
energies

Article

Interval Load Flow for Uncertainty Consideration in Power
Systems Analysis

Wallisson C. Nogueira 1 , Lina Paola Garcés Negrete 1 and Jesús M. López-Lezama 2,*

����������
�������

Citation: Nogueira, W.C.; Garcés

Negrete, L.P.; López-Lezama, J.M.

Interval Load Flow for Uncertainty

Consideration in Power Systems

Analysis. Energies 2021, 14, 642.

https://doi.org/10.3390/en14030642

Academic Editor: Teuvo Suntio

Received: 3 January 2021

Accepted: 21 January 2021

Published: 27 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Electrical, Mechanical and Computer Engineering School, Federal University of Goiás, Av. Universitária
No. 1488, Goiânia 74605-010, Brazil; walli.calixto@gmail.com (W.C.N.); lina_negrete@ufg.br (L.P.G.N.)

2 Grupo en Manejo Eficiente de la Energía (GIMEL), Departamento de Ingeniería Eléctrica, Universidad de
Antioquia (UdeA), Calle 70 No. 52-21, Medellín 050010, Colombia

* Correspondence: jmaria.lopez@udea.edu.co; Tel.: +57-3008315893

Abstract: Modern power systems must deal with a greater degree of uncertainty in power flow
calculation due to variations in load and generation introduced by new technologies. This scenario
poses new challenges to power system operators which require new tools for an accurate assessment
of the system state. This paper presents an interval load flow (ILF) approach for dealing with
uncertainty in power system analysis. A probabilistic load flow (PLF), based on Monte Carlo
Simulation (MCS), was also implemented for comparative purposes. The ILF and PLF are used to
estimate the network states. Both methods were implemented in Python® using the IEEE 34-bus,
IEEE 69-bus and 192-bus Brazilian distribution system. The results with the proposed ILF on the
aforementioned benchmark test systems proved to be compatible with that of the MCS, evidencing
the robustness and applicability of the proposed approach.

Keywords: uncertainty; probabilistic load flow; interval load flow; Monte Carlo Simulation

1. Introduction

Electric power systems (EPS) play a key role in modern societies since they enable
the use of technology and provide electricity to homes and industries. Nonetheless, their
proper functioning can only be guaranteed if they count with the right set of tools for their
operation and planning. Within these studies, the most common analysis is the power flow
or load flow calculation, which can be carried out by several well-known techniques [1].
Nonetheless, the main drawback of these techniques is that their results are as accurate as
their input data [2]. Inaccuracies in power flow data may be due to measurement errors,
inexact forecasts, or assuming the load with some limits or unscheduled interruptions [3].

The current political and economic situation of the electricity industry is increasingly
encouraging the use of distributed energy resources (DER) which include small-scale
generation units that are located on the consumer’s side of the meter, storage devices
and demand respond. Therefore, the role of customers is progressively changing and
adapting, becoming more active. Within this context, the load models adopted for power
flow calculation must also adapt to characterize new uncertainties [4]. Interval analysis
can be seen as an effective tool to take into account this type of uncertainties within power
flow studies. In this case, the load is modeled through a set of values ranging from the
smallest to the largest possible one; and therefore, nodal voltages, losses and power flows
are calculated in an interval way [5–9]. This approach is known as Interval Load Flow (ILF).

To calculate an ILF it is necessary to use mathematical tools that guarantee its con-
vergence. This may be done through the Newton Intervalar method [10] as well as with
the Krawczyk method [11], which finds the solution of the interval system within a given
tolerance.

In [8], an optimal distribution planning model is proposed with the addition of uncer-
tainties via ILF, where the interval results are used as merit functions for an optimization
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algorithm. In addition to the ILF, interval mathematics are also used to add uncertainty to
other problems, such as state estimation and short circuit calculations [12].

Another approach for adding uncertainties is through the Probabilistic Load Flow
(PLF) [2,3], where loads are modeled through their probability distribution functions. Sev-
eral works have proposed mathematical methods to solve this problem. The Monte Carlo
Simulation (MCS) approach is the most widely used method for solving the PLF. This
method consists of the solution of several deterministic load flows with random variations
in their parameters, based on their probability density functions; thus, if the sample of
results is large enough, a highly accurate result can be obtained [13]. Probabilistic uncer-
tainties can also be evaluated with other methods such as Polynomial Chaos Expansion
(PCE), which is able to work in a non-intrusive way and exhibits a high performance in
stochastic modeling of random variables and processes [14].

