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Abstract: This paper presents a new method of inter-turn short-circuit detection in cage induction
motors. The method is based on experimental data recorded during load changes. Measured signals
were analyzed using a genetic algorithm. This algorithm was next used in the diagnostics procedure.
The correctness of fault detection was verified during experimental tests for various configurations
of inter-turn short-circuits. The tests were run for several relevant diagnostic signals that contain
symptoms of faults in an examined cage induction motor. The proposed algorithm of inter-turn
short-circuit detection for various levels of winding damage and for various loads of the examined
motor allows one to state the usefulness of this diagnostic method in normal industry conditions of
motor exploitation.

Keywords: turn short circuit; stator winding; induction motor; genetic algorithm

1. Introduction

Technical diagnostic is a process in which one checks the technical condition of an
object and, from that, a decision is made about continuing to use it or subjecting it to a
repair process enabling further use. In a special case, if the cost of repair is very high, the
object is scrapped.

A system that allows one to detect, locate, and identify (classify) a fault is often simply
called a fault detection system. Fast detection of a fault in its initial stage of formation
prevents damage of components, unplanned breaks in the operation of the device, and life-
threatening failure. An efficiently operating fault detection system limits possible economic
losses caused by device malfunction. It uses generated signals that contain information
about discrepancies between the nominal and incorrect working conditions of the device.

Mechanical, strongly nonlinear elements such as elastic-damper parts, bearing faults,
or clearances occurring in elements have a strong influence on the operation of electro-
mechanical systems in energy conversion. In such complex objects, analysis of diagnostics
signals in the time-frequency domain and their classification is possible due to the applica-
tion of transform methods. These methods allow for simultaneous investigation of spectra
in both domains [1].

At the same time, there is constant progress in the field on new mathematical modeling
methods that can be applied in diagnostics. Methods of modeling and identification
elaborated based on automation with artificial intelligence techniques are currently being
intensively developed in industry processes diagnostics [2].

In the past few years, there were published many papers presenting new fault detec-
tion techniques using time-frequency methods, neural networks, genetic algorithms, and
image processing. It is worth noting some of them:
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− Analysis of non-stationary vibration signal using Wigner–Ville time-frequency trans-
form with Blackman’s time window [3],

− Bearing fault detection in cage induction motors using ST time-frequency analysis
and acoustic signal autocorrelation function envelope analysis [4],

− Demonstration of the suitability of time-frequency analysis for inter-turn short-circuit
detection in the stator winding of permanent magnet synchronous motor (PMSM)
using improved wavelet analysis [5],

− Use of the discrete and packet wavelet transform for extracting particular features
of the induction motor circuital currents for condition monitoring and failure mode
detection [6],

− Innovative diagnostic method of inter-turn short circuit detection of linear start perma-
nent magnet synchronous motor (LSPMSM) stator winding, using frequency analysis
of acoustic signals with fast Fourier transform (FFT) [7],

− Use of stator load current analysis for various types of bearing fault of induction
motor using fast Fourier transform and teaching convolutional neural network [8],

− Development of method of supply distortion (PQ) estimation for induction motors,
based on the analysis of stator current with discrete wavelet transform coefficients,
used both for one-directional feedforward neural network and neural network with
radial function of neurons activation [9],

− Inertia of masses on motor shaft identification using wavelet transform of examined
signals and neural network trained with error back propagation error method using
Levenberg–Marquardt’s algorithm [10],

− Detection of rotor bar faults and stator winding short-circuit using Fourier transform
and neural network [11],

− Diagnosis of induction motor using the model of neural network deep learning for
automatic function training based on the data obtained from sensors and recognition
of operating point [12],

− Presentation of possibilities of stator and rotor fault detection in induction motor
using neural networks deep learning in analysis of axial flux variations [13],

− Analysis of bearing faults in induction motors using genetic algorithms and a com-
bination of k nearest neighbors (KNN) algorithm, decision tree, and random forest
(RF) [14],

− Application of a convolutional neural network for detecting and classifying winding
faults in induction motor stators [15],

− Application of convergence and accuracy improvement of genetic algorithms in
parametric identification of induction motor mathematical models [16],

− Demonstration of an identification method for parametric models of induction motors
by means of a genetic algorithm [17],

− Presentation of a technique for detecting and localizing early-stage inter-turn faults in
three-phase induction cage motors by means of genetic algorithms for estimating the
motor nominal parameter values [18],

− Development of a differential evolution-based method for estimating electrical as well
as mechanical parameter values of three-phase induction motors [19],

− Application of simulated annealing and evaporation rate water cycle algorithm (SA-
ERWCA) for estimating parameter values of a reduced order model of an induction
machine [20],

− Application of genetic algorithm in parameter identification of induction motor oper-
ating in a no-load state and without short-circuit tests [21],

− Development of an algorithm for optimal identification of induction motors by means
of an evolutionary method—the so-called gravitational search algorithm (GSA) [22,23],

− Identification of fault in rotor winding using objective functions of genetic algorithms,
which uses calculated errors of comparison of phase current signals for faulty and
healthy induction motor models [24],
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− Estimation of stator and rotor resistance, leakage reactance, and magnetizing reactance
in an equivalent circuit of a three-phase induction motor using a combination of
genetic algorithm and optimization of particle swarm (HGAPSO) [25],

− Combined approach based on artificial neural networks and genetic algorithms for
calculating induction motor parameter values [26],

− Development of GA-based algorithms for an early-stage short-circuit related faults in
stator windings of induction motors [27],

