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Abstract: The paper presents the novel HF-GEN method for determining the characteristics of Elec-
trical Appliance (EA) operating in the end-user environment. The method includes a measurement
system that uses a pulse signal generator to improve the quality of EA identification. Its structure
and the principles of operation are presented. A method for determining the characteristics of the
current signals’ transients using the cross-correlation is described. Its result is the appliance signature
with a set of features characterizing its state of operation. The quality of the obtained signature is
evaluated in the standard classification task with the aim of identifying the particular appliance’s
state based on the analysis of features by three independent algorithms. Experimental results for
15 EAs categories show the usefulness of the proposed approach.

Keywords: NILM; signature; load disaggregation; transients; pulse generator

1. Introduction

The Non-Intrusive Appliance Load Monitoring (NIALM or NILM) [1] is a solution for
the problem of collecting electrical energy consumption data more accurately than using
only typical electricity meters. The methodology (also known as energy disaggregation [2])
is used for power systems analysis, in which demand for energy continuously increases.
The purpose of the appliances’ load identification is to provide information about the
energy consumption of individual devices. This may lead to a decrease in electricity
consumption and suppressing environmental pollution [3]. According to [4] the application
of NIALM approaches might lead to a reduction of household energy consumption by
at least 12%. Another potential application is the diagnostics of electrical appliances [5],
like monitoring device degradation or detecting supply network’s state in the presence of
external disturbances, like voltage spikes, insulation decrease, etc. In the NILM architecture,
measurements are done close to the energy meter, in contrast to intrusive systems where
every socket or device is equipped with a suitable sensor [6]. When new appliances are
plugged into such systems, the measurement hardware is not expanded. Acquired values
are typically aggregated currents and voltages [7]. Characteristic features allowing for the
identification of a particular Electrical Appliance (EA) are obtained individually during
training in the specific deployment location.

Over the past 20 years, the topic was widely explored [7–11]. Public databases were
prepared to allow for the verification of new approaches [12–14]. The main achievements
are summarized, for instance, in [15].

The taxonomy of NILM methods considers multiple criteria. Firstly, they can be
classified based on the frequency of the measured signals [7,8]. In [16] four types of
frequency-based methods were identified: LF (Low Frequency), MF (Medium Frequency),
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HF (High Frequency), and EHF (Extra-High Frequency). The first one exploits the RMS
of the current and voltage waveform or the amplitude of its first harmonic collected with
the sampling frequency from below one to several Hz. The MF approach processes signal
samples collected with a frequency from 1 kHz to dozens of kHz. The HF method operates
on transients collected with a sampling frequency from dozens of kHz to several dozens of
MHz. Finally, EHF methods operate on sampling frequencies above a dozen of MHz. The
latter group was not investigated so far.

The second taxonomy criterion [10,11], is the moment of the appliance analysis. These
can be steady-state (SS) or transient state (TS), depending on whether the waveforms are
sampled during the state change or after it is already done and no transients are present
in the signals. The SS-LF methods are currently the most popular because of the low cost
of sensors [17] and the simple mathematical apparatus required to process data with low
computational power requirements [18].

The frequency of the measured signals determines features characterizing the ana-
lyzed devices. For SS-LF methods the most commonly used parameters are the average
power [19–24], reactive power [25,26], and power factor [19]. The SS-MF methods work
with the amplitude [27] and phase [28] of the subsequent current harmonics. Power charac-
teristics may be considered as well [3]. The real and imaginary parts of the current odd
harmonics were used in [29]. In SS-HF approaches, disturbances not being harmonics of
the fundamental component of the power grid (i.e., 50 Hz or 60 Hz) are analyzed. For
example, it can be EMI noise specific for different electronic appliances [30].

Some electrical devices, when turned on, generate a short-term current pulse with
an amplitude significantly exceeding their nominal supply current [31]. These transients
can be used to identify the EA state [32]. Approaches using such features belong to the
TS-HF group. In [32], the fundamental voltage component was filtered, from which the
frequency components of the disturbances appearing at the moment of switching on the
device were extracted. In [33], voltage harmonics were eliminated using Notch filters, and
then the signal was analyzed using Wavelet Transform (WT). In [34] the current of devices
in the transient states was recorded with the 100 kHz sampling frequency. The model of the
transient state was created on the basis of the currents collected when turning the EA on.
The energy spectra calculated using WT were used in [34]. Next, the energy distribution in
the subbands was used to identify appliances.