ILF has proven to be an effective tool when dealing with uncertainties. In [15], the
authors implemented an ILF analysis considering interval output of wind farms with
the aim of providing accurate ranges of the power grid variables which can be used
by the system operator to guarantee security of the power system. In [16], an affine
arithmetic-based power flow algorithm is proposed to take into account regional control of
unscheduled power fluctuations. The authors in [17] propose an ILF based on multi-stage
affine arithmetic which is applied to an unbalanced distribution network to address the
influence of distributed generation and load uncertainty. In [18], a hybrid probabilistic and
interval load low is proposed by means of a clustering-based analytical method. In this
case, the uncertainties of random and interval variables are simultaneously considered.
The authors in [19] propose an ILF by means of the optimizing-scenarios method. In this
approach, the interval uncertainties are considered as variables with varying bounds, and
the objective function is set to calculate these unknown variables. In [20] the authors
proposed an ILF based on the Taylor inclusion function, while in [21] an ILF approach
with correlated uncertain power injections is presented. Other variants of the ILF are also
proposed in [22,23].

The main objective of this paper is to employ the ILF and analyze its performance
in calculating the states of the electrical network for benchmark distribution systems
comparing the result with that of a conventional MCS where the same networks are
analyzed with their load modeled by a function of uniform probability density over the
same range of the interval load. Therefore, the main contributions of this work can be
described as follows: (i) an exemplified and straightforward calculation methodology
of the ILF is presented, (ii) a comparison of the proposed ILF with MCS is performed
and, (iii) a sensibility analysis is carried out regarding the input variables of the ILF and
its convergence.

The structure of this paper is as follows: In Section 2, basic concepts of Interval
Arithmetic are presented. Section 3 presents, in detail, the methodology for the ILF. The
main results of the ILF and its comparison with MCS are presented in Section 5. Finally,
the conclusions of the work are presented in Section 6.

2. Interval Arithmetic

Interval arithmetic is based on operations using real intervals. So, a given variable X
can be defined as X = [x1, x2] = {x ∈ R, x1 ≤ x ≤ x2}. Within this interval, the midpoint,
diameter and radius properties can be defined as follows [24]:

Mid(X) =
1
2
(x1 + x2) (1)

Diameter(X) = x2 − x1 (2)

Radius(X) =
Diameter(X)

2
(3)
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Given the interval variables X = [x1, x2] = {x ∈ R , x1 ≤ x ≤ x2} and Y = [y1, y2] =
{y ∈ R , y1 ≤ y ≤ y2}, arithmetic operations are defined for intervals as follows [24,25]:

X + Y = [x1 + y1, x2 + y2] (4)

X−Y = [x1 − y1, x2 − y2] (5)

X ·Y = [min(x1y1,x1y2, x2y1, x2y2), max(x1y1,x1y2, x2y1, x2y2)] (6)

X
Y

= [x1, x2]

[
1
y1

,
1
y2

]
if 0 /∈ [y1, y2] (7)

The methodology for the evaluation of the ILF requires the solution of an analytical
load flow, which is named in this paper as a deterministic load flow. From the input values
corresponding to deterministic net injected powers and bus voltages (magnitudes and
angles) obtained as solution of the deterministic load flow, the interval values of the net
injected powers as well as the magnitudes and angles of the bus voltages are established.

Thus, the convergences of the intervals are analyzed according to the variations of the
pre-established diameters. The intervals of the bus voltages are reduced by the Krawczyk
method, which in this case consists on the application of the Krawczyk operator [11] at
each iteration of the algorithm, as indicated in (8). The Krawczyk operator returns interval
values that must be intersected with the current values to reduce overestimation of the
interval variables.

K
(

xh, Xh
)
= xh − C f

(
xh
)
+
(

I− C J
(

Xh
))(

Xh − xh
)

(8)

In this case, X is a real interval, x is the midpoint of X, f(x) is the value of the nonlinear
function at point x, J(X) is the Jacobian of the nonlinear function calculated in the range
X, C is the matrix of preconditioning which is equal to the Jacobian inverse calculated at
the midpoint of X, I is the identity matrix and h is the current iteration. X is the vector
of the modules and angles of the interval bus voltages. The main advantage of using the
Krawczyk operator is that there is no need to solve a linear system.