− Demonstration of a GA-CSA (crow search algorithm) hybrid algorithm for senseless
control of induction motors [28],

− Efficient parameter estimation method for double-cage induction motors by means of
the artificial bee colony (ABC) algorithm [29],

− Estimation of permanent magnet induction motor parameters for wheelchair appli-
cations by means of standard and dynamic particle swarm optimization algorithms
(PSO), ant colony optimization (ACO), and artificial bee colony-based methods com-
plemented by experimental methods [30],

− Presentation of method of cracked rotor bars detection in an induction motor using
algorithm of processing of binary image developed from conversion of stator current
vector [31],

− Introduction of a novel method for image clustering based on the classic Fuzzy
C-Means (FCM) algorithm and the backtracking search algorithm (BSA) [32],

− Combination of three-phase inverter output currents image processing method and
algorithm of nearest neighborhood (NN) for identification of faults occurring in
induction motor drives [33], and

− Identification of inertia of masses on the shaft of induction motor drive by analyz-
ing wavelet scalograms using the method of cauterization by k-means harmonics
technique [34].

The rest of the paper is organized as follows: the second section contains a description
of the laboratory stand and the examined induction motor with configurable stator winding.
The principle of genetic algorithm operation is also described.

The third section contains a description of the results of the genetic algorithm applica-
tion in inter-turn short-circuit identification based on the diagnostic signals obtained from
laboratory measurements.

The fourth section contains conclusions on the application of the genetic algorithm in
induction motor fault identification.

2. Laboratory Tests and Algorithm Description

Detecting winding short-circuit related faults at an early stage of failure is an important
task in the maintenance and monitoring of electrical machines. To the best knowledge of
the authors, this problem has not been fully researched and resolved to this day and is still
an interesting research issue. Therefore, in order to develop a more effective algorithm for
early detection of short-circuit faults, experimental tests were carried out, during which
the data were obtained for the development of an efficient genetic algorithm.

2.1. Description of Research of Inter-Turn Short-Circuit Identification in Induction Motor Model

The subject of the research was an Sg-112M-4 cage induction motor with the following
parameters: Pn = 4.0 kW, Un = 380 V, In = 8.6 A, and nn = 1435 rpm. The motor was
mechanically coupled with a PZM5545 DC generator by a clutch. The DC generator works
as a load for the induction motor and has the following parameters: Pn = 4.5 kW, Un = 230 V,
In = 19.6 A, nn = 1450 rpm, and If = 0.86A.

Figure 1 show the wiring diagram and terminals of stator coil turns. The number of
the winding from which the turn is connected to the terminal on the board is marked with
a number on the diagram by each turn.
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Figure 1. Wiring diagram of stator winding turns connection to the terminals.

Short circuit of selected winding was achieved by connecting the proper terminal of a
turn with a resistor and ammeter, which was used for control of the current in shorted turns.
Additional resistance of 5 ÷ 6 Ω was used in order to protect the motor from overheating
and to limit the current. The additional resistor does not have any impact on the results of
the fault occurrence, which can be observed in investigated diagnostic signals.

Stator windings were connected in wye configuration and the motor was supplied
from a three-phase low voltage network [35].

Apart from the modification of the induction motor winding, a coil for axial flux φ1
measurement was mounted. The end shield of the examined motor is one of the most
important parts of the laboratory stand for this experiment. The view of the end shield
with installed measurement coil is presented in Figure 2.
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Figure 2. Stator of the examined motor with mounted coil for axial flux measurement.

The method of identifying inter-turn faults presented in the paper allows for an in-
depth analysis of the results obtained from measurements. During the tests the registered
parameter values were used, which were obtained from laboratory measurements of the
induction motor behaviour and carried out on the laboratory stand described in this section.

It should be emphasized that the results here are obtained by means of an AI-based
approach combining the GA algorithm and the discrete optimization method.

Analyzes were carried out in five groups of tests with the following five different
values of load current Iload: 1A, 2A, 3A, 4A, and 5A. Each group of tests contained eight
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different cases of inter-turn short-circuit. Tests results for all physical magnitudes and for
each case of short-circuit change were put into matrix X1[8,500000]. The elements of matrix
X1 were defined for each value of load current Iload. Formal changes were put into matrix
K1 in the following order: K1 = [(short circuit between turns 1 and 2), (short circuit between
turns 1 and 3), (short circuit between turns 1 and 4), (short circuit between turns 1 and 5),
(short circuit between turns 1 and 10), (short circuit between turns 1 and 15), (short circuit
between turns 1 and 20), (short circuit between turns 1 and 25)].

In the proposed diagnostic method, analyses were carried out for the following
physical magnitudes:

(a) Turn short-circuit current Iz,
(b) Electromagnetic torque of the examined induction motor mel
(c) Voltage signal proportional to rotational speed of the rotor n1,
(d) Signal proportional to axial flux φ1,
(e) Vibration—acceleration in X axis—dx,
(f) Vibration—acceleration in Y axis—dy,
(g) Acoustic pressure—ps,
(h) Phase voltages—u1, u2, and u3,
(i) Phase currents—i1, i2, and i3,
(j) Neutral point voltage—u0.

2.2. Description of Diagnostic Algorithm Applied in Processing of Examined Signals of Physical
Magnitudes Using Genetic Algorithm of Simulated Annealing

In the diagnostic procedure assumed for all investigated physical magnitudes and
performed for each examined case of inter-turn short-circuit there were used the values of
matrix X3 that were obtained by normalizing the elements of matrix X1 and sorting the
elements of matrix X2 in descending order.

