Natural Radioactivity in Thermal Waters: A Case Study from Poland
Abstract
:1. Introduction
2. Geological Characteristics and Radioactivity of the Rock Aquifers
2.1. Polish Carpathians
2.2. Sudetes
2.3. The Polish Central Lowlands
3. Materials and Methods
3.1. Sampling
3.2. Chemical Composition
3.3. Radioactive Isotopes
3.3.1. Uranium Isotopes
3.3.2. Radium Isotopes
3.3.3. Radiolead
3.3.4. Radon
3.3.5. Potassium Isotope (40K)
4. Results
4.1. Chemical Composition and Physical Properties of Polish Thermal Waters
4.2. Natural Radioactivity in Polish Thermal Waters
5. The Radiological Risk Related to the Use of the Thermal Waters Studied
5.1. Assessment of the Radiological Risk Resulting from Recreational Bathing
5.2. Assessment of Radiological Risk Resulting from the Consumption of Water as Drinking Water
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dinh Chau, N.; Dulinski, M.; Jodlowski, P.; Nowak, J.; Różański, K.; Śleziak, M.; Wachniew, P. Natural radioactivity in groundwater–A review. Isot. Environ. Health Stud. 2011, 47, 415–437. [Google Scholar] [CrossRef] [PubMed]
- Marović, G.; Senćar, J.; Franić, Z.; Lokobauer, N. Radium-226 in thermal and mineral springs of Croatia and associated health risks. J. Environ. Radioact. 1996, 33, 309–317. [Google Scholar] [CrossRef]
- Rihs, S.; Condomines, M. An improved method for Ra isotope (226Ra, 228Ra, 224Ra) measurements by gamma spectrometry in natural waters: Application to CO2-rich thermal waters from the French Massif Central. Chem. Geol. 2020, 182, 409–421. [Google Scholar] [CrossRef]
- Chaudhuri, H.; Das, N.K.; Bhandari, R.K.; Sen, P.; Sinha, B. Radon activity measurements around Bakreswar thermal springs. Radiat. Meas. 2010, 45, 143–146. [Google Scholar] [CrossRef]
- Lin, C.C.; Tsai, T.L.; Liu, W.C.; Liu, C.C. Aqueous characteristics and radionuclides in Peito Hot Spring Area. Radiat. Meas. 2011, 46, 561–564. [Google Scholar] [CrossRef]
- King, P.; Michel, J.; Moore, W. Ground water geochemistry of 228Ra, 226Ra and222Rn. Geochim. Cosmochim. Acta 1982, 46, 1173–1182. [Google Scholar] [CrossRef]
- Nguyen Dinh, C.; Kopeć, M.; Nowak, J. Factors controlling 226Ra, 228Ra and their activity ratio in groundwater—An application in Polish Carpathian mineral waters. Geol. Geophys. Environ. 2016, 42, 337–351. [Google Scholar]
- Vespasiano, G.; Muto, F.; Apollaro, C.; De Rosa, R. Preliminary hydrogeochemical and geological characterization of the thermal aquifer in the Guardia Piemontese area (Calabria, south Italy). Rend. Online. Geol. It. 2012, 21, 841–842. [Google Scholar]
- Vogiannis, E.; Nikolopoulos, D.; Louizi, A.; Halvadakis, C.P. Radon variations during treatment in thermal spas of Lesvos Island (Greece). J. Environ. Radioact. 2004, 76, 283–294. [Google Scholar] [CrossRef]
- Council Directive 2013/59/Euratom of 5 December 2013 Laying Down Basic Safety Standards for Protection Against the Dangers Arising from Exposure to Ionising Radiation, and Repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom; Euratom: Brussel, Belgium, 2013.