3. Interval Load Flow

The most conventional method for solving the load flow problem is the formulation of
the power injected at each bus in its polar form [7]. Interval analysis is useful for modeling
uncertainties in numerical analyzes [11]; thus, it is used in conjunction with the polar
formulation of the Newton-Raphson power flow to create what is called an ILF.

3.1. Algorithm Description

The main steps for obtaining a solution to the power flow considering interval vari-
ables are described below.

Step 1: Obtain the bus voltages using a deterministic load flow. In this work, the
deterministic load flow corresponds to the solution of the power flow through the Newton-
Raphson method with input variables fixed in their deterministic values, i.e., power
injections (load and generation) fixed in its predicted maximum values.

Step 2: Define the percentage of variation of demands and calculate their respective
interval values according to (9) and (10):

Pci
k = Pc d

k [1− α, 1 + α] (9)

Qci
k = Qc d

k [1− α, 1 + α] (10)

where Pc d
k and Qc d

k are the values of the deterministic active and reactive loads, respec-
tively, at bus k, α is the demand percentage variation and Pc i

k and Qci
k are the interval

values of the active and reactive loads, respectively. It is worth mentioning that in this
work, the interval representation is only considered for loads; nonetheless, the logic of
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Equations (9) and (10) can be extended for an interval representation of the generation,
if necessary.

Step 3: Calculate the expected interval power through the expected deterministic
power and the interval load calculated in (9) and (10), as given by (11) and (12).

Pi
expk

= Pd
expk
− Pcd

k + Pci
k (11)

Qi
expk

= Qd
expk
− Qcd

k + Qci
k (12)

where Pd
expk

and Qd
expk

are, respectively, the active and reactive expected power at bus k
used in the deterministic load flow, while Pi

expk
and Qi

expk
are, respectively, the interval

active and reactive expected power at bus k.
Then, the interval mismatches for the initialization of the bus voltages magnitude and

angles can be calculated. The interval mismatches must be obtained with the calculated
deterministic powers and the expected interval powers, using expressions (13) and (14) as
indicated in [26].

∆Pi
k = Pi

expk
− Pd

calck
(13)

∆Qi
k = Qi

expk
− Qd

calck
(14)

where Pd
calck

and Qd
calck

are the calculated deterministic active and reactive power at bus k,

while ∆Pi
k and ∆Qi

k are the interval values of the mismatches at bus k, respectively.
Thus, the interval increments of the bus voltages magnitudes and their respective

angles are calculated from the Jacobian matrix of the last iteration of the deterministic
power flow and the interval mismatches (∆Pi and ∆Qi) as given by (15).[

∆θi

∆Vi

]
= [Jac]−1

[
∆Pi

∆Qi

]
(15)

where ∆Pi and ∆Qi are the vectors of interval mismatches of active and reactive power,
respectively. Also, [Jac] is the jacobian matrix of the last iteration of the deterministic load
flow and ∆θi and ∆Vi are the interval increments of the angles and magnitudes of bus
voltages, respectively. Then, the interval voltage magnitudes and phase angles can be
calculated using the deterministic solution and the interval increments indicated in (16).[

θi

Vi

]
=

[
θd

Vd

]
+

[
∆θi

∆Vi

]
(16)

where θd and Vd are respectively the vectors of the deterministic solution of voltage phase
angles and magnitudes, while θi and Vi are the vectors of interval values of voltage phase
angles and magnitudes, respectively.

Step 4: Obtain the interval active and reactive power calculated using the admittance
matrix of the system as well as the current interval magnitudes and angles of the buses
voltages, as described in (17) and (18) and, thus recalculate the power mismatches, as pro-
posed by [26]. Note that these equations are similar to those in the deterministic load flow,
only now the variables of the problem are replaced by their respective interval variables.

