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Abstract: This paper aims to develop an online diagnostic mechanism, doubling as a maximum
power point tracking scheme, for a photovoltaic (PV) module array. In case of malfunction or shadow
event occurring to a PV module, the presented diagnostic mechanism is enabled, automatically and
immediately, to reconfigure a PV module array for maximum output power operation under arbitrary
working conditions. Meanwhile, the malfunctioning or shaded PV module can be located instantly
by this diagnostic mechanism according to the array configuration, and a PV module replacement
process is made more efficient than ever before for the maintenance crew. In this manner, the intended
maximum output power operation can be resumed as soon as possible in consideration of a minimum
business loss. Using a particle swarm optimization (PSO)-based algorithm, the PV module array is
reconfigured by means of switch manipulations between modules, such that a load is supplied with
the maximum amount of output power. For compactness, the PSO-based online diagnostic algorithm
is implemented herein using a TMS320F2808 digital signal processor (DSP) and is experimentally
validated as successful to identify a malfunctioning PV module at the end of this work.

Keywords: online diagnostic mechanism; photovoltaic module array; maximum power point track-
ing; particle swarm optimization; digital signal processor

1. Introduction

A plunge in the output power of a photovoltaic (PV) module array is seen due to
a shadow or malfunction event in [1,2]. Furthermore, an current-voltage (I–V) curve
distortion in a PV module array results in a multiple peak problem along a power-voltage
(P–V) characteristic curve. As a consequence, a maximum power point tracker (MPPT)
in a power conditioner is likely to be trapped at a local, rather than the desired global,
maximum power point (MPP). Even though the global maximum power point (GMPP) can
be successfully tracked as expected on a P–V characteristic curve with multiple peaks [3,4],
the overall power generation efficiency deteriorates in a heavily shaded case, and little
improvement is made accordingly because a PV module array is not built with adaptive
configuration. For this sake, a PV module array is made up of a fixed part and an adaptive
bank, as presented in [5]. In the case of a partially shaded event, the adaptive bank is
connected to the fixed part through array switches as an effective way to reduce the shadow
effect on the operation of a power system. Nonetheless, this scheme requires a great number
of voltage/current sensors and switches to connect an adaptive bank to a fixed part. It also
particularly requires a tremendous amount of PV modules deployed in an adaptive bank to
achieve a high output power level. Therefore, it is an impractical strategy in terms of cost. In
addition, as put forward in [6], a PV module array is reconfigured in a way that deploys an
MPPT on each branch to reduce the module shadow or malfunction effect. This approach
is validated as effective in respect to the improvement in the overall power generation
efficiency, but it requires a greater number of DC–DC converters, leading to a rise in the
facility cost. As in [7], a shaded PV module goes offline, not to deteriorate the overall
output power performance, but at the cost of a highly complex array configuration and
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a greater number of switches between modules. The static array configuration proposed
in [8] does not require sensors or switches, and the PV modules are arranged in such
a way that the shade is not concentrated but dispersed all over the PV module array.
However, the dispersion of shade in the proposed arrangement has to be preformed in
advance for different series and parallel connections. Therefore, it is only suitable for
a specific number of PV module connections, and a considerable number of cables are
needed for reassembling the configuration. Some mismatch mitigation techniques using
power electronics integrated for PV modules are developed in [9,10] to become smart PV
modules, but more complex module-integrated topologies/converters should be required,
thus increasing the cost.

