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Abstract: The flow rate of solids is subject to random disturbances of the changing feed and can
significantly affect the quantitative and qualitative parameters of the coal flotation products. This
quantity can be described as a stochastic process. The paper presents the results of the solids flow
rate model for coal flotation identification calculations, treated as a disturbance to the process. This
is an innovative approach to modelling those quantitative parameters of the flotation feed that are
measurably available and whose random changes have a significant impact on the enhancement
process under industrial conditions. These include the volumetric flow rate of the feed and, in
particular, concentration of solids in the feed. Therefore, it is suggested that random changes of these
two parameters of the feed should be mapped using a model of one quantity—the flow rate of solids.
This solution is advantageous because this quantity, as a quantitative parameter of the feed, has a
significant impact on the course of the coal flotation process. The model is necessary in the process
of designing an automatic control system through simulation tests. It allows us to generate a data
string simulating random changes to this quantitative parameter of the feed. On this basis, in the
simulation model, the correct functioning of the automatic control system is tested, the task of which
is to compensate the influence of this disturbance. To determine the empirical model of the feed
solids flow rate, measurement data obtained during the registration of the solids concentration and
volumetric flow rate of the feed were used in four consecutive periods of operation of an industrial
facility of one of the Polish coal processing plants. The time courses of the solids flow rate in the
feed were described by ARMA (autoregressive–moving-average model) means, and the two-stage
least squares method was used to estimate the model parameters. The results of the identification
and verification of the designated model showed the correctness of adopting the third-order ARMA
model, with parameters a1 =−1.0682, a2 =−0.2931, a3 = 0.3807, c1 =−0.1588, c2 =−0.2301, c3 = 0.1037,
and variance σ2

ε = 0.0891, white noise sequence εt, determined on the basis of a series of residuals
described by the fifth-order model. It has been shown that the identified model of the flow rate of
solids of the feed to flotation as disturbances can be used to develop a predictive model that allows
forecasting the modelled quantity with a prediction horizon equal to the sampling period. One-step
forecasting based on the determined predictor equation was found to give results consistent with the
recorded values of the solid part flow rate of the feed and the extreme values of the prediction error
are within the range from −1.08 to 2.90 kg/s.

Keywords: identification; ARMA model; coal flotation; forecasting

1. Introduction

The change in time of the flotation feed solids flow is a random disturbance that can
be described as a stochastic process. Therefore, it is important to describe the properties of
this process by using a model. The lack of such studies in relation to the industrial process
prompted the authors to take up this issue, the more so that the model of the flotation
feed solids flow is necessary for the next stage of research, i.e., to develop the structure of

Energies 2021, 14, 8587. https://doi.org/10.3390/en14248587 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-7679-2049
https://orcid.org/0000-0002-9436-3384
https://doi.org/10.3390/en14248587
https://doi.org/10.3390/en14248587
https://doi.org/10.3390/en14248587
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14248587
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en14248587?type=check_update&version=1


Energies 2021, 14, 8587 2 of 18

automatic control of the flotation process with compensation of disturbances in the form of
changes in the flow of flotation feed solids flow.

Flotation is a physicochemical enhancement process and is of interest to many scien-
tists [1–6]. In the case of hard coal, enhancing coal with the flotation method is used for
the feed consisting of grains smaller than 0.5 mm [7–10]. It is a very complex process and
difficult to control [11,12]. For this reason, this process is the subject of extensive scientific
research [3,13–18], including modelling of this process [19–26]. The basic input quantities
for the flotation process are: feed flow rate-qn with ash content an and concentration of
solids in the feed kcs, flotation reagent flow rate vo, air flow rate for aeration qa, and the
level of suspension in the flotation cell h. The output quantities are: concentrate output
γk, ash content in the concentrate ak, waste output γo, and the ash content of the waste ao
(Figure 1).
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Figure 1. Coal flotation process as a control object.