The areas of HF and EHF methods, although more challenging, especially from the
data acquisition point of view, rely on phenomena that cannot be observed at lower
sampling rates. These give possibilities of distinguishing between different appliances, as
is shown in this paper.

During our previous research [35], it was discovered that parameters of electrical
signals related to the operation of a particular EA depend on other devices operating in
the network at the same time. As a result, the set of devices working in the background
determines features extracted from the waveforms. Such a phenomenon can be used to
identify states of individual EAs.

To verify the practical application of the presented phenomenon, the HF-GEN method
was developed. It includes a measurement system acquiring the supply current signal,
complemented by the known impulse signal generator. To detect changes in the impulse
parameters it is necessary to use the time-frequency analysis, which allows for comparing
impulse signals generated when different loads are switched on. The paper also presents
the data processing method used for EAs identification, based on cross-correlation of the
reference signal with the analyzed signal.

The outline of the paper is as follows. Section 2 presents the method of determining
the characteristics of EA. Section 3 contains the quality assessment method. Section 4
covers experimental results, while Section 5 holds conclusions and future prospects.
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2. HF-GEN Method for Determining the Characteristics of EA

Known methods exploiting the analysis of the transient currents and voltages during
the appliance’s state change are still a minority. Most EA identification algorithms rely on
the characteristic features determined in steady states of operation. The transient signal
is a result of changing the state of the device (for instance, by turning it on). Electrical
signals recorded at the moment of the transient state change must be analyzed. The key
to detecting the EA state change is to find proper features of the impulse signal. They
should clearly distinguish impulse signals appearing as a result of changes in the states
of various EAs. Two problems emerge that significantly limit the applicability of such
approaches. First, EAs are switched on with a random voltage phase, so the transient states
of the examined EAs also have the random voltage phase. Secondly, EAs in the background
influence parameters of the transient signals. Both factors affect the shape of the analyzed
impulse and make assigning the specific transient to a device difficult.

In the HF-GEN method, the generated current pulse signal is introduced into the
tested power network circuit. The analyzed impulse is therefore the effect of a deliberately
created transition state, not related to any EA. The pulse is generated many times at
regular intervals. When the EA state changes, the pulse shape also changes, because it is
characteristic of the particular EA. Detection of the EA state change consists of observing
corresponding changes in the pulse features, which form the EA signature. The latter
should unequivocally identify the specific EA. The principle of the HF-GEN method is
illustrated in Figure 1. The pulse shape changes between the appliance’s “on” and “off”
states.
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The following were the experiments’ assumptions:

• the analysis covers impulse signals generated by the same source,
• the source of transients is a pulse signal generator connected to the tested power

network,
• the pulse signal appears in a specific phase of the supply voltage,
• a pulse signal is produced at regular intervals,
• the maximum frequency of measured signals is 15 MHz.

The purpose is to find changes in the pulse signal caused by the load change in the
supply circuit. The load on the power circuit depends on the set of EAs connected to
it. Characteristics of the impulse signal are related to the specific EA, therefore enabling
identification of the moment when the particular device is turned on. The block diagram
of the HF-GEN method is shown in Figure 2. The first step is the generation of the impulse
signal. The generator detects the supply voltage phase and then inputs the pulse signal
to the LV (Low-Voltage) circuit. In the second step, the pulse current is measured with
the sampling frequency of 30 MS/s. The acquired samples are processed to select their
subset acquired during 4 ms after the pulse detection. Next, cross-correlations between the
samples’ vector and transients patterns stored in the dictionary are calculated. A signature



Energies 2021, 14, 673 4 of 26

characterizing the pulse signal is then prepared. Finally, the signature quality is determined.
Subsequent steps are presented in detail in the sections below.
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2.1. Pulse Signal Generation

The block diagram of the pulse signal generator with two connectors/ports is shown
in Figure 3. The first one, the input and output port (I/O), is connected to the tested circuit
of the power network with a voltage of 230 V and a frequency of 50 Hz. This port is marked
as input (I) because it is used to supply the generator with voltage. It is also treated as the
output port (O), because of providing the impulse current signal to the power network. The
O-SYN port is used to get the synchronization signal outside the generator. It determines
time instances of the pulse signal generation. The synchronization output is used to control
the acquisition system. When designing the generator, the following parameters were
assumed:

• the maximum value of the current pulse signal is 10 A,
• the rise time of the pulse is 60µs,
• total pulse duration is less than 1 ms,
• interval between successive impulse triggers is less than 1 s.