So far, there has been a great volume of published studies on PV module array
malfunction diagnosis. As in [11], a method to detect PV array faults and partial shading
in the PV system was proposed under all irradiation conditions using the measured array
voltage, array current, and irradiance. However, this proposed method can only classify
the status of the PV module array into three possible scenarios—normal operation, partial
shading, and fault. A simple online fault detection method for PV systems using the
available data of PV array voltage and current by means of wavelet packets was presented
in [12]. However, this method can only detect the line–line fault with one or more than
one module mismatch and partial shading occurrence. As shown in [13], a simple and
effective approach was adopted for the automatic diagnosis of fault module strings in PV
systems, which is based on the real-time operating voltage of PV modules. The analysis
of PV string failure includes several electrical fault scenarios and their impact on the PV
string characteristics. Nevertheless, this method can only locate the faulty strings. One
major disadvantage of all the above-mentioned methods [11–13] is that the malfunctioning
modules cannot be located. Another disadvantage is that if the malfunction of the module
happens, these methods will fail to provide an improvement in the output power before
the replacement. As suggested in [14–16], a fault diagnosis is made on the basis of field
test results, while it might result in output power performance deterioration or even put
operators in danger if a PV power generation system is not properly wired. Another
problem is that this approach is developed to diagnose a case in a seriously abnormal
operation, not a shaded or malfunction case, and it lacks a way to improve the output
performance as well. An extension-based model and a PSIM circuit-oriented simulator
model [17] are built for fault diagnosis and a nonlinear PV source, respectively, and
give an accurate diagnosis due to a good agreement between computer simulations and
experimental results. However, not taking into consideration the blocking and bypass
diodes, the mathematical models result in errors in the output characteristic curves for a
malfunction case.

In addition, there are few large-scale projects on fault diagnosis for PV module arrays
worldwide other than photovoltaic operation using satellite data (PVSAT) co-conducted
by Switzerland, Germany, and the Netherlands [18–20]. In PVSAT, the operation of grid-
connected PV systems is monitored and remote failure detection is made based on a
comparison between satellite and ground station meteorological data as the parameters for
atmospheric simulation purposes and is based on another comparison between simulated
and measured output performance. Needless to say, PVSAT is definitely a high-cost
project because it involves satellite-based meteorological observation and is developed for
commercial grid-connected, rather than stand-alone, PV power generation systems [21].
For this sake, each branch’s current and voltage are detected as a way for online fault
detection using a microcontroller-based measurement technique [22]. All it takes is simply
a voltage/current comparison among all the branches, and the fault zone is indicated
on an LED display. Yet, a clear disadvantage is that a fault cannot be located accurately
once the same fault is shared by all the branches, namely, the same voltage and current
are seen over branches. As in [23], the output performance of a PV module array was
simulated using Solar Pro software and was collected under various working conditions,
i.e., solar radiation, module temperature, and malfunction. An extension neural network
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(ENN) based analysis was conducted on the collected data, and the analysis results were
then transmitted to a human–machine interface for real-time display via a ZigBee wireless
network module. Nevertheless, a major disadvantage is the aging problem resulting from
a long-term operation of a PV module array, which leads to a deteriorated diagnostic
accuracy. Besides, modifications must be made for all the characteristic parameters once a
PV module array is reconfigured. An optimal configuration of photovoltaic module arrays
based on adaptive switching controls was proposed in [24]. This study proposed a strategy
for determining the optimal configuration of photovoltaic (PV) module arrays in shading
or malfunction conditions. If shading or malfunctions of the photovoltaic module array
occur, the module array immediately undergoes adaptive reconfiguration to increase the
power output of the PV power generation system. However, this strategy only provides
power generation performance improvement using simulation and does not propose a
fault diagnosis method. A binary search-based fault detection system [25] was proposed
for PV modules to ameliorate the deficiencies in the existing fault detectors for PV module
arrays. To overcome multi-node voltage detection and reduce the number of integrated
circuit components, an analog switch was used to perform detection channel switching.
However, when the system gets larger, the time of fault diagnosis becomes longer, and
the accuracy decreases. In recent years, some fault diagnosis technologies of photovoltaic
module arrays were carried by using infrared and optical imaging equipment carried by
unmanned aerial vehicles (UAVs) [26–28]. However, in order to improve the accuracy of
diagnosis, high-priced and high-pixel lenses must be used so that the cost of maintenance
cannot be reduced.

In short, all the fault diagnosis strategies, as presented in [11–28], lack a mechanism
to locate malfunctioning modules with a 100% accuracy. Consequently, it takes time to
identify the fault manually, particularly in a large PV module array, and hence slow down a
maintenance task significantly. This highlights the significance of an online fault detection
system.

In light of this, this work presents a novel PV module array configuration requiring
a single MPP tracker and a typical number of switches. In case of any partial shadow
or malfunction event, a particle swarm optimization (PSO)-based algorithm is enabled
as a way to deliver the maximum amount of output power to load by means of switch
manipulations. In the meantime, the malfunctioning PV module can be located instantly
according to the PV module array configuration for a prompt module replacement.