Pi
calck

=
∥∥∥V̇i

k

∥∥∥2
Gkk +

∥∥∥V̇i
k

∥∥∥ k

∑
m ε Ωk

∥∥∥V̇i
m

∥∥∥(Gkmcos
(

θi
k − θi

m

)
+ Bkm sin

(
θi

k − θi
m

))
(17)

Qi
calck

= −
∥∥∥V̇i

k

∥∥∥2
Bkk +

∥∥∥V̇i
k

∥∥∥ k

∑
m ε Ωk

∥∥∥V̇i
m

∥∥∥(Bkmcos
(

θi
k − θi

m

)
+ Gkm sin

(
θi

k − θi
m

))
(18)

where
∥∥∥V̇i

k

∥∥∥ and
∥∥∥V̇i

m

∥∥∥ are the interval voltage magnitudes at buses k and m, respectively.

Also, θi
k and θi

m are the interval voltage angles at buses k and m, respectively. Gij and Bij
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are respectively the real and complex components of Yij of the system admittance matrix
and Pi

calck
and Qi

calck
are, respectively, the interval active and reactive calculated powers.

Thus, the interval mismatches of active and reactive power are updated according to (19)
and (20) [26]:

∆Pi
k = Pi

expk
− Pi

calck
(19)

∆Qi
k = Qi

expk
− Qi

calck
(20)

Step 5: Apply the Krawczyk operator according to (8), where the variables will assume
the following values:

Xh =

[
θi

Vi

]
(21)

xh = Mid(Xh) (22)

f(xh) = Mid
( [

∆Pi

∆Qi

])
(23)

Step 6: Update the interval increments for the voltage magnitudes and angles through
the intersections between the interval voltages in the previous iteration and the voltage
obtained by the Krawczyk operator as indicated in (24).[

θi

Vi

]h+1

=

[
θi

Vi

]⋂
K
(

xh, Xh
)

(24)

Step 7: Check if the greater radius variation of the interval magnitude and angle of the
bus voltages between the iterations is less than the specified tolerance, if yes, the interval
power flow has converged; otherwise, return to step 5.

3.2. Illustrative Example

A detailed explanation of the ILF algorithm using a didactic 3-bus system, shown in
Figure 1, is presented. In this figure, the line impedances are in ohms, the loads are in MVA
and the bus voltages are in per-unit (p.u). This system has a base power of 1 MVA and a
base voltage of 23 kV. In Figure 1, the state variables obtained trough a deterministic load
flow in each bus are shown. These calculations correspond to those described in Step 1 of
Section 3.1. The Jacobian matrix of the last iteration of the deterministic load flow for this
system corresponds to:

[
Jac
]
=



1020 −1175.96 0.0 354.39 −349.20 0.0
−1174.55 2045.74 −871.19 −353.49 369.47 −19.22

0.0 −871.14 871.14 0.0 −21.15 19.20
−348.76 348.76 0.0 1020 −1177.47 0.0
353.49 −372.68 19.19 −1174.55 2047.45 −872.67

0.0 21.12 −21.12 0.0 −872.26 871.95


The Jacobian matrix was considered in its full form. Therefore, high values in the order

of 1020 were assumed in the main diagonal corresponding to the slack bus, because in this
bus the magnitude and phase angle voltage are fixed in 1.0 p.u and 0 degrees, respectively,
and thus iterative updating of these variables is not necessary.



Energies 2021, 14, 642 6 of 14

Figure 1. Didactic 3-bus distribution system.

A percentage variation of 5%, i.e., α = 5%, is assumed for the loads of the system to
define the interval values, as presented in Step 2, for Pi

c and Qi
c as:

[
Pi

c
]
=

 [0, 0]
[1.747, 1.932]
[0.931, 1.029]


[
Qi

c
]
=

 [0, 0]
[0.437, 0.483]
[0.323, 0.357]


Next, the interval increments of the bus voltages magnitudes and angles must be

calculated, as stated in the Step 3 of the ILF algorithm. For this, the interval mismatches of
active and reactive powers at each bus are obtained as:

[
∆Pi

∆Qi

]
=



[0, 0]
[−0.092, 0.092]
[−0.049, 0.049]

[0, 0]
[−0.023, 0.023]
[−0.017, 0.017]


Using the interval mismatches of the power loads and the Jacobian Matrix, the interval

increments of the bus voltages magnitudes and their respective angles are computed as:

[
∆θi

∆Vi

]
=



[0, 0]
[−0.0001, 0.0001]
[−0.0002, 0.0002]

[0, 0]
[−6.454, 6.454]
[−8.541, 8.541]


Using the interval increments of the bus voltages, the interval voltage magnitudes

and phase angles are obtained, using Equation (16), as:

[
θi

Vi

]
=



[0, 0]
[−0.0021,−0.0019]
[−0.0033,−0.0029]

[1, 1]
[0.9986, 0.9987]
[0.9982, 0.9984]
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The interval mismatches of the active and reactive power are updated as presented
in Step 4 of the ILF algorithm. For this illustrative example, the updated mismatches
correspond to:

[
∆Pi

∆Qi

]
=



[0, 0]
[−0.02116639, 0.02116643]
[−0, 0006336, 0, 0006334]

[0, 0]
[−0.0065334, 0.0065332

[−0.00001280, 0.00001275]]


Then, the Krawczyk operator must be applied as shown in Step 5 of the algorithm.

The values for xh and f(xh) are calculated using Equations (22)–(24), obtaining:

xh =



0
−0.00202
−0.00313

1
0.9987
0.9983



f(xh) =



0
1.91684
−6.23102

0
−4.98810
−2.20536

 × 10−8

Following the calculations presented in Step 6, the updated values for the voltage
magnitudes and angles are obtained as:

[
θi

Vi

]h+1

=



[0, 0]
[−0.00216,−0.00215]

[−0.0031314,−0.0031309]
[1, 1]

[0.9987137, 0.9987141]
[0.9982975, 0.9982977]


The convergence of the ILF algorithm is check as stated in Step 7. As the obtained

maximum radius variation is 8.52 × 10−5 in the Vi
k of the bus 3, the convergence of the ILF

is reached.

4. Probabilistic Load Flow

The PLF was proposed in 1974 [3] and can be solved analytically, as in [2,3,27], numer-
ically as presented in [28] or through a hybrid approach as presented in [2].

The numerical simulation can be performed using the MCS method. In this case, the
probability density functions of each of the parameters that are considered as random
variables are sampled to proceed with the simulation. The simulation and sampling must
be carried out many times so that, with a large sample of input variables, a good result
is obtained.

In the MCS performed, uniform probability density functions were adopted for the
active and reactive loads varying between P+ and P− for active load, and between Q+ and
Q− for reactive power load as illustrated in Figures 2 and 3. In this case, P+, P−, Q+ and
Q− are given by equations (25) to (28).

P+
k = Pc d

k (1 + α) (25)
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P−k = Pc d
k (1− α) (26)

Q+
k = Qc d

k (1 + α) (27)

Q−k = Qc d
k (1− α) (28)

Figure 2. Uniform Probability Density Distribution for Active Power.

Figure 3. Uniform Probability Density Distribution for Reactive Power.

Thus, a large number of samples are carried out in order to ensure that most of the
probable values are obtained in the simulation.

5. Test and Results

A program capable of calculating the deterministic power flow using the Newton-
Rapshon method [26] with sparse techniques [29] was developed in Python® and then the
IPF was processed as indicated in Section 3.

Medium voltage distribution circuits with radial topologies were simulated with a
variation of 5% in the load with a stopping criteria of a variation in the radius of 10−4

between iterations.
Although probabilistic and interval variables are different concepts (interval repre-

sentation is typically non-probabilistic) [14], the results of the IPF were compared with
those of a MCS. For this, the probabilistic load flow was run with a high number of draws
to obtain the maximum and minimum values of the simulated quantities, so that results
could be compared with the intervals obtained by the interval power flow. Also, a uniform
probability distribution was used in the MCS to make the probabilistic approximation
closer to the interval, since all the values contained within it are equally representative for
the result. In this case, 3000 drawings were used to verify the adherence of the method
in the 34-bus and 69-bus test systems and with 30,000 drawings for the 192-bus system.
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Uniform probability density functions for the net injected power at buses were considered
in the MCS, their loads varying by the same percentage as in the ILF.

5.1. IEEE 34-Bus Radial TEST System

The data of this system can be found in [30]. The base values considered are 1000 kVA
and 11 kV. The 34-bus system has a total active power demand of 4636.5 kW and total
reactive power of 2885.5 kvar. The minimum and maximum values of voltage magnitude
at the buses, obtained by a deterministic load flow are 1.0 p.u and 0.942 p.u, respectively.