Coal flotation feedstock is characterised by a number of parameters, and the control
strategy often depends on their changes [27,28]. An important parameter is the solids flow
rate, which is subject to random disturbances of the changing feed and should be treated
as a disturbance in the automatic control system of the flotation process. Changes in solids
flow rate significantly affect the flotation effect as changes in the values of quantitative and
qualitative product parameters [29]. Therefore, in the flotation process control systems, the
dosage of the flotation reagent should depend on the current value of the feed quantity
parameters. One way is the constant dosage control of the flotation reagent, where the
amount of reagent is fed into the system in proportion to the solids flow rate:

vo(t) = do × qcs(t) (1)

where: do is the flotation reagent dosage, m3/kg, and qcs is the flow of solids of the feedstock
for flotation, kg/s. Of the feed quantity parameters, the solids concentration and the flow
rate are measurable. Therefore, the value of the solids flow can be determined from
the relation:

qcs(t) = kcs(t)× qn(t) (2)

where: kcs is the solid concentration, kg/m3, and qn is the flotation feed flow rate, m3/s.
Figure 2 shows a flow chart of the control with a constant dose of flotation reagent. It

is a form of automatic control in an open system with compensation of disturbance, which
is the flow rate of solids of the feedstock. It should be noted that in addition to the flotation
reagent dosing control system, industrial systems use local loops for automatic stabilisation
of the suspended solids level in the flotation cell and the aeration air flow rate.

Computer-aided engineering focused on the use of simulation models can be used
to improve enrichment technology [30–32]. In the case of coal flotation, modelling can
be carried out on the basis of object identification in order to represent its dynamic and
static properties as accurately as possible. The aim of such research comes down to the
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development of a mathematical model of the object and then its numerical form, i.e., a
simulation model. In the flotation process, input signals in the form of quantitative and
qualitative parameters of the changing feed can be treated as disturbing signals. Modelling
of these disturbances should be considered in a cognitive aspect, but they are important
from the point of view of selecting appropriate technical measures to conduct the process in
a way that compensates for their impact, especially in systems of automatic control of this
process. The issue of modelling the parameters of the coal flotation feed takes on particular
importance in the case of industrial processes whose feed, for technological reasons, is
characterised by significant fluctuations of the solids flow rate and its high values, the
reduction of which is difficult to implement without incurring large financial outlays. A
random disturbance in the form of time variations of the flow rate of the feed solids can
be represented as a stochastic process, for the description of which ARMA models can be
used. These models are widely used in the description of stochastic processes, including
those related to the processing of nonferrous ores [33].
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ARMA (autoregressive–moving-average model) and ARIMA (autoregressive–integrated-
moving-average model) models are very often used to forecast various stochastic pro-
cesses [34–38]. They can be used to predict the value of the feed solids flow rate. Prediction
models of this quantity can be used in the design of automatic control systems (predic-
tive control). In the case of systems where manual control of the coal flotation process is
used, information about future values of the solids flow rate in the feed can be useful for
decision-making by operators and process experts, in terms of changes in the settings of
control signals such as the dosage of the flotation reagent.

The paper presents the problem of modelling the flow rate of solids in the flotation
feed, based on empirical data recorded in a Polish coal preparation plant. The ARMA
model, determined by the double least squares method, was used for their description. On
the basis of the flow of feed solids model as a disturbance in coal flotation, the predictor
equation for this stochastic process was determined, which enables one-step forecasting.

2. Parameter Estimation Method for ARMA Models

To determine the mathematical model of the feed solids flow rate for the flotation
process qks, a model with discrete transmittance expressed by the equation was adopted:

yt = K
(

z−1
)
× et =

C
(
z−1)

A(z−1)
× et (3)

where: et is a sequence of uncorrelated disturbances with mean equal to zero and variance
σ2

e , and yt is a concentrated sequence of recorded values of the solids flow rate of the
flotation feed with the number of samples N, kg/s.

The current value of the process described by the ARMA model with Equation (3)
is a linear combination of past moment outputs and filtered white noise. Many methods
are known to identify ARMA models. These include the methods described in previous
studies [39–41]. For the parameter estimation of the ARMA model with Equation (3), the
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two-stage least squares method given by Durbin was used [42]. The algorithm first involves
determining a sequence of residuals εt, which is an approximation of the unknown white
noise sequence et:

et ≈ εt = B
(

z−1
)
× yt (4)

The relation between Equations (3) and (4) is expressed by the equation:

B
(

z−1
)
=

A
(
z−1)

C(z−1)
= 1 + b1z−1 + . . . + bpz−p (5)

To determine the order of p of the model (4) and the values of the parameters b1,
b2, . . . , bp, it is necessary to determine a sequence of residuals εt. Fitting a model of the
autoregressive process (4) of order p to the signal sequence yt is to determine the parameters
b1, b2, . . . , bp, minimising the value of the criterion Jb expressed by Equation (6).