2. Effect of Array Configuration on Output Performance

There are a great number of ongoing studies on PV module array configurations [29,30].
The most common configurations can be categorized into three types, namely, (i) series ar-
ray, (ii) parallel array, and (iii) series-parallel (SP) array, each of which is depicted as follows.
In the series configuration, all the PV modules are connected in series, resulting in a tremen-
dous drop in the output current once there are shaded or malfunctioning modules. In the
parallel configuration, all the PV modules are connected in parallel, but, in analogy with the
series configuration, a major disadvantage is a plunge in the output voltage as the shadow
or malfunction effect. As its name indicates, in the SP configuration, all the PV modules are
connected in series and then in parallel, and it appears as an easy-to-implement and the
most common configuration. However, the above three configurations will greatly reduce
the output power of a PV module array due to module shading or failure [31,32]. In the
bridge-linked (BL) configuration, all the PV modules are bridge linked, but a major problem
is that the behaviors of neighboring modules are found susceptible to a shaded one, leading
to a deterioration in the overall output performance [31]. Particularly, there is no way to
integrate a global MPP tracker into this type of array configuration. In the honey-comb
(HC) array configurations, all the PV modules are configured as a honeycomb [32]. It is
developed as a way to reduce the shadow effect on the output power in some, but not in
all cases, meaning that it is not a robust design. In the total cross-tied (TCT) configuration,
all the PV modules are connected in parallel and then in series, as an improved version of
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the series and parallel configurations. Although the TCT configuration is rare in practical
applications and will increase the cost of connection cables, this configuration can improve
the problem of power reduction due to module shading or failure [31,32].

At identical module surface temperature and irradiation level, all the above-stated
six array configurations share the same output performance only if there is no shadow
or malfunction event in the configurations. Otherwise, the output power varies among
the configurations, simply due to the fact that the output performance of the neighboring
modules, and finally the entire array, are adversely affected by the shaded one. For this
sake, an array in this work is automatically reconfigured in such a way that the maximum
amount of output power is provided in case of a shadow or malfunction event.

As illustrated in Figure 1, switches, deployed between PV module array on neigh-
boring branches, are manipulated as a way to reconfigure an array for MPP operation. At
the lower part of each branch, a Hall-effect current sensor is employed as a requirement
for online fault diagnosis purposes. The well-known particle swarm optimization (PSO)
algorithm will be detailed in the following section, based on which an array configuration
mechanism is developed.
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3. Particle Swarm Optimization Algorithm

Proposed in 1995 by James Kennedy and Russell Eberhart, the particle swarm opti-
mization (PSO) algorithm is characterized as having collective intelligence and is essentially
a type of evolutionary algorithm [33–36]. As presented in [33,34,36], the velocity of each
particle is updated according to the difference between the particle velocity and the optimal
value pbest of a particle or between the particle velocity and the global optimal value of all
particles gbest. The position, the search range, and direction of each particle are updated
according to an updated velocity. The adopted PSO-based algorithm of this paper was
provided in [37]. The velocity and position of a particle are updated as

vk+1
j = w × vk

j + C1 × rand(·)× (pbest
k
j − Xk

j ) + C2 × rand(·)× (gbest − Xk
j ) (1)

Xk+1
j = Xk

j + vk+1
j (2)
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where vk+1
j and vk

j respectively denote the velocities of particle j at time instants k + 1 and

k, C1 and C2 are the learning factors, w is the inertia weight, pbest
k
j is the optimal value of

particle j at time instant k, gbest is the global optimal value, Xk+1
j and Xk

j indicate the switch
positions of particle j at time instants k + 1 and k, and rand (·) is a rand real number between
0 and 1.