Analyses were performed with 50 kHz sampling frequency. The period of recorded
signals of each test was 10 s.

Selected values of the matrix X3, which were used in calculations using genetic
algorithm are defined as:

X3(i)(j) =


[

X2(i)(1) ≥ X2(i)(2)... ≥ X2(i)(300)

]
;

i ∈ 〈1, 8〉; j = 1, 2...300
(1)

Normalization of X1 elements’ values was performed in identification experiments using:

− Parameters defined for acoustic pressure ps for the first four assumed cases of inter-
turn short circuit;

− Parameters defined for axial flux φ1 for the last four assumed cases of inter-turn
short circuit.

Identification tests were performed using the elements of reference matrices and
elements of the examined matrix obtained from application of the genetic algorithm.

The values of the reference matrix were obtained from calculations of the genetic
algorithm in which matrix X2 was used for the group of tests for load current equal to
Iload = 3A.

For all the examined physical magnitudes. the values of X2 elements were calculated
by narrowing the values of X1 elements to the range [a3, a4] as shown below:

X2((i)j) =


(

(X1(i)(j)−a1(i))

(a2(i)−a1(i))

)
∗ (a4(i) − a3(i)) + a3(i);

i ∈ 〈1, 8〉; j = 1, 2...500000
(2)

where:
X1—matrix elements values calculated during the test,
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a1—minimum values of matrix X1 elements defined in the test,
a2—maximum values of matrix X1 elements defined in the test,
a3—initial value of the range containing normalized values of X1 and calculated

during the test of acoustic pressure ps and during the test of axial flux,
a4—end value of the range containing normalized values of X1 and calculated during

the test of acoustic pressure ps and during the test of axial flux,
i—number of examined inter-turn short-circuit case.
The values of variables a1, a2, a3, and a4 were calculated using the following formulas:

a1(i) = min
(

X1(i)(j)

)
(3)

a2(i) = max
(

X1(i)(j)

)
(4)

a3(i) =


500000

∑
j=1

X1(i)(j)

500000 ;

X1(i)(j) f or ps, φ1

(5)

a4(i) =

 max
(

X1(i)(j)

)
;

X1(i)(j) f or ps, φ1

(6)

Calculation of the values of examined matrix elements was performed by applying
the genetic algorithm to elements of matrix X2 calculated for a given load current Iload.

In the case of identification tests carried out using the values of the examined matrix,
the following was applied:

− Calculation of matrix X2 elements’ values using Formula (2) and performed for
the assumed first four cases of inter-turn short-circuit in which the normalization
of matrix X1 elements’ values was done using parameters a3 and a4 calculated for
acoustic pressure ps,

− calculations of matrix X2 elements’ values for assumed last four cases of inter-turn
short-circuit in which the normalization of matrix X1 elements’ values was performed
using additional operations using parameters calculated for axial flux φ1.

Calculations of X1 matrix values performed by using additional operations with pa-
rameters defined from axial flux φ1 were done for the case meeting the following condition:

a5(i) 6= 0; i ∈< 1, 8 > (7)

The value of variable a5 is a maximum value defined by Chebyshev’s distance for
calculated elements’ values of matrix X6 according to the following formula:

a5(i) = max
(

X6(i)(1), X6(i)(2), X6(i)(3)

)
; i ∈< 1, 8 > (8)

Values of X6 matrix elements were obtained by calculating absolute values of differ-
ences between the values of elements of matrices X4 and X5 using the following formula:

X6(i)(j) =
∣∣∣X4(i)(j) − X5(i)(j)

∣∣∣; i ∈< 1, 8 >; j = 1, 2, 3 (9)

where:
X4—values of matrix elements calculated during the test,
X5—values of matrix X4 elements calculated during the test for load current Iload = 3A.
Values of matrix X4 elements were calculated by using the proper arithmetic mean

values for the corresponding elements of X3 matrix using the formulas shown below:

X4(i) =
[
m1(i), m2(i), m3(i)

]
; i ∈ 〈1, 8〉 (10)
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m1(i) =

100
∑

j=1
X3(i)

100
; i ∈ 〈1, 8〉 (11)

m2(i) =

200
∑

j=101
X3(i)

100
; i ∈ 〈1, 8〉 (12)

where:
m1, m2, m3—arithmetic mean values of matrix X3 elements calculated in the test.
The arithmetic mean values m1, m2, and m3 were calculated as follows:

m3(i) =

300
∑

j=201
X3(i)

100
; i ∈ 〈1, 8〉 (13)

The calculations of matrix X2 values meeting the requirements defined by (7) were
performed using the following formula:

X2((i)j) =


(

(X1(i)(j)−a1(i))

(a2(i)−a1(i))

)
∗ (a8(i) − a7(i)) + a7(i);

i ∈ 〈1, 8〉; j = 1, 2...500000
(14)

where:
a7—initial value of the range containing normalized values of X1 and calculated

during the test of axial flux φ1,
a8—end value of the range containing normalized values of X1 and calculated during

the test of axial flux φ1.
The values of variables a7 and a8 were calculated using the following formulas:

a7(i) = a9(i) + min
(

X1(i)(j)

)
; i ∈ 〈1, 8〉 (15)

a8(i) = max
(

X1(i)(j)

)
− a9(i); i ∈ 〈1, 8〉 (16)

a9(i) =

500000
∑

j=1
X1(i)(j)

500000
; i ∈ 〈1, 8〉 (17)

If the condition defined by (7) was not satisfied, calculations of matrix X2 values are
performed using Formula (2).