Jb =
N

∑
t=p+1

(
B
(

z−1
)
× yt

)2
(6)

The order p of the model (4) is determined with the indicator FPE(p) (Final Prediction
Error) defined as [43]:

FPE(p) =
N + p
N − p

× σ2
ε (p) (7)

The criterion FPE(p) depends on the variance of the residuals expressed by the follow-
ing equation:

σ2
ε (p) =

1
N − p

N

∑
t=p+1

(
yt + b1yt−1 + . . . + bpyt−p

)2 (8)

The order of the model (4) is defined for the minimum criterion value (7). For the
criterion adopted with the use of the FPE order p, the autoregression model AR(p) the
values of the parameters b1, b2, . . . , bp are calculated and then the sequence of εt residuals
is determined, according to the Equation (4). The sequence εt is then used to fit the
ARMA model to the measured series of data yt. This operation leads to the estimation of
parameters a1, a2, . . . , an and c1, c2, . . . , cn ARMA model the order n (n < p) described with
Equation (9) with values such that the minimum reaches the criterion value:

Jac =
N

∑
t=p+1

(
A
(

z−1
)
× yt − C

(
z−1

)
× εt

)2
(9)

where A
(
z−1) = 1 + a1z−1 + . . . + anz−n C

(
z−1) = 1 + c1z−1 + . . . + cnz−n.

In order to determine the order of the ARMA model with Equation (3), the εt sequence
of residuals is checked, expressed by the equation:

εt = yt + a1yt−1 + a2yt−2 + . . . + anyt−n − c1εt−1 − c2εt−2 − . . .− cnεt−n (10)

The sequence of residuals (10) should have the characteristics of a white noise se-
quence, which is assessed by analysing the autocorrelation function of the sequence under
test εt. The autocorrelation function is expressed by the following equation:

Rε(k) =
1
N

N

∑
t=k+1

εt × εt−k (11)

Its normalized form is described by the following equation:

ρε(k) =
Rε(k)
Rε(0)

(12)
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A useful test for determining the order n of an ARMA model is to examine the residual
variance of the model, determined according to:

σ2
ε =

1
N − n− 1

N

∑
t=n+1

(εt)
2 (13)

Variance (13) is calculated from the sequence of residuals described by Equation (10).
Its value decreases slightly for subsequent orders of the stochastic process estimated model,
larger than the proper order n. Therefore, the order of model (3) is taken to be that order
n for which the corresponding value of the residual variance, determined according to
Equation (13), is slightly larger than the value of the variance calculated for models of
higher orders and significantly smaller than those of lower orders.

3. Prediction Model for a Stochastic Process

The method of determining the equation for predicting the time series y can be
presented in a simplified manner using a flow chart as in Figure 3. The determination of
the predictor equation for a stochastic process is performed in the following steps.
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- Recording of measured data yt,
- Identification of the process model of Equation (3) with the use of the two-stage least

squares method,
- Using the determined parameters of the model (3) in the predictor equation.

It is easy to notice that the essential step in developing a predictor for a stochastic
process, according to Figure 1, is the identification of the model of Equation (3). In the case
under consideration, this step is the same as using the process model identification method,
which is described in Section 2.

According to the adopted process model (3), the value of the quantity observed at t
time is described by the equation:

yt = −a1yt−1 − a2yt−2 − . . .− anyt−n + et + c1et−1 + c2et−2 + . . . + cnet−n (14)

From Equation (15) it follows that at the time (t + 1) the value of the measured quantity
under consideration can be represented by the equation:

yt+1 = −a1yt − a2yt−1 − . . .− anyt−n−1 + et+1 + c1et + c2et−1 + . . . + cnet−n+1 (15)

Assuming the designation ŷt+1|t as the signal forecast value y at the time (t + 1),
worked at the time t and by subtracting this value from both sides of the Equation (15) it
is obtained:

yt+1 − ŷt+1|t =
(
−a1yt − a2yt−1 − . . .− anyt−n−1 + c1et + c2et−1 + . . . + cnet−n+1 − ŷt+1|t

)
+ et+1 (16)
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Because the difference between the value of a signal and its prediction is the prediction
error, this can be described by the equation

et = yt − ŷt|t−1 (17)

Equation (16) can be transformed into:

ŷt+1|t = −a1yt − a2yt−1 − . . .− anyt−n−1 + c1et + c2et−1 + . . . + cnet−n+1 (18)

The time series equation is then obtained with the prediction horizon equal to the sam-
pling period. In the case of a stochastic process, Equation (18) enables one-step forecasting
of the observed (measured) quantity.