The pulse signal generator consists of a matching circuit (MC-GEN), an Analog-to-
Digital converter (AD-GEN), a Digital Output (DO), a Relay (RE), and an Attached Load
(AL). The measurement and generation system is connected to a computer (PC-GEN) on
which the Control Software (CS) is running.

The pulse amplitude depends primarily on the voltage phase in which the Attached
Load (AL) is connected to the power grid. The pulse amplitude is proportional to the
voltage value at the moment of turning the AL on. Setting the constant voltage phase
(the same each time) is the biggest challenge. The time instant must be synchronized
with the phase of the supply voltage. The process is as follows: the main voltageu(t)
is applied to the MC-GEN, which converts the voltageu(t) into the voltageuAD−GEN(t)
whose amplitude matches the dynamic range of the AD-GEN input. The AD-GEN converts
voltageuAD−GEN(t) to samplesun with a speed of 250 kS/s. Based on the voltage samplesun,
the CS detects the supply voltage phase. As a result of its operation, the logic signalon is
given to the input of DO, assuming a high value when the impulse signal is generated. DO
converts the logic signalon to the voltageuSYN(t). The O-SYN synchronization output is
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triggered at the right moment by a high voltage level. The main function of the RE is to
apply the supply voltage to AL when a high voltage level appears atuSYN(t).
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Figure 3. Block diagram of the pulse signal generator.

The pulse shape parameters are determined by the AL. The rise time of the pulse
and its total duration depends on the AL impedance. Contrary to the tested EA, AL is a
known load with a specific transmittance, temporarily connected to the supply network to
change the parameters of the network. In practice, any appliance approved for use in the
LV grid, for example, an energy-saving light bulb, can be used as AL. In such a situation,
the pulse generator is no different than other appliances in the network. It is a typical load,
connected to the network at specified intervals (e.g., 1 s) for a specific time (e.g., 40 ms).

2.2. Measurement Method

In the HF-GEN method, the measured signal is the impulse in the current introduced
to the tested circuit by the signal generator. The parameters of the signal change with the
load of the tested network after introducing the specific EA. This fact is used to detect the
change in the EA state.

The measurement system from Figure 4 consists of a transient generator (GEN), an
electrical appliance energy receiver (EA), a Current-Voltage Converter (CVC), an Acquisi-
tion Card (AC), a computer (PC), software (SW), and memory (MM). The tested EA and
GEN are powered from the network with an RMS voltage of 230 V and frequency of 50 Hz.

The supply network voltageu(t) is provided to GEN through the I/O terminals
connected to the phase conductor L1 and the neutral conductor N. The synchronization
voltageuSYN(t) is supplied from the synchronization output O-SYN of GEN to the synchro-
nization input of the Analog-to-Digital Converter. High levels ofuSYN(t) determine time
instants for pulse generation. The currenti(t) is converted by the CVC intouAD(t) voltage
with a level adjusted to the dynamic range of the analog input of the acquisition card (AC)
converter, providing samplesin.

The voltageuSYN(t) also triggers the acquisition of current samples when a pulse is
generated. The SW running on PC controls the AC operation and collects the current
samplesin storing them in MM for further analysis. Due to triggering the AC converter
acquisition, the amount of data for processing is significantly reduced.
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2.3. Selection of Current Samples

The result of data acquisition is the current vectori = [i1 . . . iN ] (see Figure 5). It
contains current samples recorded around (before and after) the pulse manifestation.
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Figure 5. The sampled current vector i.

Due to the effectiveness of further calculations, only a selected fragment of the current
vector is analyzed. This is because some fragments of the obtained current data do not
contain useful information. Specifically, the current vector contains data measured prior to
generating the current pulse (e.g., current vector samples from 1 to 125,000 in Figure 5).
The data in this fragment of the current vector bear no information characteristic for the
tested EA.

The most relevant is the fragment of the current vector near the largest pulse peak.
Therefore only part of the original vector (i.e.,iSEL) is extracted for analysis. The vectori is
filtered by the high-pass filter with a cut-off frequency of 1 kHz, which enables effective
suppression of the 50 Hz component and its harmonics (100 Hz, 150 Hz, and so on).
Then, the maximum of the high-frequency components (i.e., above 10 kHz) is found. The
vectoriSEL contains 2700 selected samples around the maximum of the high-frequency
components. Figure 6 shows example of theiSEL vector.
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2.4. Preparation of a Dictionary of Transients

The dictionary of transients D is a set of selected fragments of the current vectors
containing pulses for various appliances:

D =
{

i(1)DIC, i(2)DIC, . . . , i(lD)DIC, . . . i(LDIC)
DIC

}
, (1)

wherei(lD)DIC are the most interesting fragments of vectors i describing the pulse andLDIC is
the number of examples. Figure 7 shows the method of preparing the dictionary. Samples
from vectori are selected as in Section 2.3. Then, the initial and terminal indexes of the
transition are marked, leading to the structure presented below.
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Figure 7. Preparation of dictionary of transients.