Parameters a3, a4, a7, and a8 used in the calculations of matrix X2 values were calcu-
lated for physical magnitudes such as acoustic pressure ps and axial flux φ1. Application
of these physical magnitudes was possible by satisfying the following conditions defined
during tests for load current Iload = 3A:

a10 > a11; f or i ∈ 〈1, 4〉 (18)

a12 > a13; f or i ∈ 〈5, 8〉 (19)

where:
i—number of tested inter-turn short-circuit case.
Values of variables a10, a11, a12, and a13 were calculated according to the follow-

ing formulas:
a10 = max

(
X7(i)

)
− a11; i ∈ 〈1, 4〉 (20)

a11 =
∣∣∣min

(
X7(i)

)∣∣∣; i ∈ 〈1, 4〉 (21)
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a12 = max
(

X7(i)

)
− a13; i ∈ 〈5, 8〉 (22)

a13 =
∣∣∣min

(
X7(i)

)∣∣∣ i ∈ 〈5, 8〉 (23)

Values of matrix X7 elements were calculated according to the following formulas:

X7(i) = max
(

X1(i)(j)

)
; i ∈ 〈1, 8〉; j = 1, 2...500000 (24)

For the proposed diagnostic method, one used the genetic algorithm of the highest
growth. In the next iterations of this algorithm, for normalization of individual values,
suitable values of the Fibonacci sequence were used. Values of matrix X3 were used in
calculations of Fibonacci sequence values stored in matrix X8.

Values of matrix X8 elements are the values of five elements of the Fibonacci sequence
and were calculated according to the formula shown below:

X8(i)(j) =


X4(i)(j); f or j ≤ 2
X8(i)(j−1) + X8(i)(j−2); f or j > 2

i ∈ 〈1, 8〉; j = 1, 2...5
(25)

where:
X4—values of X4 elements calculated using Formula (10).
The Fibonacci sequence contains the proper values arranged in ascending order. This

fact causes the increase in a wide range of the differences between the elements’ values of
the examined matrices obtained for different cases of inter-turn short-circuit. Hence the
Fibonacci sequence can be effectively used in the identification process.

Definition of reference matrix elements’ values used in the identification procedure of
inter-turn short-circuit cases was the crucial step in presented diagnostic method.

Calculations in the described diagnostic procedure were performed according to
genetic algorithm of the highest growth [36].

A block diagram showing the order of performing the calculations in the applied
genetic algorithm of the highest growth is presented in Figure 3.

For the applied genetic algorithm, it was relevant to define an objective function. The
choice of the objective function was made by using a series of simulation tests carried out
for various objective functions. Based on the obtained results, Bohachevsky’s function for
the proper normalized individual values calculated for two arguments [36] was chosen as
the objective function.

The calculations performed for individuals created in the population led to obtaining
the first and second argument in the applied objective function.

Initialization of the population individuals is done in the initial stage of operation of
the genetic algorithm of the highest growth.

The initial values of the individuals are random binary strings containing values of
either 0 or 1.

Randomly selected binary strings in the population used for calculation of the first
argument are stored in matrix X9, and binary strings in the population used for calculation
of the second argument are stored in matrix X10.

In the proposed diagnostic method, based on the results obtained for the series of
simulation tests, it was assumed for the used genetic algorithm that the population size
was 50 and the length of binary string for each population individual was equal to 20 or 25.

Processing of individuals’ values in the presented genetic algorithm was stopped after
satisfying the previously defined condition.

In the next iterations of the genetic algorithm realization, repeatable operations
were performed.

In each iteration a binary string of the kth individual is selected, some amount of new
different binary strings from the vicinity of the kth individual is chosen and the bits from
these strings are replaced.
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Figure 3. Block diagram of the genetic algorithm of the highest growth operation principle.

Selection of the kth individual from all the individuals in each population and re-
placement of the individual bits of some amount l of new individuals occurs in a random
manner [36].

For such created binary strings in the vicinity of the kth individual, one chooses a
string with the highest value of objective function.
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If the highest value of the string from the vicinity of the kth individual is greater than
the value of the objective function calculated for the binary string of the kth individual,
then the proper exchange of the kth individual’s binary string takes place [36].

In the presented genetic algorithm for all examined physical magnitudes, based on the
observation of the results of a simulations series, a decision was made about using either
10 or 20 new different individuals.

In order to realize the described above steps of the genetic algorithm, the operations
described below were performed.

In the first stage of the genetic algorithm, the binary string of kth individual was
rewritten to new binary strings according to the formulas:

X11(l,j) =


X9(k,j);

j = 1, 2...m; k = random〈1, 50〉; l = 1, 2...n;
m ∈< 20, 25 >; n ∈< 10, 25 >

(26)

X12(l,j) =


X10(k,j);

j = 1, 2...m; k = random〈1, 50〉; l = 1, 2...n;
m ∈< 20, 25 >; n ∈< 10, 25 >

(27)

Next, replacement of individual bits of binary strings of various new l individuals
occurs as follows:

X11(l,j) =


1− X11(l,j);

j = random < 1, m >; l = 1, 2...n;
m ∈ 〈20, 25〉; n ∈ 〈10, 25〉

(28)

X12(l,j) =


1− X12(l,j);

j = random < 1, m >; l = 1, 2...n;
m ∈ 〈20, 25〉; n ∈ 〈10, 25〉

(29)