4. Results of the Flotation Feed Solids Flow Rate Model Identification
4.1. Test Conditions

Identification was carried out based on data recorded during four consecutive, contin-
uous (without breaks) periods of operation of IZ-12 flotation machines, installed in one of
the Polish coal processing plants. A diagram of an industrial flotation facility is shown in
Figure 4.
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In the industrial facility, the feed for flotation (steam coal) came from radial thickeners.
The outlets of these thickeners, which are the source of the flotation feed, were combined
in a tank and fed to the process. The flotation feed obtained in this way was directed to
two IZ-12 type flotation machines working in parallel. The waste from these flotation
machines was directed to the next IZ-12 flotation machine for secondary enhancement.
This configuration was a result of the flotation feed high density. The feed flow rate to the
flotation machines was measured using Danfoss electromagnetic flow meters, whereas
the solids concentration was measured using a POLON radiometric densitometer. The
radiometric density meter used works on the principle of gamma radiation absorption. It
is equipped with a radiation source in the form of the 137Cs cesium isotope [44,45]. Data
were recorded with a sampling period Ts equal to 60 s using an industrial computer. The
instantaneous flow values of the flotation feed solids for previously recorded measurement
data from flow meters and densimeter were determined from the equation:

y[i] = kcs[i]× (qn1[i] + qn2[i]) (19)
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where kcs is the concentration of solids in the coal flotation feed, kg/m3 qn1 is the feed flow
rate to the flotation tank 1, m3/s, qn2 is the feed flow rate to the flotation tank 2, m3/s, and
I is the sampling step, i = t/Ts.

The condition for the correctness of the experiment was to obtain four continuous,
significantly long (several hours), consecutive periods of the process operation. The
industrial experiment conducted produced four data series for the individual measured
quantities, the observed range of change of which is summarised in Table 1. The data
series relating to the solids flow rate are denoted as: y1, y2, y3, and y4. Their time courses
are presented in Figure 5. The lengths of the individual data series are 457, 694, 400,
and 678 points, respectively, so they cover long periods of the flotation industrial facility
operation, that is, 7 h and 37 min, 11 h and 34 min, 6 h and 40 min, and 11 h and 18 min,
respectively. As the values summarised in Table 1 and the time courses in Figure 5 show,
the observed range of variation in the flow rate of the feed solids shows a significant range
of instantaneous values. As part of the conducted identification research, the first series
of empirical data (y1) was used to determine the order and model parameters with the
structure (3). The remaining three series were used to verify the determined model.

Table 1. The range of variations of solids flow rate, solids contraction, and feed flow rate to the
flotation process.

Data Series y (kg/s) kcs (kg/m3) qn1 10−2 (m3/s) qn2 10−2 (m3/s)
Min Max Min Max Min Max Min Max

1 21.69 29.31 173.55 228.99 62.96 69.96 58.12 67.16

2 18.06 32.60 146.12 247.45 61.13 73.62 52.75 66.88

3 22.46 38.51 177.11 235.28 54.44 97.61 51.51 77.25

4 17.97 34.63 144.01 253.27 62.50 72.07 52.61 67.43

Energies 2021, 14, x FOR PEER REVIEW 7 of 17 
 

 

where kcs is the concentration of solids in the coal flotation feed, kg/m3 qn1 is the feed flow 
rate to the flotation tank 1, m3/s, qn2 is the feed flow rate to the flotation tank 2, m3/s, and I 
is the sampling step, i = t/Ts. 

The condition for the correctness of the experiment was to obtain four continuous, 
significantly long (several hours), consecutive periods of the process operation. The in-
dustrial experiment conducted produced four data series for the individual measured 
quantities, the observed range of change of which is summarised in Table 1. The data 
series relating to the solids flow rate are denoted as: y1, y2, y3, and y4. Their time courses 
are presented in Figure 5. The lengths of the individual data series are 457, 694, 400, and 
678 points, respectively, so they cover long periods of the flotation industrial facility op-
eration, that is, 7 h and 37 min, 11 h and 34 min, 6 h and 40 min, and 11 h and 18 min, 
respectively. As the values summarised in Table 1 and the time courses in Figure 5 show, 
the observed range of variation in the flow rate of the feed solids shows a significant range 
of instantaneous values. As part of the conducted identification research, the first series 
of empirical data (y1) was used to determine the order and model parameters with the 
structure (3). The remaining three series were used to verify the determined model.  

Table 1. The range of variations of solids flow rate, solids contraction, and feed flow rate to the 
flotation process. 