- Silva, A.S.; Dinis, M.L.; Pereira, A.J.S.C. Assessment of indoor radon levels in Portuguese thermal spas. Radioprotection 2016, 51, 249–254. [Google Scholar] [CrossRef]
- Nowak, J.; Nguyen Dinh, C. Radon as a potential health hazard for clients and workers of selected thermal spas in Poland. Radiat. Prot. Dosim. 2017, 175, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Chowaniec, J. Water flow zoning in the vertical profile of the Podhale Flysch in the light of water absorption studies. Biul. PIG 2002, 404, 19–28. [Google Scholar]
- Kępińska, B.; Wieczorek, J. Geological and deposit characteristics of the Podhale geothermal system. In Atlas of Geothermal Water Energy Resources in the Western Carpathians; Górecki, W., Ed.; Ministry of Environment of the Republic of Poland: Warsaw, Poland, 2011; pp. 104–108. [Google Scholar]
- Rajchel, L. Carbonate Waters and Waters Containing Carbon Dioxide of the Polish Carpathians; Wydawnictwo AGH: Kraków, Poland, 2012. (In Polish) [Google Scholar]
- Oszczypko, N. Tectonical and geological characteristics of the Polish Western Carpathians. In Atlas of Geothermal Water Energy Resources in the Western Carpathians; Górecki, W., Ed.; Ministry of Environment of the Republic of Poland: Warsaw, Poland, 2011; pp. 62–81. [Google Scholar]
- Bujakowski, W.; Barbacki, A.; Hołojuch, G.; Kasztelewicz, A.; Pająk, L.; Tomaszewska, B.; Augustyńska, J. Possibilities using geothermal energy in the selected towns of the Western Carpathians. In Atlas of Geothermal Water Energy Resources in the Western Carpathians; Górecki, W., Ed.; Ministry of Environment of the Republic of Poland: Warsaw, Poland, 2011; pp. 621–665. [Google Scholar]
- Sokołowski, J.; Kempkiewicz, K. The appreciation of the thermal energy resources at the Ustroń district and their use possibilities. In Proceedings of the International Scientific Conference “Geothermal Energy in Underground Mine”, Ustroń, Poland, 21–23 November 2001. [Google Scholar]
- Plewa, M.; Plewa, S. Petrophysics; Wydawnictwo Geologiczne: Warszawa, Poland, 1992. (In Polish)
- Przylibski, T.A. Concentration of 226Ra in rocks of the southern part of Lower Silesia (SW Poland). J. Envir. Radioact. 2004, 75, 171–191. [Google Scholar] [CrossRef] [PubMed]
- Dowgiałło, J. The Sudetic geothermal region of Poland. Geothermics 2002, 31, 343–359. [Google Scholar] [CrossRef]
- Malczewski, D.; Sitarek, A.; Żaba, A.; Dorda, J. Natural radioactivity of selected crystalline rocks of the Izera Block (Sudetes, SW Poland). Prze. Geol. 2005, 53, 237–244. (In Polish) [Google Scholar]
- Paczyński, B.; Płochniewski, Z. Mineral and Therapeutic Waters of Poland; Państwowy Instytut Geologiczny: Warszawa, Poland, 1996. (In Polish) [Google Scholar]
- Stupnicka, E. Regional Geology of Poland; Warsaw University: Warszawa, Poland, 1997. (In Polish) [Google Scholar]
- Górecki, W.; Hajto, M.; Strzetelski, W.; Szczepański, A. Lower cretaceous and lower Jurassic aquifers in the Polish lowlands. Prze. Geol. 2010, 58, 589–593. [Google Scholar]
- Grabowski, P.; Bem, H.; Romer, R.L. Use of radiometric (234/238U and 228/226Ra) and mass spectrometry (87/86Sr) methods for studies of the stability of groundwater reservoir in Central Poland. J. Radioanal. Nucl. Chem. 2015, 303, 663–669. [Google Scholar] [CrossRef] [Green Version]