The values of binary strings of one kth individual and new l individuals in the popula-
tion were changed to decimal values using the formulas below:

a14(i) =
m

∑
j=1

X9(i)(k,j) · 2(j−1); i ∈ 〈1, 8〉; k = random〈1, 50〉; m ∈< 20, 25 > (30)

a15(i) =
m

∑
j=1

X10(i)(k,j) · 2(j−1); i ∈ 〈1, 8〉; k = random〈1, 50〉; m ∈< 20, 25 > (31)

X13(i)(l) =


m
∑

j=1
X11(i)(l,j) · 2(j−1);

i ∈ 〈1, 8〉; l = 1, 2...n; m ∈< 20, 25 >; n ∈< 10, 25 >
(32)

X14(i)(l,j) =


m
∑

j=1
X12(i)(l,j) · 2(j−1);

i ∈ 〈1, 8〉; l = 1, 2...n; m ∈< 20, 25 >; n ∈ 〈10, 25〉
(33)

where:
m—assumed length of binary string of a population individual.
Finding the most advantageous range of values’ change for the suitable individuals in

populations calculated using variables a14 and a15 and calculated matrices X13 and X14 ac-
cording to the formulas given below was a very important step in this diagnostic procedure.

a22(i) =


(

(a14(i)−a16(i))

(a17(i)−a16(i))

)
∗ (a21(i) − a20(i)) + a20(i);

i ∈ 〈1, 8〉
(34)
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a23(i) =


(

(a15(i)−a18(i))

(a19(i)−a18(i))

)
∗ (a21(i) − a20(i)) + a20(i);

i ∈ 〈1, 8〉
(35)

X15(i)(l,j) =


(

(X13(i)(l,j)−a16(i))

(a17(i)−a16(i))

)
∗ (a21(i) − a20(i)) + a20(i);

i ∈ 〈1, 8〉; j = 1, 2...m; l = 1, 2...n;

m ∈< 20, 25 >; n ∈< 10, 25 >

(36)

X16(i)(l,j) =


(

(X14(l)(l,j)−a18(i))

(a19(i)−a18(i))

)
∗ (a21(i) − a20(i)) + a20(i);

i ∈ 〈1, 8〉; j = 1, 2...m; l = 1, 2...n;

m ∈< 20, 25 >; n ∈ 〈10, 25〉

(37)

where:
a16—minimum value of element a14 and elements of matrix X13 defined in the test,
a17—maximum value of element a14 and elements of matrix X13 defined in the test,
a18—minimum value of element a15 and elements of matrix X14 defined in the test,
a19—maximum value of element a15 and elements of matrix X14 defined in the test,
a20—initial value of the range containing normalized values of a14, a15, X13, and X14,

defined in the test of matrix X8,
a21—end value of the range containing normalized values a14, a15, X13, and X14,

defined in the test of matrix X8.
The values of the variables a16, a17, a18, and a19 were defined using the following formulas:

a16(i) =


min

(
a14(i), X13(i)(l,j)

)
;

i ∈ 〈1, 8〉; j = 1, 2...m; l = 1, 2...n;

m ∈< 20, 25 >; n ∈ 〈10, 25〉

(38)

a17(i) =


max

(
a14(i), X13(i)(l,j)

)
;

i ∈ 〈1, 8〉; j = 1, 2...m; l = 1, 2...n;

m ∈< 20, 25 >; n ∈ 〈10, 25〉

(39)

a18(i) =


min

(
a15(i), X14(i)(l,j)

)
;

i ∈ 〈1, 8〉; j = 1, 2...m; l = 1, 2...n;

m ∈< 20, 25 >; n ∈ 〈10, 25〉

(40)

a19(i) =


max

(
a15(i), X14(i)(l,j)

)
;

i ∈ 〈1, 8〉; j = 1, 2...m; l = 1, 2...n;

m ∈< 20, 25 >; n ∈ 〈10, 25〉

(41)

The values of variables a20 and a21 were defined using the following formulas:

a20(i) = min
(

X8(i)(4), X8(i)(5)

)
; i ∈ 〈1, 8〉 (42)

a21(i) = max
(

X8(i)(4), X8(i)(5)

)
; i ∈ 〈1, 8〉 (43)

The values from the range [a20, a21] of the variables a22 and a23 and the values of
elements of matrices X15 and X16 were used in calculations of objective function.
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The values of objective function a24 and F1 were calculated using the formulas pre-
sented below:

a24(i) =

 a22(i)
2 + 2 ∗ a23(i)

2 − 0.3 ∗ cos
(

3π ∗ a22(i)

)
− 0.4 ∗ cos

(
4π ∗ a23(i)

)
+ 0.7;

i ∈ 〈1, 8〉
(44)

F1(i)(l) =


X15(i)

2 + 2 ∗ X16(i)
2 − 0.3 ∗ cos

(
3π ∗ X15(i)

)
− 0.4 ∗ cos

(
4π ∗ X16(i)

)
+ 0.7;

i ∈ 〈1, 8〉; j = 1, 2...m; l = 1, 2...n;

m ∈< 20, 25 >; n ∈< 10, 25 >

(45)

where:
a24—value of objective function of kth individual calculated in the test,
F1—value of objective function of lth individual calculated in the test.
Replacement of binary string of kth individual occurs in case of satisfying the follow-

ing condition:
F1(i)(nr1)

> a24(i); i ∈ 〈1, 8〉; nr1 ∈ 〈1, n〉; n ∈ 〈10, 25〉 (46)

where:
nr1—index of matrix F1 containing the maximum value specified in the test.
Value of index nr1 in matrix F1 was defined by using the maximum value of this matrix:

F1(nr1)
= max

(
F1(l)

)
; i ∈ 〈1, 8〉; l = 1, 2...n; n ∈ 〈10, 25〉 (47)

Binary string replacement of one kth individual was realized in the following manner:

X9(i)(k,j) =


X11(i)(nr1,j);

i ∈ 〈1, 8〉; j = 1, 2...m;

k = random〈1, 50〉; m ∈< 20, 25 >

(48)

X10(i)(k,j) =


X12(i)(nr1,j);

i ∈ 〈1, 8〉; j = 1, 2...m;

k = random〈1, 50〉; m ∈< 20, 25 >

(49)

It was assumed that the process of the applied genetic algorithm ends when the
predefined amount of iterations is achieved and the following condition is satisfied:

a25(i) ≤ a26(i); i ∈ 〈1, 8〉 (50)

where:
a25—value of the variable,
a26—value of the variable.
In order to calculate the values of variables a25 and a26, required calculations of l

individuals’ objective function maximum values obtained in five subsequent iterations of
genetic algorithm were run. Calculations were run until the assumed number of iterations
was reached.

The values of variables a25 and a26 were calculated using the formulas below:

a25(i) =
∣∣∣a27(i) − a28(i)

∣∣∣; i ∈ 〈1, 8〉 (51)

a26(i) =
∣∣∣m4(i) −m5(i)

∣∣∣; i ∈ 〈1, 8〉 (52)

where:
a27—minimum value of elements of matrix X17 defined in the test, a28—value of

the median of elements of matrix X17 defined in the test, m4—arithmetic mean value of
elements of matrix X17 calculated in the test,
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m5—arithmetic mean value of elements of matrix X19 calculated in the test.
The values of variables a18 and a19 were defined according to the following formulas:

a27(i) = min
(

X17(i)(j)

)
; i ∈ 〈1, 8〉; j = 1, 2...5 (53)

a28(i) = X18(i)(3); i ∈ 〈1, 8〉 (54)

The values of matrix X17 were defined using the values of matrix F1 according to
the formula:

X17(i)(j) =


[

F1(i)(nr1)(t), F1(i)(nr1)(t−1)...F1(i)(nr1)(t−4)

]
;

i ∈ 〈1, 8〉; j = 1, 2...5 (55)

where:
t—iteration number of the applied genetic algorithm,
nr1—index of matrix F1 containing the maximum value defined in the current iteration

of the applied genetic algorithm according to the formula (47).
The values of matrix X18 were sorted as a result of sorting the matrix X17 in ascending

order according to the formula:

X18(i)(j) =


[

X17(i)(1) ≤ X17(i)(2)... ≤ X17(i)(5)

]
;

i ∈ 〈1, 8〉; j = 1, 2...5
(56)

Calculations of arithmetic means m4 and m5 were performed in the following manner:

m4(i) =

5
∑

j=1
X17(i)(j)

5
; i ∈ 〈1, 8〉 (57)

m5(i) =

4
∑

j=1
X19(i)(j)

4
; i ∈ 〈1, 8〉 (58)

All the values of matrix X17 excluding its maximum value were rewritten into a new
matrix X19. Performing such an operation improved the quality of obtained results from
the inter-turn short-circuit identification process.

Elements of matrix X19 were obtained in the following manner:

X19(i)(j) = X17(i)(j); i ∈ 〈1, 8〉; j = 1, 2...4; j 6= nr2 (59)

where:
nr2—index of matrix X17 containing the maximum value defined in the test.
When the maximum value of the matrix X17 was defined, the index nr2 was obtained:

X17(nr2)
= max

(
X17(j)

)
; i ∈ 〈1, 8〉; j = 1, 2...5 (60)

The cases of inter-turn short-circuit used in the tests with genetic algorithm were
chosen according to some order defined in matrix K1.

Definition of reference matrices was made for eight assumed cases of inter-turn short-
circuit for all investigated physical magnitudes.

The values of each reference matrix were calculated in test groups for which the load
current was Iload = 3A, and they were saved into matrices of 8 × 3 dimensions: N1 and N2.

The investigated values were saved into matrices of 1 × 3 dimensions: N3 and N4.
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After the genetic algorithm was finished, the values of matrix X18 were stored in
matrices N1 and N2 containing reference values and in the tested matrices N3 and N4. The
matrices N1, N2, N3, and N4 were defined according to the following formulas:

N1(i,j) = X18(i,j); i = 1, 2...8; j = 1, 2...3 (61)

N2(i,j) = X18(i,j); i = 1, 2...4; j = 1, 2...3 (62)

N3(j) = X18(j); j = 1, 2...3 (63)

N4(j) = X18(j); j = 1, 2...3 (64)

The results of identification tests were stored:

− in reference matrix N1 and in examined matrix N3 in case of normalization of matrix
X1 values performed using the parameters calculated for axial flux φ1,

− in reference matrix N2 and in examined matrix N4 in case of normalization of matrix
X1 values performed using parameters calculated for acoustic pressure ps.

Calculation of the elements of matrices H1 and H2 allows for correct identification
of inter-turn short-circuit case for calculated diagnostic signals of examined physical
magnitudes at given load current Iload.

The values of matrices H1 and H2 were calculated using Euclidean metrics as
shown below:

H1(i) =
3

∑
j=1

√(
N1(i,j) − N3(j)

)2
; i = 1, 2...8 (65)

H2(i) =
3

∑
j=1

√(
N2(i,j) − N4(j)

)2
; i = 1, 2...4 (66)

In the identification tests, the calculation of matrix H1 values is performed in the
first place.