Data Series y (kg/s) kcs (kg/m3) qn1 10−2 (m3/s) qn2 10−2 (m3/s) 
 Min Max Min Max Min Max Min Max 

1 21.69 29.31 173.55 228.99 62.96 69.96 58.12 67.16 
2 18.06 32.60 146.12 247.45 61.13 73.62 52.75 66.88 
3 22.46 38.51 177.11 235.28 54.44 97.61 51.51 77.25 
4 17.97 34.63 144.01 253.27 62.50 72.07 52.61 67.43 

 
Figure 5. Time courses of the feed solids flow rate directed to the flotation tank determined on the 
basis of the solids concentration courses and the feed flow rate recorded at the industrial facility. 

  

0 0.5 1 1.5 2 2.5
x 10

4

22
24
26
28

y 1, (
kg

/s)

0 0.5 1 1.5 2 2.5 3 3.5 4
x 10

4

20
25
30

y 2, (
kg

/s)

0 0.5 1 1.5 2
x 10

4

25
30
35

y 3, (
kg

/s)

0 0.5 1 1.5 2 2.5 3 3.5 4
x 10

4

20

30

y 4, (
kg

/s)

t, (s)

Figure 5. Time courses of the feed solids flow rate directed to the flotation tank determined on the
basis of the solids concentration courses and the feed flow rate recorded at the industrial facility.
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4.2. Results of the Flotation Feed Solids Flow Rate Model Identification as a Disturbance of the
Flotation Process

According to the algorithm described in Section 2, the FPE criterion was used to
determine the order p of the model (4). Estimation of the parameters of Equation (4) up to
and including the 16th order was performed. Based on the calculations made, it was found
that for the first series of data (y1) the optimum in terms of criterion (7) is the order p = 5,
whereas for the other series it was 3 or 4. Therefore, the estimation of the parameters of
model (3) was carried out from order n = 1 to n = p−1, for two values of the model residual
sequence: p = 4 and p = 5, assuming an appropriate starting point. The identification
task was carried out for the first series of measurement data, and the results obtained are
summarized in Table 2.

Table 2. Flow rate model parameters of coal flotation feed solids with structure (3) estimated for the first series of
measured data.

The Sequence of
Residuals

p = 4 p = 5

b1 = −0.9179, b2 = −0.2076, b3 = 0.03973,
b4 = 0.1047

b1 = −0.9057, b2 = −0.2023, b3 = 0.0143, b4 = −0.0020,
b5 = 0.1168

ARMA Model
n n

1 2 3 1 2 3 4

a1 −0.9857 −1.3718 −0.9436 −0.9861 −1.5158 −1.1259 −0.7749

a2 - 0.3848 −0.1663 - 0.5264 −0.2679 −0.4207

a3 - - 0.1301 - - 0.4068 0.0561

a4 - - - - - - 0.1627

c1 −0.0678 −0.4515 −0.0240 −0.0802 −0.6106 −0.2200 0.1285

c2 - 0.1759 0.0192 - 0.1761 −0.2653 −0.1004

c3 - - 0.1014 - - 0.1081 −0.0224

c4 - - - - - 0.1227

The dependence of the criterion (13) on the ARMA model order determined for all
measured data series is presented in Figure 6, and the results in the form of estimated
parameters of third-order ARMA models for the remaining empirical data series are
summarised in Table 3.

Table 3. Parameters of third-order ARMA models estimated for successive series of measured data.

Model
Parameters

Series of Measured Data
1 2 3 4

a1 −1.1259 −1.1413 −1.5472 −1.1428

a2 −0.2679 −0.3258 0.6563 −0.1290

a3 0.4069 0.4808 −0.0794 0.2877

c1 −0.2200 0.1249 −0.2510 0.0600

c2 −0.2653 −0.3256 −0.0428 −0.1059

c3 0.1081 −0.0908 0.1066 −0.0027
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Figure 6. The dependence of criterion (13) on the order n of the ARMA model describing the flow rate of flotation feed
solids, determined for a series of measurement data: (a) y1, (b) y2, (c) y3, (d) y4 based on the residuals described by the
model of order p = 5.

Based on the test results obtained, which are presented graphically in Figure 6, a
model of the third order with parameters was determined for the first series of measured
data with values equal to:

a1 = −1.1259, a2 = −0.2697, a3 = 0.4068, c1 = −0.2200, c2 = −0.2653, c3 = 0.1081 (20)

Based on the positions of zeros and poles in relation to the unit circle, it can be
concluded that a model with a structure of (3) and parameters (20) is stable (Figure 7).