4. Online Fault Diagnosis System
4.1. System Framework

As illustrated in Figure 2, the presented online diagnostic system for a PV module
array mainly involves (i) a boost converter, (ii) an MPP tracker, (iii) an array configuration
optimizer, (iv) a unit to detect module shielding and malfunction, and (v) an LED array for
shaded or malfunctioning module display. A PV module array is designed to operate at the
MPP all the time via skillful manipulation of the MPP tracker-controlled boost converter. In
case of any module shadow or malfunction, the array configuration optimizer is enabled as
a way to reconfigure the PV module array and detect the output voltage and current thereof
to achieve the aim of MPP operation under arbitrary working conditions. A complete
set of switch statuses together with the above-stated measured output quantities are then
delivered to the malfunction diagnostic block for the real-time location and the LED array
for displaying the shaded or malfunctioning modules.
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4.2. MPPT under Shaded Conditions

As pointed out in [38], the simple and easy-to-implement perturbation and observation
(P&O) method stands as the most popular maximum power point tracking approach for a
PV module array. Yet, multiple peaks exist along the P–V characteristic curve in the event
of shaded or malfunctioning PV modules, meaning that the output power is likely to be
trapped at a local, rather than the desired global, MPP. For this sake, a PSO-based global
MPP tracker is employed herein to handle the multiple peak problem, hence leading to an
improved power generation efficiency. A PSO-based MPP tracking algorithm, as presented
in [39], is adopted in this study.

4.3. Integration between MPPT and Array Configuration Optimization

The power generation efficiency is maximized herein as a consequence of a joint
operation between a global MPP tracker and the presented configuration optimization
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mechanism. Once a branch current in Figure 1 is detected by a Hall-effect current sensor
as far below the others, it is identified as a module shading or malfunctioning event, and
the presented configuration optimization mechanism is enabled right away to manipulate
the switches between modules. The algorithm is the same as stated in [37,39] except that
the switch control signal is set to the position of a particle, and the output power of a PV
module array is defined as the objective function.

4.4. Online Fault Detection Mechanism

In an attempt to reduce a business loss due to PV module shading or malfunction,
a way must be found to efficiently locate the non-well operated PV modules online. For
this sake, an online diagnostic mechanism is integrated with the presented configuration
optimization strategy. Once a branch current is detected by a Hall-effect current sensor as
far below the others, it is identified as a non-well-operated event, and the configuration
optimization and then the diagnostic mechanisms are enabled. Illustrated in Figure 2 as
a system, a high-level step sequence block diagram of configuration optimization and
flowchart of the algorithm are shown in Figures 3 and 4, and the presented diagnostic
mechanism is stated as follows:

step 1: Initialize all the PSO parameters, including the controlled signal (i.e., the configura-
tion of switch position) of all the switches (here using relays as switches) pbest and
gbest. The controlled signal of all the switches are set as the positions of particles,
and the output power of a PV module array is defined as the objective function, that
is, Ppv(Xk

j ) = Vpv × Ipv.

step 2: The configuration of switch positions of particles is employed as the switch control
signals in the progress of an MPP tracking event.

step 3: The output power of the PV module array is evaluated as the output voltage times
the output current at the end of a tracking event.

step 4: Compare the current output power with PPV,best. In case the current output power
is superior to PPV,best, then PPV,best is updated. At the same time, the optimal
configuration of switch position Pbest is also update. Then, further compare PPV,best
with gPV,best. If PPV,best is superior to gPV,best, then gPV,best is replaced with PPV,best.
Meanwhile, the global optimal configuration of switch position gbest is also updated.

step 5: The positions and velocities of all the particles are updated according to Equations
(1) and (2). The Xk

j indicates the switch positions of particle j at kth iteration.

step 6: Repeat steps 2 to 5 until the maximum number of iterations is reached.
step 7: The malfunction diagnostic block takes the switch control signals (configuration

of switch positions) and the measured output power as inputs and locates and
displays the non-well-operated PV modules on an LED array.

step 8: In case of any change in the state of a malfunction event, go back to step 1 for a new
run. Otherwise, remain idle.
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In the algorithm of fault diagnosis, a particle represents the configuration of switch po-
sition in the Boolean variable. In Figure 1, the configuration of switch positions of S2, S3, S6,
S7, S10, and S11 is presented in Binary form 000000 ~ 111111. Therefore, there are 64 different
switch position configurations. Here, 0 indicates that the switch is at the “OFF” state, and 1
indicates that the switch is at the “ON” state. Four particles are adopted in the algorithm
of fault diagnosis in this paper each of which represents 16 switching states. For example,
the first particle represents one of the position configurations 000000 ~ 001111, while the
second particle represents another one of the position configurations 010000 ~ 011111, etc.
However, in order to facilitate the iteration of a continuous variable in the iterative formula,
the binary switch states are converted to a decimal value.