After the index nr3 in matrix H1 is defined, matrix H2 can be calculated. Such calcula-
tions are performed for the given index nr3 ∈< 1, 4 >.

Obtained values of matrix H1 ambiguously point to the correct number of examined
cases of inter-turn short-circuits, hence the calculation of matrix H2 is necessary.

Index nr3 (for nr3 ∈< 5, 8 >) in matrix H1 points to a column in matrix K1 that
contains the right case of inter-turn short-circuit for the examined induction motor model.

Index nr3 was defined by using the minimum value of matrix H1:

H1(nr3)
= min

(
H1(i)

)
; i ∈< 5, 8 > (67)

The column number i of matrix K1 refers to the corresponding index nr3 (i = nr3).
This leads to the conclusion that when index nr3 ∈< 1, 4 > is obtained, one gets index

nr4 in matrix H2. In this way it is possible for the tested induction motor model to correctly
define the case of inter-turn short-circuits from the assumed first four cases. The column
number in matrix K1 refers to index nr4 (i = nr4).

Index nr4 was calculated using the minimum value of matrix H2:

H2(nr4)
= min

(
H2(i)

)
; i = 1, 2...4 (68)

3. Results of the Diagnostic Algorithm Applied for Inter-Turn Short-Circuit
Identification Occurring in Tested Induction Motor Model

Examined cases of inter-turn short-circuit used in genetic algorithm of the highest
growth are presented in the tables below in a column called Test Parameters.

Moreover, the correct results from the identification process of inter-turn short-circuit
cases, the results of matrices H1 and H2 calculations, are presented in the tables below and
marked in bold.
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The reference matrix N1 was created for all investigated physical magnitudes in a
given test group in which the load current Iload was equal to 3A.

Based on the obtained results one can state that obtaining the most suitable correct
results of inter-turn short-circuit case identification for all examined physical magnitudes
is possible when the diagnostic tests are carried out with the length of the binary string
equal to the number l of new individuals, selected in populations from the vicinity of the
kth individual.

It is worth noting that increasing the assumed number of iterations of the genetic
algorithm and also the assumed length of the binary string of the individuals and the
number of new individuals in the populations leads to obtaining visible differences in the
results of fault identification. This conclusion results from the fact that the minimum values
calculated in the H1 and H2. matrices were largely decreased.

The calculation results obtained in order to increase the values of the parameters noted
above can be observed in all tables shown below.

To demonstrate the algorithm’s efficiency as well as to highlight the quality of the
results, Figure 4 illustrates the data registered during laboratory tests.

Energies 2021, 14, x FOR PEER REVIEW 17 of 22 
 

 

number of new individuals in the populations leads to obtaining visible differences in the 
results of fault identification. This conclusion results from the fact that the minimum val-
ues calculated in the H1 and H2. matrices were largely decreased. 

The calculation results obtained in order to increase the values of the parameters 
noted above can be observed in all tables shown below. 

To demonstrate the algorithm’s efficiency as well as to highlight the quality of the 
results, Figure 4 illustrates the data registered during laboratory tests. 

 
Figure 4. Presentation of the normalization of measurement data recorded in the X1 matrix for the rotational speed n1 and 
the electromagnetic moment mel. The normalization was performed for the load current Iload = 3A using the values of the 
variables a3 and a4 calculated for the axial flux ϕ1. The values of the X2 matrix were sorted in descending order and stored 
in the X3 matrix. 

Tables 1–4 contain calculated coefficient values based on the data registered during 
the laboratory tests. The comparison reveals the efficiency of the modifications for the GA 
application. 

  

Figure 4. Presentation of the normalization of measurement data recorded in the X1 matrix for the rotational speed n1 and
the electromagnetic moment mel. The normalization was performed for the load current Iload = 3A using the values of the
variables a3 and a4 calculated for the axial flux φ1. The values of the X2 matrix were sorted in descending order and stored
in the X3 matrix.

Tables 1–4 contain calculated coefficient values based on the data registered during
the laboratory tests. The comparison reveals the efficiency of the modifications for the
GA application.

Note that the compiled data in Tables 1–4 demonstrate the improvements in the
efficiency of the proposed diagnostic method for early-stage inter-turn fault detection in
induction motors. It is evident that incorporating the GA into the diagnostic procedure
accelerates decision making.

Subsequent modifications of the algorithm and integrating it into online data acqui-
sition systems and diagnostic systems will allow for the application of such methods in
autonomous monitoring systems for arbitrary drive systems.
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Table 1. Example results of matrix H1 tests for electromagnetic torque mel.

Test Parameters Results*103 Test Parameters Results*103

inter-turn short-circuit
1_10,

load current
Iobc = 1A,

population size = 50,
binary string length = 20,

number of individuals
l = 10,

assumed number of iterations = 50

0.0864
0.1023
0.0836
0.0833
0.0202
0.4030
1.0362
2.5904

inter-turn short-circuit
1_10,

load current
Iobc = 1A,

population size = 50,
binary string length = 20,

number of individuals
l = 20,

assumed number of iterations = 100

0.0843
0.0846
0.0756
0.0794
0.0083
0.4119
1.2553
2.7338

inter-turn short-circuit
1_15,

load current
Iobc = 5A,

population size = 50,
binary string
length = 25,

number of individuals
l = 10,

assumed number
of iterations = 50

0.5751
0.5712
0.5705
0.5579
0.4037
0.0865
0.7365
2.3907

inter-turn short-circuit
1_15,

load current
Iobc = 5A,

population size = 50,
binary string
length = 25,

number of individuals
l = 25,

assumed number of iterations = 100

0.5418
0.5747
0.5322
0.5520
0.4838
0.0784
0.7694
2.1838

Table 2. Example results of matrix H1 tests for rotational speed nl.