In a further evaluation of the ARMA model with parameters (20), its residuals were
examined. The residuals of the model and the autocorrelation function of the residuals are
shown graphically in Figure 8.

To generalise the interference model, 10 time courses of the feed solids flow rate were
generated using the ARMA model with parameters (20) when the model is stimulated
by a random variable with normal distribution, mean value equal to zero and variance
σ2

ε = 0.0891, white noise sequence εt. The time courses were simulated using a sampling
period of 60 s and the length of the data sequences was 550 samples, approximately equal
to the average length of the recorded signals. Example simulations of the feed solids flow
rate are shown in Figure 9.
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Figure 7. Positions of zeros and poles of the ARMA model with parameters (20).
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Figure 8. Evaluation of the ARMA model residuals with parameters (20): (a) course of the residuals, (b) standardised
autocorrelation function.

Based on the data sequences generated in this way, the identification of the third-
order ARMA model parameters was carried out separately for each of the courses. The
results obtained are presented in Table 4. Each time the roots of the polynomials were
checked, the numerator znC(z−1) and the denominator znA(z−1) of the identified model
were determined. It was found that in each case they lay inside the unit circle on the
plane of the composite variable. The mean values of the estimated parameters and their
standard deviations were then calculated, which provides a measure of the ARMA models
coefficients values spread. In this, case roots of polynomials of the model numerator and
denominator (3) with parameters equal to the average values of the coefficients calculated
from simulated courses (Table 4) lie inside the unit circle in the plane of the composite
variable. This shows that the model so determined satisfies the requirements given in
Section 2.
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Figure 9. Examples of simulated feed solids flow rates: (a) series 1, (b) series 4, (c) series 8, (d) series 10.

Table 4. Identification results of solids flow models into the feed determined from 10 simulated time courses.

Model
Parameters

No. of Model Identified on the Basis of a Simulated Course Average
Values σij

1 2 3 4 5 6 7 8 9 10

a1 −1.1485 −1.0727 −1.0305 −0.9490 −1.5122 −1.0755 −0.9738 −0.9274 −0.9115 −1.0811 −1.07 0.17

a2 0.0098 −0.3540 −0.3268 −0.4537 0.5216 −0.2676 −0.6644 −0.4694 −0.6110 −0.3155 −0.29 0.34

a3 0.1612 0.4380 0.3875 0.4341 0.0136 0.3542 0.6552 0.4109 0.5441 0.4081 0.38 0.18

c1 −0.2938 −0.1825 −0.1384 −0.1045 −0.6127 −0.1521 −0.0033 −0.0278 0.0489 −0.1216 −0.16 0.19

c2 −0.0584 −0.3131 −0.2399 −0.2454 0.1330 −0.1965 −0.4719 −0.3460 −0.3147 −0.2475 −0.23 0.17

c3 0.1406 0.1269 0.1242 0.1378 0.0943 0.1120 0.0309 0.0638 0.0798 0.1268 0.10 0.04

i = a or c, j = 1, 2, 3.

Finally, the model of the flow of feed solids, as a disturbance in the control system of
the coal flotation process, for the industrial facility under consideration, is expressed by
the following equation:

K
(

z−1
)
=

1− 0.1588z−1 − 0.2301z−2 + 0.1037z−3

1− 1.0682z−1 − 0.2931z−2 + 0.3807z−3 (21)

Based on the model developed, the flow rates of the feed solids were determined by
stimulating the model with the residuals determined for models with the parameters given
in Table 3, and the results are presented in Figure 10.
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c2 −0.0584 −0.3131 −0.2399 −0.2454 0.1330 −0.1965 −0.4719 −0.3460 −0.3147 −0.2475 −0.23 0.17 
c3 0.1406 0.1269 0.1242 0.1378 0.0943 0.1120 0.0309 0.0638 0.0798 0.1268 0.10 0.04 

i=a or c, j=1, 2, 3. 
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Figure 10. Time courses of the feed solids flow rate determined by means of the third-order ARMA
model with Equation (21).

4.3. Results of Predicting the Flow Rate of Coal Flotation Feed Solids as a Stochastic Process

Using Equation (18), it is possible to prepare the predictor equation for the flow rate
of the coal flotation feed solids of the industrial process under consideration:

ŷt+1|t = 1.0682 + 0.2931yt−1 − 0.3807yt−2 − 0.1588et − 0.2301et−1 + 0.1037et−2 (22)

Equation (18) was used to determine one-step forecasts for the flow of feedstock solids
ŷt+1|t(1), ŷt+1|t(2), ŷt+1|t(3), ŷt+1|t(4) regarding the recorded courses y1, y2, y3, y4. The
course of the solids in the feed flow prediction determined on the basis of Equation (22)
and the prediction errors, for the actual courses as in Figure 3, is shown in Figure 11.