- Tyler, G. ICP-OEC, ICP-MS and AAS Techniques Compared. ICP Optical Emission Spectrometry; Technical Note no. 5; Horiba rGoup: Longjumeau, France, 2019; pp. 1–11. [Google Scholar]
- Kronfeld, J. Uranium deposition and Th-234 a recoil: An explanation extreme 234U/238U fraction within the Trinity aquifer. Earth Planet. Sci. Lett. 1974, 21, 327–330. [Google Scholar] [CrossRef]
- Skwarzec, B. Radiochemical methods for the determination of polonium, radiolead, uranium and plutonium in environmental samples. Chem. Anal. 1997, 42, 107–113. [Google Scholar]
- Nguyen Dinh, C.; Niewodniczański, J.; Dorda, J.; Ochoński, A.; Chruściel, E.; Tomza, I. Determination of radium isotopes in mine waters through alpha-and betaactivities measured by liquid scintillation spectrometry. J. Radioanal. Nucl. Chem. 1997, 222, 69–74. [Google Scholar]
- Nguyen Dinh, C.; Chwiej, T.; Chruściel, E. 226Ra, 228Ra and 210Pb in some water samples of mines. J. Radioanal. Nucl. Chem. 2001, 250, 387–390. [Google Scholar]
- Nguyen Dinh, C. Natural Radioactivity of Selected Mineral Waters in the Polish Carpathians; Wydawnictwo JAK: Kraków, Poland, 2010. (In Polish) [Google Scholar]
- Oliveira, O.P., Jr.; Sarkis, J.E. Isotope measurements in uranium using a quadrupole inductively coupled plasma mass spectrometer (ICPMS). Radioanal. Nucl. Chem. 2002, 253, 345–350. [Google Scholar] [CrossRef]
- Kozak, K.; Mazur, J.; Vaupotic, J.; Kobal, I.; Grządziel, D.; Omran, K. Natural radioactivity in the old uranium tunnels (Biały Valley) and in the Mylna and Mroźna caves (Kościelisko Valley). In The Science and Management of the Tatra Regions and their Surrounds; The Tatra National Park: Zakopane, Poland, 2010; pp. 69–77. (In Polish) [Google Scholar]
- Chowaniec, J.; Zuber, A.; Ciężkowski, W. Carpathian province In Regional hydrogeology T2. Mineral, Therapeutic, Thermal and Mine Waters; Paczyński, B., Sadurski, A., Eds.; The Polish Geological Institute: Warsaw, Poland, 2007; pp. 78–91. (In Polish)
- Krishnaswami, S.; Bhushan, R.; Baskaran, M. Radium isotopes and 222Rn in shallowbrines, Kharaghoda (India). Chem. Geol. 1991, 87, 125–136. [Google Scholar]
- United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and Effects of Ionizing Radiation. UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes; United Nations: New York, NY, USA, 2000. [Google Scholar]
- Council Directive 96/29/EURATOM of 13 May 1996 Laying Down Basic Safety Standards for the Protection of the Health of Workers and the General Public Against the Dangers Arising from Ionizing Radiation; The Council of the European Union: Brussels, Belgium, 1996.
- Atomic Law. Act of Parliament of Republic of Poland of 29 November 2000. Available online: https://www.paa.gov.pl/sites/default/files/Specjalistyczne/!Atomic_Law.pdf (accessed on 20 January 2021).
- United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Sources and Effects of Ionizing Radiation. UNSCEAR 2008 Report to the General Assembly, with Scientific Annexes; United Nations: New York, NY, USA, 2008. [Google Scholar]
- Council Directive 98/83/EC of 3 November 1998 on the Quality of Water Intended for Human Consumption; The Council of the European Union: Brussels, Belgium, 1996.