Tables 1 and 2 show the results of the phase angle and magnitude voltages, respectively,
calculated by the ILF and MCS for a variation in the radius of 10−4. Note that the results
are shown only for some representative buses of the system. In these tables, the lower and
upper values refer to the lower and upper limits of the intervals and, the deterministic
values correspond to those obtained trough the execution of the deterministic power flow.

In this test system, the largest variation of the voltage magnitude around the deter-
ministic result with the MCS is 0.88% at bus 27 and the smallest variation is 0.07% at bus 2.
For the ILF the largest variation is 0.33% at bus 27 and the smallest one is 0.03% at bus 2.
Regarding phase angles the largest variation around the deterministic result for the MCS
and ILF are 34.75% and 25.11%, respectively both at bus 2; while the smallest variation for
MCS and ILF are 21.32% and 12.54%, respectively at bus 33.

Table 1. Phase Angle—IEEE 34-bus test system.

Bus Method Lower Angle (°) Upper Angle (°) Deterministic Angle (°)

5 MCS 0.23615 0.35810 0.31588

ILF 0.26275 0.36900

9 MCS 0.48285 0.67387 0.61611

ILF 0.53320 0.69891

23 MCS 0.70353 1.00872 0.90243

ILF 0.78490 1.01959

27 MCS 0.79289 1.13820 1.00895

ILF 0.88240 1.13499

33 MCS 0.52957 0.72857 0.66792

ILF 0.58067 0.75503

Table 2. Voltage Magnitude—IEEE 34-bus test system.

Bus Method Lower Mag-
nitude (p.u.)

Upper Magni-
tude (p.u.)

Deterministic Magnitude (p.u.)

5 MCS 0.97556 0.97868 0.97603

ILF 0.97479 0.97729

9 MCS 0.96113 0.96639 0.96197

ILF 0.95999 0.96396

23 MCS 0.94417 0.95144 0.94601

ILF 0.94318 0.94885

27 MCS 0.93963 0.94997 0.94166

ILF 0.93861 0.94474

33 MCS 0.95896 0.96466 0.95992

ILF 0.95784 0.96201
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For this system a sensibility analysis was done by changing the percent variation of the
loads from 5% to 20% with steps of 5%. Figure 4 depicts the radius of the voltage magnitude
and Figure 5 illustrates the radius of the phase angle for each simulated scenario.

Figure 4. Radius of the Voltage Magnitude.

Figure 5. Radius of the Phase Angle.

As expected, with the increase of the percentage variation on the loads, the radius of
the result variables became larger.

5.2. IEEE 69-Bus Distribution Network

The data of this system can be found in [31]. The base values considered are 100 kVA
and 12.66 kV. The 69-bus system has a total active power demand of 3802.19 kW and total
reactive power of 2694.60 kvar. The minimum and maximum values of voltage magnitude
at the buses, obtained by a deterministic load flow are 1.0 p.u and 0.909 p.u, respectively.

Tables 3 and 4 show the results of the state variables calculated by ILF and MCS for
a radius of 10−4.

For the IEEE 69-bus test system, the largest variation at the voltage magnitude around
the deterministic result with the MCS is 2.61% at bus 65 and the smallest one is 0.002% at
bus 29. For the ILF the largest variation is 0.55% at bus 65 and the smallest one is 0.001% at
bus 29. Regarding phase angles the largest variation around the deterministic result for
MCS and ILF are 307.45% and 116.08%, respectively, both at bus 32; while the smallest
variation for MCS and ILF are 21.32% at bus 4 and 21.5% at bus 37, respectively.
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Table 3. Phase Angle—IEEE 69-bus test system.

Bus Method Lower Angle (°) Upper Angle (°) Deterministic Angle (°)

2 MCS −0.00140 −0.00089 −0.00122

ILF −0.00133 −0.00223

29 MCS −0.00587 −0.00421 −0.00530

ILF −0.00578 −0.00482

48 MCS −0.06559 −0.03440 −0.05247

ILF −0.05724 −0.04770

54 MCS 0.00461 0.37110 0.19470

ILF 0.12409 0.26530

63 MCS 0.33813 187.126 112.526

ILF 0.90650 134.402

Table 4. Voltage Magnitude—IEEE 69-bus test system.

