solar PV system; in case
it was insufficient, it was met from the energy storage system. If these two are in short
supply, the remaining amount is supplied from the main grid. In the case of surplus power
generated by the solar PV, it is sold to the grid at the grid purchase price. The optimization
problem was solved by a desktop computer with Intel (R) Core (TM) i5-10210U CPU@1.60
GHz 16.0 GB RAM in five minutes. The results obtained by using the proposed method
were compared with previous studies under the same conditions, and it can be said that
they were improved compared to those in [17].

In order to fairly compare the results of our proposed approach, the data and results
of the previous study [17] were used, and the comparison results are given through figures
and tables. In a previous study [17], electrical household appliances were divided into
two groups—non-shiftable and shiftable—as shown in Table 2. As expected, when the
shiftable home appliances are shifted to time slots when the electricity price is cheap, the
total daily energy cost decreases along with the householder’s comfort; however, this is not
a desired case. Here, of course, the householder’s comfort may be expected to be included
in the optimization process, but this is beyond the scope of the study. The solar PV system
consisting of monocrystalline panels generates a maximum power of 2 kW during the day,
and its hourly power generation is shown in Figure 4. The energy storage system used
for this study has the same physical characteristics with the one given in the previous
investigation [17]. Unlike the previous study [17], the scheme we propose is flexible, and
home appliances are first fed from the solar PV system in the daytime, and then from
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the energy storage system if it can provide sufficient power. The surplus energy is first
evaluated in the energy storage system; the remaining energy is sold to the grid, thus
reducing the cost.
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is not a desired case. Here, of course, the householder’s comfort may be expected to be 
included in the optimization process, but this is beyond the scope of the study. The solar 
PV system consisting of monocrystalline panels generates a maximum power of 2 kW 
during the day, and its hourly power generation is shown in Figure 4. The energy storage 
system used for this study has the same physical characteristics with the one given in the 
previous investigation [17]. Unlike the previous study [17], the scheme we propose is flex-
ible, and home appliances are first fed from the solar PV system in the daytime, and then 
from the energy storage system if it can provide sufficient power. The surplus energy is 
first evaluated in the energy storage system; the remaining energy is sold to the grid, thus 
reducing the cost. 
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Figure 4. The hourly changing power generated by the solar PV power, with the slots.

3.1. Single Objective Optimization

In Equation (8), the weight numbers ω1 = 1 and ω2 = 0 are used as the objective
function to minimize the total daily energy cost while calculating the optimal daily total
cost, and in this calculation, the unit electricity price sold to the grid and the unit purchased
from the grid are the same. The optimization process is detailed below.

Total Energy Cost
The comparison of the proposed approach with the results given in the previous

study [17] for the total daily billing cost and PAR is shown in Figure 5. As seen in Figure 5a,
the total cost of the daily electricity bill with the proposed method is 511.06 cents, which
is better than those obtained with other methods [17]. There is an 8% reduction in the
daily total electricity bill cost when the result is compared with the minimum result in
previous studies [17]. As seen in Figure 5b, the PAR found is greater than only one of the
results obtained from the algorithms used in the previous study [17]. However, in order
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to further improve the current results, it is necessary to solve a bi-objective optimization
problem. In order to understand how this improvement was achieved, the graphs in
Figure 6 should carefully be analysed. As seen in Figure 6a, there is a significant daily
total cost difference between the optimized and non-optimized load dispatch. If attention
is paid, in the scheduled home appliances, there is more power demand for them in the
time intervals where the electricity price is lower, and less power demand in the intervals
when the electricity price is higher. It can be said that this leads to a significant reduction
in the daily total electricity bill. For example, while the electricity price is the lowest in the
fourth time slot, the unscheduled home appliances of 1 kW are increased to 4 kW with an
additional 3 kW. The scheduled average power demand between the 8 and 11 time slots,
where the electricity price is the highest, is less than the unscheduled power demand, and
this plays an important role in the reduction of the total daily billing cost.
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As seen in Figure 6b, while the energy received from the grid is less than others in
the 8–11 time slots in the case of scheduled HA, the energy transferred from the energy
storage system to home appliances is not available. Another important contribution to the
reduction of the daily total electricity bill cost comes from the solar PV system; hence, this
system feeds a limited number of the home appliances in times when electricity prices are
high, leading to a decrease in the daily total electricity bill cost. In addition, it causes the
daily total cost to decrease by transferring the surplus energy it produces to the ESS and
the grid. However, some energy loss during the charging and discharging of the energy
storage system from the solar PV system reduces the total efficiency of the entire system
by 5%. In this regard, it is preferable to use the power obtained from the solar PV system
to directly feed the household appliances. The operation times of the shiftable household
appliances optimized in the performed simulation are given in Table 4.

Table 4. The optimized operation times of the appliances in SOO.