The marking process is performed by specifying the initialnSTART and terminalnSTOP
indexes. The fragmentiDIC is then extracted as follows:

iDIC =
[
iDIC,1 . . . iDIC,NDIC

]
=
{

iSEL,nSTART , iSEL,nSTART+1, . . . , iSEL,nSTOP−1, iSEL,nSTOP

}
, (2)

whereNDIC = nSTOP − nSTART + 1 denotes the number of samples iniDIC.
Figure 8 shows the example ofiSEL with the marked indicesnSTART andnSTOP (a) and

the extractediDIC (b).
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Figure 8. Current vectors for the sample measurement data:iSEL (a) andiDIC (b).

For each considered EA, 10 examples of transition states were added to the dictionary.
They differ in amplitude and shape. The selected number is the compromise between the
variety of stored data and the computational effort required to obtain examples. An exam-
ple is a current vector and corresponding category from the setDCAT (which cardinality
determines the number of identified appliances NEA). Therefore, the number of vectorsiDIC
in the dictionary isLDIC = 10·NEA.

2.5. Determining the Cross-Correlation

In this stage, the maximum correlation between the measured signaliSEL and sub-
sequent dictionary entriesiDIC is found. The vectoriSEL is longer than the current vector
from the dictionaryiDIC, so the correlation is calculated for all possible shifts betweeniDIC
andiSEL.

The vectoriSEL hasNSEL = 120, 000 samples (representing the duration of 4 ms for
sampling frequency fS = 30 MHz). The correlation will be determined many times for
each transition state. Therefore, the method of determining the cross-correlation should be
computationally efficient. The determination of the cross-correlation without normaliza-
tion was considered due to the simplicity and efficiency of calculations. In the discussed
problem, the cross-correlation without normalization cannot be used, because the elements
of current vectors mainly contain a fundamental component of the current signal with a
frequency of 50 Hz. On the other hand, pattern vectors only contain components with fre-
quencies at least 200 times greater than the fundamental component. The 50 Hz frequency
component significantly changes the average value of the current vector, and as a result,
significantly affects the value of cross-correlation without the normalization. The measure
of similarity between sample vectors based on the Pearson correlation coefficient was used.
The mean and standard deviation for each fragment of the vectoriSEL was calculated, which
requires significant computational effort. Therefore, the optimized calculation method [36]
was used.

As a result, vectors of correlations r and shiftsc were obtained. Figures 9–11 illustrate
the procedure.
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Figure 12a shows the cross-correlation vectorr as a function of delayc for the example
of measurement data. Figure 12b shows the same relationship for the vector fragmentr
with the highest correlation values.
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2.6. Signature Calculation

The signature parameters are the maximum cross-correlation determined between the
current vectoriSEL and all current vectorsi(lD)DIC from the dictionary of transients. Correlation

vectors for successive current vectorsi(lD)DIC are denoted asrlD . The set of categoriesDCAT
from the dictionary of transitions is used to name successive signature features. The idea is
presented in Figure 13.

The EA signature contains maximum values of the cross-correlation between the
analyzed current vector and the individual dictionary elements. Signature features are de-
termined as the maximum absolute value of the cross-correlationrlD between the analyzed

current vectoriSEL and the stored current vectori(lD)DIC:

COR_x_y = max
∣∣rlD

∣∣, (3)

wherex ∈ {1, . . . , NEA}, y ∈ {A, B, C, D, E, F, G, H, I, J}.
The computed cross-correlation with the marked maximum value for sample mea-

surement data are presented in Figure 14.
A signaturesl consists ofPHF−COR = 10·NEA features, arranged in a specific order.

Names of features and their acronyms are listed in Table 1.

sl =
[
sl,1 . . . sl,p . . . sl,PHF−COR

]T
. (4)
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Table 1. Signature features in the HF-COR method.

p Full Name Acronym

1 The highest value of the correlation module with example A of the
EA dictionary with the category number 1 COR_1_A

2 The highest value of the correlation module with example B of the
EA dictionary with the category number 1 COR_ 1_B

3 The highest value of the correlation module with example C of the
EA dictionary with the category number 1 COR_ 1_C

...
.