The calculated extreme values of the prediction error obtained for the four data series
are presented in Table 5.

Table 5. Extreme values of the prediction error obtained on the basis of forecasts for four data series.

et (kg/s)
Value Series 1 Series 2 Series 3 Series 4

min –0.40 –0.90 –1.08 –1.02

max 0.31 0.40 0.61 2.70
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Figure 11. Prediction error and one-step forecast of the flotation feed solids flow rate against measured data; (a) series 1,
(b) series 2, (c) series 3, (d) series 4; 1—measured data, 2—forecast.

5. Discussion

The calculations carried out for the first series of data y1 and the quantitative evalua-
tion of the adopted criteria indicate that an ARMA model of the fourth order, determined
on the basis of a sequence of residuals described by a model of the fifth order, should be
used to describe the course of the flow of solids in the feed (Figure 6a). However, the
analysis of criteria (7) and (13) for the models determined for the remaining three series
of data shows that it is correct to assume n = 3 as the order of the ARMA model with
parameters estimated based on a sequence of residuals described by a model of order p = 5
(Figure 6b–d). Therefore, the ARMA model of order n = 3 identified based on the first series
of measurement data was adopted for further research. The validity of adopting this order
is also confirmed by the results of the residuals obtained for this model analysis. These
results, shown in Figure 8, allow us to conclude that the obtained residual sequence can be
treated as a white noise sequence, i.e., a residual sequence t is not correlated. This state-
ment is confirmed by the course of the determined normalized autocorrelation function
presented in Figure 8b.

The simulation courses generated on the basis of the ARMA model (3) with parameters
(21) were used to determine the desired model of the flotation feed solids flow rate. The
parameters of this model were taken as the average values of the parameters determined
on the basis of 10 simulation courses, the values of which are listed in Table 4. Their
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standard deviations are also given there. Based on these results, it can be concluded that
the model parameters estimated for each series of measurement data (Table 3) are within
three times the calculated standard deviations. It should be noted that the developed
model reproduces well the time courses of the flow of the solid parts of the feed obtained
from the industrial experiment. This is clearly shown in the results presented graphically
in Figure 10. As can be seen in this figure, the time courses reconstructed using the ARMA
model of Equation (21) stimulated by a sequence of residuals determined for models with
the parameters given in Table 3, show satisfactory convergence with the empirical data
shown in Figure 5.

The developed model of the flotation feed solids flow rate, as a stochastic process
described by the ARMA model, enables the generation of any number of waveforms with
the stimulation of a sequence of independent random variables with a zero mean value
and the calculated variance σ2

ε = 0.0891. This makes it possible to study the response of au-
tomatic systems to random changes in the feed flow rate by computer simulation for many
sequences. Thanks to this, it is possible to assess the correctness of the adopted structure of
the automatic control system and the controller settings on the basis of simulation and to
adjust them to the values that allow the best compensation of the influence of changes in
the solids flow rate on the enrichment process. It is a practical aspect related to the design
of the automatic control system of the flotation process.

The model of disturbance in the flotation process (21) was used, according to Equation (18),
to prepare the equation of the coal flotation feed solids flow rate predictor, which enables
prediction of this quantity with the time horizon equal to the sampling period. The courses
of solids flow rate predictions presented in Figure 11 show significant convergence with the
measured quantity. The value of the prediction error does not exceed 2.7 kg/s. Therefore,
it is justified to state that the prediction with the prediction horizon equal to one sampling
period based on Equation (22) gives satisfactory results.

Currently, in the situation of manual control, the process operator-expert, based
on his experience, and the current (displayed on the monitor) measurements of solids
concentration in the feed and, to a lesser extent, the flow rate, decides to change the value
(increase or decrease) of key control signals. These are the following quantities: reagent
flow rate and air flow for slurry level in flotation cell. Currently, the operator can only
react to the indications of current measurements and observe the response of the process to
such changes. The developed forecast model can be used by the process operator (manual
control) who, based on the predicted forecast of the change in the solids flow rate, can make
decisions about changes in such quantities as: the amount of reagent dosed or the value
of the air flow rate, before this change in the solids flow rate occurs (action in advance),
which can provide faster and more effective compensation for adverse changes in the solids
flow rate of the feed. Moreover, the forecast model can be used in the automatic control
system-predictive control.