Type Appliance OT SOO

Shiftable

Washing machine 5 14
Air conditioner 10 3

Dryer for clothes 4 19
Water heater 8 3
Dishwasher 3 3
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Figure 6. (a) The scheduled and unscheduled daily power demand, and (b) the powers delivered to the load. pv2load, PV
to load; bat2load, battery to load; g2load, grid to load; price, electricity price in $.

3.2. Bi-Objective Optimization

The PAR is an important indicator of the behaviour of the householder’s home appli-
ances and significantly affects the performance of the main grid. The PAR rises as expected
when we only focus on minimizing the daily total electricity bill cost. In order to overcome
this problem, it is necessary to optimize both the daily total electricity bill cost and the PAR
at the same time. It is obvious that the problem in question is a bi-objective optimization
problem, and the two objective functions are converted to a single objective function with
the help of constant weight coefficients. The selection of the coefficients is made according
to the principle of the equalization of the maximum values; hence, the bi-objective functions
take in a certain interval, with their sum being equal to unity. In the optimization process,
the input values related to the method used for single optimization are taken as they are,
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except for the fitness function. The simulation time slightly increases because the problem
is a little more complex than the single optimization problem.

While the simulation results illustrated in Figure 7 produce better results compared
to the results obtained from the previously used methods [17], a better improvement was
achieved in the result obtained in the single optimization. As can be seen from Figure 7,
different weight coefficients produce slightly different results, and w1 = 1/3 and w2 = 2/3
yielded the best results among the three selected weight coefficients of w1 = 1/2, w2 = 1/2,
w1 = 2/3 and w2 = 1/3. Contrary to what is expected here, in all three cases, the total daily
cost has almost no change at all, and is very close to the result of the single optimization.
The shiftable optimal operation hours obtained by bi-objective optimization by selecting
appropriate weight coefficients are given in Table 5. As seen in Table 5, while the PAR is
significantly reduced, the starting times of the shiftable household appliances are different
from those obtained by single-objective optimization, and the best result was found when
the weight numbers were ω1 = 1/3 and ω2 = 2/3.
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Table 5. The optimized operation times of the appliances in BOO.

Type Appliance OT BOO

Shiftable

Washing machine 5 7
Air conditioner 10 1

Dryer for clothes 4 12
Water heater 8 1
Dishwasher 3 1

In the designed bi-objective optimization, the PAR was reduced from 1.859 to 1.24;
therefore, this is a very good improvement on the PAR drop. However, in this optimization
process, the daily total electricity cost surprisingly remained constant at 511 US cents for
three different weight coefficient sets. In the previous study [17], the cost of 475 cents
obtained from the use of the mixed-integer linear programing (MILP) seemed to be a non-
feasible solution, such that if all appliances are operated at the time slot when the electricity
price is the lowest, their daily total cost is 464.80 US cents; this is really nonsense. Actually,
this verifies that a PAR of 2.4 indicates that the household appliances are overlapped in
a certain time slot. The variation of the hourly power demand of household appliances
with the time slots and powers delivered to these appliances are shown in Figure 8. It
can be seen from Figure 8a that the largest power demanded from the main grid is 4.5
kW in the 11th time period, and the large power demands are spread over low-priced
time slots. Although this is the most influential factor that helps to significantly reduce
the large PAR values, the additional power boost from the solar PV system at noon has
a significant share in this decrease. As can be seen from Figure 8b, the reduction in the
daily total cost is intended to meet the power needed by the appliances when the electricity
price is the lowest. Note that here, the power transferred from the energy storage system to
the appliances is not sufficient, as expected. The power boost from the solar PV generator
appears to be effective at between 09 and 18 h, in contrast to the energy storage system
in use.

In the light of all of these results, it can be seen that the proposed method, due to its
nature, produces better results in terms of applicability when compared to other methods
for the reduction of the daily total cost and PAR in the home energy management system.
A one-to-one comparison with the results of a similar study was clearly demonstrated here.
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4. Conclusions

Scheduling smart home appliances’ operation times to simultaneously reduce both the
electricity bill and the PAR based on demand response, as well as increasing user comfort,
is an essential task. It is worth noting that in the scheduled operation, the cost is always
lower than in the unscheduled operation. The cost value varies depending on the price of
electricity, the rated power and number of household appliances, as well as the length of
the operation range. Although it is desirable for the user to reduce the cost, this inevitably
leads to a PAR increase in certain time intervals. This is not welcome for either the user
or the utility, as it causes extra losses in power transmission lines. A gradual increase
in the electricity price depending on the consumed power up to a certain level seemed
to be a solution in the previous application, and it can be seen from the results that it is
ineffective to decrease PAR. Instead, it was observed that the simultaneous optimization
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of both the cost and PAR offers better results to the householders. Taking user comfort
into consideration, it was observed that as the user comfort increases, the PAR increases
together with the cost when optimizing the cost, the PAR and the comfort simultaneously.
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