- International Commission on Radiological Protection (ICRP). Database of Dose Coefficients: Workers and Members of the Public; ICRP: Ottawa, ON, Canada, 2020. [Google Scholar]
- World Health Organization. Guidelines for Drinking-Water Quality. Incorporating 1st and 2nd Addenda, Volume 1, Recommendations, 3rd ed.; WHO: Geneva, Switzerland, 2008. [Google Scholar]
- Gallup, D.L. Treatment of geothermal waters for production of industrial, agricultural or drinking water. Geothermics 2007, 36, 473–483. [Google Scholar] [CrossRef]
- Gafvert, T.; Ellmark, C.; Holm, E. Removal of radionuclides at a waterworks. J. Environ. Radioact. 2002, 63, 105–115. [Google Scholar] [CrossRef]
- Kleinschmidt, R.; Akber, R. Naturally occurring radionuclides in materials derived from urban water treatment plants in Southeast Queensland, Australia. J. Environ. Radioact. 2008, 99, 607–620. [Google Scholar] [CrossRef]
- Tomaszewska, B.; Bodzek, M. The removal of radionuclides during desalination of geothermal waters containing boron using the BWRO system. Desalination 2013, 309, 284–290. [Google Scholar] [CrossRef]
- Asikainen, M. Radium content and the 226Ra/228Ra activity ratio in groundwater from bedrock. Geochim. Cosmochim. Acta 1981, 45, 1375–1381. [Google Scholar] [CrossRef]
- Nguyen Dinh, C.; Rajchel, L.; Nowak, J.; Jodłowski, P. Radium isotopes in the Polish Outer Carpathian mineral waters of various chemical composition. J. Environ. Radioact. 2012, 112, 38–44. [Google Scholar]
- Walczak, K.; Olszewski, J.; Zmyślony, M. Estimate of radon exposure in geothermal spas in Poland. Int. J. Occup. Med. Environ. Health 2016, 29, 161–166. [Google Scholar] [CrossRef] [Green Version]
- López, M.G.; Sánchez, M.; Escobar, V.G. Estimate of the dose due to 222Rn concentrations in water. Radiat. Protect. Dos. 2004, 111, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Vespasiano, G.; Marini, L.; Apollaro, C.; De Rosa, R. Preliminary geochemical characterization of the thermal waters of Caronte SPA springs (Calabria, South Italy). Rend. Online Soc. It. 2016, 39, 138–141. [Google Scholar] [CrossRef]
Borehole | Location | Depth 1 (m) | Temp. (°C) | Eh (mV) | pH | Concentrations of Major Ions (mg/L) | Type | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TDS | HCO3− | Cl− | SO4 2 | Na+ | K+ | Ca2+ | Mg2+ | |||||||
Bukowina PIG/PGNiG-1 | IC 2 | 2497 | 64.0 | n/a 6 | n/a | 1512.3 | 159 | 113 | 763 | 160 | 17.7 | 184 | 15.5 | SO4-Ca-Na |
BiałkaTatrzańska GT-1 | IC | 2500 | 73.5 | −209 | 6.83 | 1982.0 | 252 | 379 | 671 | 314 | 33.9 | 183 | 42.8 | SO4-Na-Ca |
BańskaNiżna PGP-1 | IC | 2986 | 86.3 | −330 | 8.2 | 2502.7 | 334 | 492 | 818 | 470 | 41.0 | 188 | 40.0 | SO4-Cl-Na |
BańskaNiżna IG-1 | IC | 2626 | 80.0 | n/a | 6.5 | 2333.3 | 285 | 482 | 756 | 432 | 42.6 | 183 | 34.9 | SO4-Cl-Na |
Zakopane 2 | IC | 1102 | 23.9 | n/a | 7.5 | 349.1 | 239 | 8.60 | 16.0 | 2.27 | 1.13 | 46.0 | 22.4 | HCO3-Ca |