As for the particles adopted in the maximum power tracking controller, they represent
the output voltages of the PV module array or are equivalent to the duty cycles of the boost
converter. This is also equivalent to the output voltage of the photovoltaic module array.
Because the output voltage of the photovoltaic module can be controlled by changing the
duty cycle of the boost converter, taking the duty cycle of each iteration to control the boost
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converter will control the photovoltaic module array to operate at different voltages and
get different output power until the maximum power point is tracked or the number of
iterations is reached.

5. Experimental Results

A succession of simulations and experiments are conducted on a 334 W 4 series-3
parallel array with SANYO (Moriguchi, Osaka, Japan) HIP2717 PV modules [40] as the
building blocks. The setting of weight value and learning factors in PSO will affect the
success rate and efficiency of maximum power point tracking. If the weight value is
set too small, the moving speed of the particle will be slow, resulting in a multi-peak
problem and failing to precisely skip the local best solution; on the contrary, when the
weight value setting is too large, the particle step is too large when moving, resulting in
failure to precisely search the target function. Thus, the selection of a weight value usually
depends on the target function. In addition, if the learning factor setting is too large, the
iteration time spent increases, resulting in reduced overall tracking efficiency. Therefore,
in consideration of the benefits, C1 and C2 values set must not be too large. Based on
this, according to the suggestion in [39], we select the PSO parameter values shown in
Table 1. The same array configuration as in Figure 1 is used to illustrate the presented
online malfunction diagnostic mechanism.

Table 1. PSO parameter settings.

Parameter Items

Particle amount 4
Cognition learning factor (C1) 1
Social learning factor (C2) 2
Weighting (w) 0.8
Iterations 8

A shaded PV module is known to provide less amount of output current than in
a normal case. Hence, as a way to precisely locate a shaded module on a row basis, a
Hall-effect current sensor is placed at the bottom of each branch, as illustrated in Figure 1.
Each time before a configuration optimization is performed, each branch current is detected
and then sent to the presented online diagnostic module so as to locate the malfunctioning
module. The P–V characteristic curves of PV module arrays under different shading ratios
were measured using an MP 170 I–V checker manufactured by EKO Instruments CO. Ltd.
(Tokyo, Japan) [41].

5.1. Optimized Configurations for Different Shaded Cases
5.1.1. Case 1: A 30% Shaded PV Module in Row 1 (Module 1, 5, or 9)

As a consequence of the switch manipulations, five out of 63 configurations are found
to deliver the same and the maximal amount of output power to the load, according to the
mechanism stated in Section 4. Taking the case of a 30% shadow in module 1 as an instance,
all the possible optimized configurations are presented in a tabular form in Table 2 for
comparison purposes. The same observation applies to the cases with a single partially
shaded module on the same row, but different column. As highlighted in blue in Table 2,
what all the optimized array configurations have in common is that both S1 and S6 are
switched on. A single P–V characteristic curve, as illustrated in Figure 5, is shared by all the
optimized configuration cases. A point worthy of mention is that the peak power plunges
from 334 W in an unshaded case to 262.3 W in this case.



Energies 2021, 14, 598 10 of 19

Table 2. Optimized configurations for different shaded cases.
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5.1.2. Case 2: A 30% shaded PV Module in Row 2 (Module 2, 6, or 10)

The same test as in Case 1 is repeated on the case of a single 30% shaded module
on the second row. The optimized array configurations are presented in Table 2 but not
illustrated for brevity. The position of each switch in Table 2 is indicated in Figure 1. The
highlighted portions in orange indicate that the output power is optimized on a condition
that switches S1, S2, S6, and S7 are switched on. The same P–V characteristic curve as in
Figure 5 is seen again in Figure 6 for this case. The peak power plunges from 334 W in an
unshaded case to 263.4 W in this case.
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Note that 1 and 0 represent the ON and OFF states of a switch, respectively, and the
switches with an always ON state in each case are highlighted. The position of each switch
is indicated in Figure 1.