Test Parameters Results*103 Test Parameters Results*103

inter-turn short-circuit
1_20,

load current
Iobc = 2A,

population size = 50,
binary string
length = 20,

number of individuals
l =10,

assumed number of iterations = 50

1.5636
1.5449
1.5455
1.5271
1.3159
0.8140
0.1065
1.6319

inter-turn short-circuit
1_20,

load current
Iobc = 2A,

population size = 50,
binary string length = 20,

number of individuals
l =20,

assumed number of iterations = 100

1.5674
1.5549
1.5594
1.5280
1.3759
0.9142
0.0484
1.7621

inter-turn short-circuit
1_25,

load current
Iobc = 4A,

population size = 50,
binary string
length = 25,

number of individuals
l =10,

assumed number of iterations = 50

3.0284
3.0098
3.0141
2.9884
2.7960
2.2570
1.6319
0.6770

inter-turn short-circuit
1_25,

load current
Iobc = 4A,

population size = 50,
binary string
length = 25,

number of individuals
l = 25,

assumed number of iterations = 100

3.0768
3.0190
3.0119
2.9865
2.8566
2.6018
1.7698
0.3653
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Table 3. Example results of matrix H2 tests for signal proportional to axial flux φ1.

Test Parameters Results Test Parameters Results

inter-turn short-circuit
1_4,

load current
Iobc = 2A,

population size = 50,
binary string length = 20,

number of individuals
l = 10,

assumed number of iterations = 50

7.3997
1.3367
0.9668
7.1590

inter-turn short-circuit
1_4,

load current
Iobc = 2A,

population size = 50,
binary string length = 20,

number of individuals
l = 20,

assumed number of iterations = 100

7.5780
1.5661
1.1933
6.5498

inter-turn short-circuit
1_3,

load current
Iobc = 4A,

population size = 50,
binary string length = 25,

number of individuals
l = 10,

assumed number of iterations = 50

5.4522
2.7054
9.3949

10.4065

inter-turn short-circuit
1_3,

load current
Iobc = 4A,

population size = 50,
binary string
length = 25,

number of individuals
l = 25,

assumed number of iterations = 100

5.8875
1.4312
8.1517
8.3732

Table 4. Example results of matrix H2 tests for acceleration signal in X axis—dx.

Test Parameters Results Test Parameters Results

inter-turn short-circuit
1_2,

load current
Iobc = 1A,

population size = 50,
binary string length = 20,

number of individuals
l = 10,

assumed iterations number = 50

0.1377
5.8630

11.0723
13.1808

inter-turn short-circuit
1_2,

load current
Iobc = 1A,

population size = 50,
binary string
length = 20,

number of individuals
l =20,

assumed iterations number = 100

0.1130
5.8719

10.9845
13.5810

inter-turn short-circuit
1_5,

load current
Iobc = 5A,

population size = 50,
binary string
length = 25,

number of individuals
l = 10,

assumed number of iterations = 50

13.2778
7.1819
2.0972
1.0168

inter-turn short-circuit
1_5,

load current
Iobc = 5A,

population size = 50,
binary string
length = 25,

number of individuals
l =25,

assumed number of iterations = 100

13.2797
7.4930
2.2323
0.9427

4. Conclusions

The presented fault detection system containing a diagnostic procedure based on a
genetic algorithm allowing for calculation of the matrices resulting from the population
individuals’ values changes and objective function value changes can be applied in iden-
tification tests of various cases of inter-turn short circuit. The identification process was
performed using the parameters varying in specified ranges defined for the samples of diag-
nostic signals. Application of the genetic algorithm significantly increases the effectiveness
of non-stationary signals analysis.

This method used in diagnostic systems can effectively limit the after-effects of oc-
curring faults because the effects of its application can be used in different stages of
fault development.
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In comparison with the clustering methods based on the standard Fuzzy C-Means
(FCM) approach and the backtracking search algorithm (BSA) [32,37] as well as FOA type
methods [38,39] or a multi-task optimization method combined with a hybrid differential
evolution algorithm [40]. the presented inter-turn fault identification algorithm allows
one to:

− Improve the results obtained for searching a locally optimal solution through clus-
tering the data registered during the experiments and using the Bohachevsky objec-
tive function,

− Optimize the quality of the obtained data by varying parameters of the GA algorithm
(the number of all individuals in the population and the number of new individuals
l, the number of the binary chain/string and the assumed number of iterations and
convergence condition),

− Apply it in continuous as well as discrete problem-solving tasks.

Advantages of the presented algorithm for the identification of internal faults involve
obtaining the convergence of the genetic algorithm in terms of parameter changes, thus
enabling the calculation of the optimal values used to identify the examined internal faults.

One disadvantage of the proposed detection method is the complex calculations of
the GA convergence criterion.

Original or novel aspects of the proposed fault identification method for the examined
induction motor model involve computing reference matrices for a selected group of tests
and by means of the GA algorithm.

In addition to that, another novel aspect of the method is carrying out normalizing
calculations by means of the obtained Fibonacci series values in subsequent iterations.

Based on the research, one can state that setting the right ranges of parameter change
and narrowing the values of population individuals to suitable ranges leads to obtaining
high effectiveness of fault detection and identification process.
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