Zakopane IG-1 | IC | 1580 | 34.2 | n/a | 7.4 | 367.8 | 220 | 3.60 | 39.1 | 10.1 | 3.32 | 45.4 | 20.5 | HCO3-Ca |
Szymoszkowa GT-1 | IC | 1387 | 26.6 | n/a | 7.7 | 332.7 | 241 | 3.60 | 4.50 | 5.35 | 1.60 | 40.0 | 22.8 | HCO3-Ca |
Poronin PAN-1 | IC | 150 | 63.0 | 227 | 6 | n/a 1 | n/a | n/a | n/a | n/a | n/a | n/a | n/a | - |
Chochołów PIG-1 | IC | 1843 | 82.0 | n/a | n/a | 1256.9 | 194 | 27.2 | 607 | 87.7 | 18.5 | 192 | 40.8 | SO4-Ca-Mg |
Rabka IG-2 | OC 3 | 3395 | 22.0 | n/a | n/a | 23,061.4 | 1487 | 12,400 | 4.50 | 8400 | 87.9 | 73.2 | 39.7 | Cl-Na |
Lubatówka 12 | OC | 1205 | 24.0 | −38 | 7.73 | 17,700 | 4270 | 7090 | <0.5 | 5910 | 37.3 | 51.6 | 57.2 | Cl-Na |
Ustroń U3 | OC | 925 | 23.0 | −90 | 7.1 | 101,000 | 79.3 | 62,400 | 370 | 26,400 | 579 | 8290 | 2530 | Cl-Na-Ca |
Ustroń U3A | OC | 1513 | 21.0 | −27.7 | 7.0 | 117,000 | 101 | 71,700 | 426 | 30,800 | 727 | 9410 | 2660 | Cl-Na-Ca |
LądekZdrój L-2 | SU 4 | 1320 | 43.6 | −220 | 6.9 | 201 | 24.4 | 5.60 | 21.6 | 49.0 | 0.78 | 3.05 | <0.01 | HCO3-SO4-Na |
DusznikiZdrój GT-1 | SU | 425 | 35.5 | 8.2 | 9.4 | 3430 | 2330 | 8.92 | 72.2 | 301 | 182 | 297 | 95.1 | HCO3-Na-Ca |
Cieplice C-1 | SU | 1124 | 65.3 | −110 | 6.9 | 663 | 146 | 42.5 | 153 | 153 | 5.10 | 7.8 | 0.02 | SO4-HCO3-Na |
Uniejów PIG/AGH-2 | NP 5 | 2003 | 63.9 | −150 | 7.8 | 6770 | 296 | 3770 | 98.0 | 2350 | 28.9 | 141 | 27.7 | Cl-Na |
Poddębice GT-1 | NP | 1897 | 49.0 | −201 | 7.2 | 461 | 262 | 21.6 | 14.3 | 78.8 | 4.50 | 23.9 | 4.22 | HCO3-Na-Ca |
Mszczonów IG-1 | NP | 1925 | 41.8 | −210 | 7.5 | 492 | 320 | 7.59 | 3.37 | 30.7 | 11.1 | 53.1 | 11.7 | HCO3-Ca-Na |
Borehole | Radium Isotopes (mBq/L) | Uranium Isotopes (mBq/L) | 210Pb (mBq/L) | 222Rn (Bq/L) | 40K | 226Ra/228Ra | 234U/238U | 226Ra/222Rn | 210Pb/222Rn | ||
---|---|---|---|---|---|---|---|---|---|---|---|
226Ra | 228Ra | 234U | 238U | ||||||||
Bukowina PIG/PGNiG 1 | 585 | 339 | 12.5 | 1.2 | 15.3 | 3.1 | 570 | 1.73 | 10.4 | 0.19 | 0.0049 |
Białka Tatrzańska GT-1 | 347 | 116 | 5.1 | 3.6 | 9.2 | n/a 1 | 1091 | 2.99 | 1.42 | n/e 2 | n/e |
Bańska Niżna PGP-1 | 602 | 69 | 6.2 | 3.1 | 36.0 | <0.2 | 1320 | 8.72 | 2.00 | n/e | n/e |
Bańska Niżna IG-1 | 560 | 161 | 4.7 | 3.9 | 30.0 | 8.5 | 1372 | 3.48 | 1.21 | 0.066 | 0.0035 |
Zakopane 2 | 291 | 30 | 7.5 | 2.8 | 73.5 | 18.5 | 36.4 | 9.70 | 2.68 | 0.016 | 0.0040 |
Zakopane IG-1 | 31 | 19 | 4.5 | 2.6 | 8.2 | <0.2 | 107 | 1.63 | 1.73 | n/e | n/e |
Szymoszkowa GT-1 | 315 | 35 | 321 | 319 | 30.3 | 27.1 | 51.5 | 9.00 | 1.01 | 0.012 | 0.0011 |
Poronin PAN-1 | 250 | <10 | 58.8 | 41.9 | n/a | n/a | 34.4 | n/e | 1.40 | n/e | n/e |
Chochołów PIG-1 | 2260 | <10 | 5.8 | 2.9 | 102 | n/a | 570 | n/e | 2.00 | n/e | n/e |
Rabka IG-2 | 608 | 570 | 9.3 | 6.2 | 16.9 | <0.2 | n/a | 1.07 | 1.50 | n/e | n/e |
Lubatówka 12 | 1396 | 1271 | 7.1 | 3.1 | 56.7 | 3.2 | 596 | 1.10 | 2.29 | 0.44 | 0.018 |