5.1.3. Case 3: A 30% Shaded PV Module in Row 3 (Module 3, 7, or 11)

The same test as in Cases 1 and 2 is repeated on the case of a single 30% shaded
module on the third row. The optimized array configurations are presented in Table 2, but
not illustrated for brevity. The highlighted portions in gree indicate that the output power
is optimized on a condition that switches S2, S3, S7, and S8 are switched on. The same P–V
characteristic curve as in Figure 5 is seen again in Figure 7 for this case. The peak power
plunges from 334 W in an unshaded case to 266.4 W in this case.
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5.1.4. Case 4: A 30% Shaded PV Module in Row 4 (Module 4, 8, or 12)

The same test as in Cases 1–3 is repeated on the case of a single 30% shaded module
on the fourth row. The optimized array configurations are presented in Table 2, but not
illustrated for brevity. The highlighted portions in purple indicate that the output power
is optimized on a condition that switches S3 and S8 are switched on. The same P–V
characteristic curve as in Figure 5 is seen again in Figure 8 for this case. The peak power
plunges from 334 W in an unshaded case to 265.6 W in this case.
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Hence, it is concluded that a malfunctioning PV module can be located by means
of the switch statuses in an optimized array configuration. As can be found in Table 2,
all the possible optimized configurations for each case are able to be characterized as a
set of switch conditions, say (S1 = S6 = 1) and (S1 = S2 = S6 = S7 = 1) for Cases 1 and
2, respectively. Thus, this close observation gives a diagnostic criterion for PV module
malfunction, formulated as

n + 1 = m (3)

where m represents the row on which a module malfunction event occurs and n denotes
the smallest index among the ON switches. Nevertheless, an additional condition must be
tested whether S2 and S7 are switched on when n = 1 for distinguishing a malfunction in
row 1 from a malfunction in row 2.

The malfunctioning PV module can be accurately located via the combined use of
Equation (3) and each branch current, which is detected by a Hall-effect current sensor, in a
pre-optimized array configuration. The malfunction diagnostic mechanism is illustrated
as follows. For instance, exhibited in Figures 9 and 10 are the pre- and post-optimized
configurations of a 4 series-3 parallel array with a 30% shadow in module 3 (in Case 3),
respectively. As can be seen in Figure 10, S2, S3, S7, and S8 are switched on, meaning that
S2 is the leading switch in ascending order and n = 2 accordingly. A substitution of n = 2
into Equation (3) gives m = 3, meaning that there is a single abnormal event on row 3,
namely, module 3, 7, or 11. If the current in branch 1 is detected as far below the others
in the pre-optimized configuration, then the module on column 1 and row 3 (module 3),
is recognized as malfunctioning and is displayed on an LED array. It must be noted that
this diagnostic mechanism can be directly applied to an arbitrary m series-n parallel array
configuration and is not limited to this case.
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5.2. On-Line Tests of Duo Purpose Mechanism

As discussed in Section 5.1, the presented online malfunction diagnostic mechanism
that was developed for a PV power generation system had been well analyzed by measure-
ment results. This subsection is devoted to the implementation of the online diagnostic
mechanism using a TMS320F2808 digital signal processor (DSP) and a PSO-based MPP
tracker [37,39]. Presented in Figure 11 is a photo of the realized online PSO-based diagnos-
tic apparatus. All the PV modules are built with a user-specified shadow, and field tests
can be conducted on all the cases in the preceding subsection.
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5.2.1. Case 1: Module 1 with a 30% Shadow

The branch current 1, 2, and 3 are detected as 1.16, 1.54, and 1.56 A, respectively, in the
pre-optimized array configuration. Since branch current 1 is far below the other two, there
must be a shaded module on column 1. An array configuration mechanism, as referred
to in Section 4, is enabled, following which the optimized configuration is characterized
as Case 1 in Table 2, that is, S1 and S6 both are switched on, and hence n = 1. A further
condition is found that S2 and S7 are not switched on, and module 1 is diagnosed with the
shadow.