...
.

...
.

PHF−COR
The highest value of the correlation module with the example J of

the EA dictionary with the category numberNEA
COR_NEA_J

Signature vectors for individual transient states constitute successive columns of the
signature arrayS:

S = [s1 . . . sl . . . sLSP], (5)

whereLSP is the total number of transients processed.
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3. Signature Quality Assessment Method

The signature well describes devices if its features allow for distinguishing between
them. Feature vectors for the same appliance should be similar to each other. The purpose
of the signatures quality assessment is to verify if they can be used to identify appliances.

The process is presented in Figure 15. Division of available data into training and
testing sets is important. The K-fold Cross-Validation (CV) withK = 10 was used here. The
data set is split K times into training and testing subsets (with the ratio of 9:1) in such a
way that each EA is represented by the single signature in the testing set. The training sets
were used to extract knowledge for the intelligent classifier, while the testing ones were
applied to verify their generalization abilities. The classification accuracy was averaged on
all trials.

Energies 2021, 14, x FOR PEER REVIEW 13 of 28 
 

 

K-fold Cross Validation

Classifier training 

Signature matrix

S

Confustion matrix

Combining all K analyzes

Division into training and testing sets

Prediction

Classifier training 

Prediction

(1)

testS
(1)

trainS

...

...

...

C

( )

train

K
S

( )

test

K
S

(1)

trainy

(1)

testy
(1)

testŷ
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Figure 15. Block diagram of the signature quality assessment method.

The classifier processes signaturesS(k)
test to predict appliance identifiers (represented by

category estimatesŷ(k)
test). The latter are compared to actual categoriesy(k)

test so sample errors
can be calculated. Among many types of candidates for classifiers, the following were
selected:

• Decision Tree (DT) representing rule-based decision systems,
• Artificial Neural Network (ANN) representing numerical decision-making systems,
• the k-Nearest Neighbors (kNN) classifier representing distance-based systems.

For each round of the CV, each classifier is trained and tested separately (see Figure 16).
This way all approaches can be compared. Also, their fusion may be applied if necessary.
Each algorithm has specific advantages and hyperparameters. For instance, DT during
training selects features based on which rules are constructed. This is the problem for kNN,
where the subset of signature values must be manually selected or weighted. Also, the
number of neighbors influences diagnostic accuracy. One CV round produces four vectors:

• actual appliances identifiers in the testing set—y(k)
test,

• category estimates based on ANN prediction—ŷ(k)
NN,

• category estimates based on DT prediction—ŷ(k)
DT,

• category estimates based on kNN prediction—ŷ(k)
kNN.
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3.1. Decision Tree

The DT is a tool storing knowledge in the form of a tree (Figure 17). Nodes indicated by
circles represent tests on the selected feature (in our case, one of the signature parameters)
and its threshold value (like x1 > 15). The result of the test redirects the analyzed vector of
features to the node one level below until the terminal node (leaf) is reached. The leaves
(rectangles) represent appliance categories. Classification of the example is then based on
exploring the tree from the root (yellow node) to one of the leaves. Tests performed at
each node indicate which way to take next. Generation of the DT is done using one of the
machine learning algorithms like C4.5 or CART, which differ in the method of selecting
tests for nodes.

Energies 2021, 14, x FOR PEER REVIEW 14 of 28 
 

 

Training set

Neural network 
training

Testing set
( )

train

k
S ( )

test

k
S

( )

test

k
y

( )

train

k
y

Signature

S y

Neural network
prediction

Decision tree 
prediction

k-Nearest Neighbours
prediction

Decision tree 
training

k-Nearest Neighbours
training

( )

train

k
S

( )

train

k
y

( )

test

k
S

Exact categories
( )

test

k
y

Estimated categories

Estimated categories

Estimated categories

( )

NN
ˆ k
y

( )

DT
ˆ k
y

( )

kNN
ˆ k
y

DTp

Decision tree 
training

( )

test

k
y

 

Figure 16. Detailed diagram of one cross-validation attempt. 