Ustroń U3 | 56,700 | 14,100 | 7.0 | 18.7 | n/a | 31.5 | 2830 | 4.02 | 0.37 | 1.80 | n/e |
Ustroń U3A | 66,000 | 17,700 | 9.7 | 4.6 | n/a | 37.3 | 1201 | 3.73 | 2.11 | 1.77 | n/e |
Lądek Zdrój L-2 | 24 | 20 | 0.61 | 0.95 | 29.3 | 148 | 18,641 | 1.20 | 0.64 | 0.00016 | 0.00020 |
Duszniki Zdrój GT-1 | 3370 | 940 | 37.3 | 14.7 | 547 | 3.2 | 23,406 | 3.59 | 2.54 | 1.05 | 0.17 |
Cieplice C-1 | 21 | <10 | <0.5 | <0.5 | 4.1 | 8.0 | 25.1 | n/e | n/e | 0.0026 | 0.00051 |
Uniejów PIG/AGH-2 | 560 | 597 | 0.96 | <0.5 | 24.0 | 2.0 | 5860 | 0.94 | n/e | 0.28 | 0.012 |
Poddębice GT-1 | 40 | 62 | <0.5 | <0.5 | 5.3 | 5.3 | 164 | 0.65 | n/e | 0.0075 | 0.0010 |
Mszczonów IG-1 | 41 | 51 | <0.5 | 1.5 | 3.2 | 2.9 | 930 | 0.80 | n/e | 0.014 | 0.0011 |
Borehole | Method of Utilisation | Annual Effective Dose a for Clients (μSv) | Annual Effective Dose a for Employees (mSv) | Committed Effective Dose b (mSv) |
---|---|---|---|---|
Bukowina PIG/PGNiG 1 | Recreational bathing. heating | 4.14 | 0.23 | 0.30 |
Białka Tatrzańska GT-1 | Recreational bathing | n/e c | n/e | 0.13 |
Bańska Niżna PGP-1 | Recreational bathing. heating | 0.27 | 0.015 | 0.18 |
Bańska Niżna IG-1 | Heating | 11.4 | 0.63 | 0.21 |
Zakopane 2 | Recreational bathing | 24.7 | 1.37 | 0.11 |
Zakopane IG-1 | Recreational bathing | 0.27 | 0.015 | 0.02 |
Szymoszkowa GT-1 | Recreational bathing | 36.2 | 2.01 | 0.12 |
Poronin PAN-1 | Not used | n/e | n/e | 0.060 |
Chochołów PIG-1 | Recreational bathing | n/e | n/e | 0.52 |
Rabka IG-2 | Balneological treatment | 0.27 | 0.015 | 0.42 |
Lubatówka 12 | Balneological treatment | 4.28 | 0.24 | 0.95 |
Ustroń U3 | Balneological treatment | 42.1 | 2.34 | n/e |
Ustroń U3A | Balneological treatment | 49.8 | 2.77 | n/e |
Lądek Zdrój L-2 | Balneological treatment | 198 | 11.0 | 0.030 |
Duszniki Zdrój GT-1 | Balneological treatment | 4.28 | 0.24 | 1.44 |
Cieplice C-1 | Balneological treatment | 10.7 | 0.59 | 0.011 |
Uniejów PIG/AGH-2 | Recreational bathing. heating | 2.67 | 0.15 | 0.43 |
Poddębice GT-1 | Recreational bathing. heating | 7.08 | 0.39 | 0.04 |
Mszczonów IG-1 | Recreational bathing. heating | 3.87 | 0.22 | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen Dinh, C.; Nowak, J. Natural Radioactivity in Thermal Waters: A Case Study from Poland. Energies 2021, 14, 541. https://doi.org/10.3390/en14030541
Nguyen Dinh C, Nowak J. Natural Radioactivity in Thermal Waters: A Case Study from Poland. Energies. 2021; 14(3):541. https://doi.org/10.3390/en14030541
Chicago/Turabian StyleNguyen Dinh, Chau, and Jakub Nowak. 2021. "Natural Radioactivity in Thermal Waters: A Case Study from Poland" Energies 14, no. 3: 541. https://doi.org/10.3390/en14030541
APA StyleNguyen Dinh, C., & Nowak, J. (2021). Natural Radioactivity in Thermal Waters: A Case Study from Poland. Energies, 14(3), 541. https://doi.org/10.3390/en14030541