Bus Method Lower Magnitude (p.u.) Upper Magnitude (p.u.) Deterministic Magnitude (p.u.)

2 MCS 0.99996 0.99997 0.99996

ILF 0.99996 0.99997

29 MCS 0.99984 0.99987 0.99985

ILF 0.99984 0.99986

48 MCS 0.99840 0.99883 0.99854

ILF 0.99847 0.99980

54 MCS 0.96770 0.97738 0.97141

ILF 0.96985 0.97296

63 MCS 0.89464 0.93411 0.91165

ILF 0.90679 0.91652

5.3. 192-Bus Brazilian Distribution Network

The data of this system can be found in [32]. The base values are 100 kVA and 13.8 kV.
The 192-bus system has a total active power demand of 6031 kW and reactive power of
2124 kvar. The minimum and maximum values of voltage magnitude at the buses, obtained
by a deterministic load flow are 1.0 p.u and 0.955 p.u, respectively.

Tables 5 and 6 show the results of the state variables calculated by ILF and MCS for
a variation in the radius of 10−4.

For this system, the largest variation at the voltage magnitude around the deterministic
result with the MCS is 0.37% at bus 51 and the smallest one is 0.01% at bus 2. For the
ILF the largest variation is 0.25% at bus 51 and the smallest variation is 0.01% at bus 2.
Regarding phase angles, the largest variation around the deterministic result for MCS and
ILF are respectively 13.33% at bus 94 and 14.81% at bus 54, while the smallest variation for
MCS and ILF are respectively 12.11% at bus 2 and 14.53% at bus 55.
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Table 5. Phase Angle—192-bus Brazilian distribution network.

Bus Method Lower Angle (°) Upper Angle (°) Deterministic Angle (°)

8 MCS −0.24610 −0.21364 −0.24170

ILF −0.27692 −0.20648

36 MCS −0.90111 −0.76996 −0.87943

ILF −100.956 −0.75299

64 MCS −0.44769 −0.38699 −0.43892

ILF −0.50307 −0.37477

113 MCS −0.86144 −0.73693 −0.84702

ILF −0.97206 −0.72197

187 MCS −0.91812 −0.78600 −0.89612

ILF −102.858 −0.76365

Table 6. Voltage Magnitude—192-bus Brazilian distribution network.

Bus Method Lower Magnitude (p.u.) Upper Magnitude (p.u.) Deterministic Magnitude (p.u.)

8 MCS 0.98727 0.98888 0.98795

ILF 0.98732 0.99176

36 MCS 0.95602 0.96027 0.95686

ILF 0.95461 0.95911

64 MCS 0.97824 0.97994 0.97827

ILF 0.97713 0.97939

113 MCS 0.95754 0.96171 0.95849

ILF 0.95632 0.96066

187 MCS 0.95603 0.95959 0.95612

ILF 0.95612 0.95842

As shown in Tables 1–6, it can be seen that there is an intersection between the ranges
of results obtained through the MCS and the ILF for voltage magnitudes and phase angles
in all buses. It is also evident that the MCS and ILF intervals contain the deterministic
power flow solution for all cases.

6. Conclusions

Nowadays, power and distribution systems must deal with greater degrees of uncer-
tainty not only related to new generation technologies but also to variations in the demand
side. In this context, system operators are in constant search of new tools for power system
analyses. This paper contributes in the analysis and discussion of such tools by proposing
an ILF approach that takes into account uncertainties in demand. A step-by-step straightfor-
ward methodology for calculating an ILF based on the polar form of the Newton-Rapshon
method is presented. Furthermore, a comparison of the proposed approach with a MCS is
carried out along with a sensibility analysis regarding the input variables of the ILF and its
convergence for several benchmark test systems. It was found that with small variations
in loads, the ILF presents results as good as those produced by MCS, but with a reduced
computational effort. As the operation and planning of electrical energy systems are based
on the supply of the load, which in turn is endowed with uncertainties, it can be concluded
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that the use of the ILF as a methodology for the evaluation of the performance of energy
systems is satisfactory and recommended in power flow analyses.
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