6. Conclusions

Disturbances in the form of time variations in the flow of solids for flotation can be
represented as a stochastic process and described by ARMA models. This paper presents
an algorithm for the estimation of ARMA model parameters by the double least squares
method in application to modelling the flow rate of feed solids for flotation. As shown by
the obtained results of identification calculations, the time course of the feed solids flow rate
can be modelled as a third-order ARMA process with parameters a1 =−1.0682, a2 =−0.2931,
a3 = 0.3807, c1 = −0.1588, c2 = −0.2301, c3 = 0.1037, and variance σ2

ε = 0.0891 determined
on the basis of a sequence of residuals with the properties of a white noise sequence.
The sequence of residuals is described by a model of the fifth order with coefficients
b1 = −0.9157, b2 = −0.2023, b3 = 0.0143, b4 = −0.0020, and b5 = 0.1168. The determined
model parameters for the measured data, measured during four consecutive periods of
continuous operation of the flotation facility, show a significant divergence but fall within
the range of three calculated standard deviations. This shows that the parameters of the
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feed solids flow rate model do not change significantly for four consecutive periods of
continuous operation of the industrial facility. It is shown that the estimated parameters of
the ARMA model can be used to predict the time series of solids flow in the feedstock with
a prediction horizon equal to the sampling period.

For the industrial process for which the identification tests were carried out, the
developed ARMA model in qualitative terms is universal. Over time, only the values of the
ARMA model parameters may change, but the order of the model will remain the same. In
such a case, only the operation of determining the parameter values is necessary., and there
is no need to determine the order of the model, which significantly shortens the calculation
process of the used method.

It is also important to demonstrate that good results in identifying the feed solids flow
with the ARMA model are obtained using the two-step least squares method. This may be
useful information for researchers who will undertake research in this field, e.g., in relation
to the flotation process of nonferrous ores.
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Nomenclature

an ash content in the feed, %,
kcs solids concentration, kg/m3

qn feed flow rate, m3/s
vo reagent flow rate, m3/s
qa air flow for slurry aeration, m3/s
h slurry level in flotation cell, m
γk concentrate yield, feed %
an ash content in the concentrate, %
γo yield of tailings, feed %
ao ash content in tailings, %
vo reagent flow rate, m3/s
do reagent dose, m3/kg
qcs feed solids flow, kg/s
et sequence of uncorrelated disturbances with the mean value equal to

zero and the variance σ2
e for the ARMA model (3) or the prediction

error for the prediction model (17)
yt centered sequence of recorded solids flow rate values of the feed

with the number of samples N, kg/s
N the number of samples of the recorded feed solids flow rate values
K(z−1) = C(z−1)/A(z−1) discrete transmittance, ARMA model
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z complex variable
A
(
z−1) = 1 + a1z−1 + . . . + anz−n,

C
(
z−1) = 1 + c1z−1 + . . . + cnz−n,

n ARMA model order
a1, a2, . . . , an, c1, c2, . . . , cn ARMA model parameters
B(z−1) discrete transfer function of the autoregression model
b1, b2, . . . , bp coefficients of the autoregression model representing the

identified ARMA process
p order of the autoregressive model
εt sequence of residues that approximates the unknown sequence of

white noise et
Jb criterion of matching the autoregression model (4) to the sequence

of the yt signal
FPE final prediction error
σ2

ε (p) autoregression model residuals variance
Jac criterion for estimating parameters a1, a2, . . . , an and c1, c2, . . . , cn

of the n order ARMA model
Re autocorrelation function
ρe normalized autocorrelation function
σε

2(n) residual variance of the ARMA model
ŷt+1|t forecast value of signal y at time (t + 1), determined at time t
C1, C2 concentrates from industrial flotation machines IZ-12
O1, O2 tailings from industrial flotation machines IZ-12
kcs[i] solids concentration, discreetly observed every sample time, kg/m3

qn1[i] feed flow rate to the flotation machine 1, discreetly observed every
sample time, m3/s

qn2[i] the feed flow rate to the flotation machine 2, discreetly observed
every sample time, m3/s

Ts sample time, s
i sampling step, i = t/Ts
t time, s
y1 first series of solids flow rate data, kg/s
y2 second series of solids flow rate data, kg/s
y3 third series of solids flow rate data, kg/s
y4 fourth series of solids flow rate data, kg/s
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