Exhibited in Figure 12 is the measured output waveforms in the progress of an array
configuration optimization. The post-optimized configuration is measured to provide
a maximum output power of 261.9 W, in agreement with the peak value of the P–V
characteristic curve in Figure 5.
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5.2.2. Case 2: Module 6 with a 30% Shadow

The branch current 1, 2, and 3 are detected as 1.59, 1.14, and 1.56 A, respectively in
the pre-optimized array configuration. Since branch current 2 is far below the other two,
there must be a shaded module on column 2. The same array configuration mechanism
as in Case 1 is enabled, following which the optimized configuration is characterized as
Case 2 in Table 2, that is, S1, S2, S6, and S7 are switched on, and hence n = 1. According
to Equation (3), m is found to be 2. In other words, the module on column 2 and row
2, i.e., module 6, is diagnosed with the shadow. Figure 13 exhibits the measured output
waveforms in the progress of an array configuration optimization. The post-optimized
configuration is measured to provide a maximum output power of 262.91 W, in agreement
with the peak value of the P–V characteristic curve in Figure 6.
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5.2.3. Case 3: Module 11 with a 30% Shadow

In Case 3, branch current 1, 2, and 3 are detected as 1.5, 1.49, and 1.15 A, respectively,
in the pre-optimized array configuration. Since branch current 3 is far below the other two,
there must be a shaded module on column 3. The same array configuration mechanism as
in Case 1 is enabled, following which the optimized configuration is characterized as Case
3 in Table 2, that is, S2, S3, S7, and S8 are switched on, and hence, n = 2. A substitution of
n = 2 into Equation (3) gives m = 3. In other words, the module on column 3 and row 3, i.e.,
module 11, is diagnosed with the shadow. Figures 7 and 14 exhibit the P–V characteristic
curve and the measured output waveforms in the progress of an array configuration
optimization. The post-optimized configuration is measured to provide a maximum output
power of 266.2 W, in agreement with the peak value of the P–V characteristic curve in
Figure 6.
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5.2.4. Case 4: Module 8 with a 30% Shadow

In Case 4, branch current 1, 2, and 3 are detected as 1.48, 1.15, and 1.54 A, respectively,
in the pre-optimized array configuration. Since branch current 2 is far below the other two,
there must be a shaded module on column 2. The same array configuration mechanism as
in Case 1 is enabled, following which the optimized configuration is characterized as Case
4 in Table 2, that is, S3 and S8 are switched on, and hence n = 3. A substitution of n = 3 into
Equation (3) gives m = 4. In other words, the module on column 2 and row 4, i.e., module
8, is diagnosed with shadow. Figures 8 and 15 exhibit the P–V characteristic curve and
the measured output waveforms in the progress of an array configuration optimization.
The post-optimized configuration is measured to provide a maximum output power of
265.43 W, in agreement with the peak value of the P–V characteristic curve in Figure 8.
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6. Conclusions

As a preliminary step in this work, the SANYO HIP217 PV module is used to build a 4
series-3 parallel array for testing. By sensing current in each series of photovoltaic module
array, we can judge whether there is a fault in a photovoltaic module array. Once a module
failure occurs, it starts the switch reconfiguration scheme based on the PSO algorithm to
control each switch at the “ON” or “OFF” state. When the switch position configuration of
each particle is changed, a PSO-based global MPP tracker is enabled each time till the MPP
is tracked or the number of iterations is reached. Then, which switch configuration can
obtain the maximum output power among all of the particles is recorded. In this manner,
the malfunctioning module can be identified and indicated on an LED array instantly as
a way to speed up the replacement process for a PV module and as a means to reduce
a business loss accordingly. In the end, the PSO-based online diagnostic mechanism is
implemented using a TMS320F2808 digital signal processor and is experimentally validated
as successful to locate a malfunctioning PV module out of four malfunction cases. In case
of a malfunction occurring to a module, an optimized PV module array operating together
with an MPP tracker turns out to provide a 4–6% improvement in the output power relative
to an unoptimized counterpart. More importantly, the online diagnostic mechanism is
presented as a way to efficiently recognize and then replace a malfunctioning PV module
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for maintenance staff, such that the maximum output power operation can be resumed as
soon as possible in practical operations.

Indeed, it is possible for two or more modules to fail at the same time. Nevertheless, so
far there is no way to automatically detect the faults of two or more modules simultaneous
in the world unless an unmanned aerial vehicle (UAV) or manpower is used to detect them
on site. However, it will increase the cost of detection. Because the current flow direction is
very complex when two or more modules break down simultaneously, it will be impossible
to find a regular way to determine the location of the module fault in a short period of
time. In the next stage of research, the authors will focus on fault detection on two or
more modules.
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