3.1. Decision Tree 

The DT is a tool storing knowledge in the form of a tree (Figure 17). Nodes indicated 

by circles represent tests on the selected feature (in our case, one of the signature param-

eters) and its threshold value (like x1 > 15). The result of the test redirects the analyzed 

vector of features to the node one level below until the terminal node (leaf) is reached. The 

leaves (rectangles) represent appliance categories. Classification of the example is then 

based on exploring the tree from the root (yellow node) to one of the leaves. Tests per-

formed at each node indicate which way to take next. Generation of the DT is done using 

one of the machine learning algorithms like C4.5 or CART, which differ in the method of 

selecting tests for nodes. 

x2

D

x1 x1

x2 < 1200

x2 C

B A

E

x2 ≥  1200

x1 ≤  15x1 > 15

x2 > 113 x2 ≤ 113 

x1 > 67 x1 ≤ 67

  

Figure 17. Decision tree example. 

3.2. Neural Network 

The ANN is widely used in classification. The feed-forward structures, like multi-

layered perceptrons or RBF networks, are the most popular. Their hyperparameters in-

clude the number of hidden layers or the number of neurons in them 
HL

s . Also, the output 

layer category coding is important, depending on the activation functions (like sigmoidal 

ones or softmax). The optimal structure of ANN is then found to maximize the classifica-

tion accuracy for the minimum number of neurons. Knowledge extraction is performed 

using gradient-based algorithms. 
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3.2. Neural Network

The ANN is widely used in classification. The feed-forward structures, like multilay-
ered perceptrons or RBF networks, are the most popular. Their hyperparameters include
the number of hidden layers or the number of neurons in themsHL. Also, the output layer
category coding is important, depending on the activation functions (like sigmoidal ones
or softmax). The optimal structure of ANN is then found to maximize the classification
accuracy for the minimum number of neurons. Knowledge extraction is performed using
gradient-based algorithms.
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3.3. K-Nearest Neighbors

The kNN classifier is one of the simplest non-parametric classification methods. Using
the distance measure, k examples from the dictionary closest to the classified feature
vector are found. The analyzed example is assigned to the categories supported by the
majority of k voting vectors. The hyperparameters include the value of k, voting strategy,
and the distance measure selection. This is the only one of the applied classifiers not
extracting knowledge from data during the machine learning process. The problem here is
determining the significance of available features, for example, by using the information
capacity or correlation methods. In the presented research the DT was used to preselect
them for the Euclidean measure calculation between each pair of examplesl1 andl2:

dEUCLID,l1,l2 =

√(
Sl1,pDT

− Sl2,pDT

)(
Sl1,pDT

− Sl2,pDT

)T
, (6)

whereS denotes the signature array andpDT is the number of the signature features selected
by DT.

3.4. Classification Accuracy

The standard method of evaluating the classifier in the multi-category identification
problem is the confusion matrix. To determine the overall quality, the accuracy should be
calculated as the number of correctly identified examples from the testing set. This can be
done for each categorynEA separately:

ηnEA =
|LSPEA : y = ŷ|
|LSPEA|

(7)

or on the whole set (ofNEA categories):

ηALL =
1

NEA
· |LSP : y = ŷ|
|LSP| (8)

4. Experimental Results

The following section discusses details of experiments, including the laboratory test
stand, collected data, and classification results.

The HF-GEN method was tested in the laboratory conditions on a fixed set of 15
appliances. For each of them, 150 current pulses were recorded. From the vectori in the
transient statel a signature vectorsl was obtained. The signature setS contains allLSP
signature vectors.

The used EAs included a vacuum cleaner, a slow juicer, an “Osram” light bulb, the
“Philips” light bulb, an “Omega” light bulb, a “Lexman” lamp with four bulbs, a laptop,
irons, sharpeners, grinders, kettle, jigsaw, coffee machine, air conditioner and planer.

4.1. Laboratory Test Stand

The measurement system consists of the single analyzed electrical appliance (EA), a
current-voltage converter of the SCT-013-020 (CVC) type, the Advantech PCIE-1744 data
acquisition card (AC), signal generator (GEN), and computer (PC) with the LabVIEW-based
virtual instrument (SW) installed. The EA was connected to the power network. The CVC
was installed on the L1 cable supplying EA through the resistorR = 47 Ω. The GEN
input-output (I/O) connectors were connected to L1 and N power cables. The AC was
configured in such a way that the high level of the sync voltageuSYN(t) applied to the
synchronization input would trigger the acquisition of the signaluAD(t) fed to an analog
input. The signaluAC(t) was recorded for 10 ms since the occurrence of the high level of
synchronization voltageuSYN(t). The AC sampling rate was 30 MS/s. The data streamin
containing the samples was captured by a SW running on a PC and saved in the *.tdms file
format.
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The pulse signal generator consisted of AL, i.e., a lamp with an “Osram” LED bulb,
(type AB30526) and a “Relpol” relay (type RM699V-3011-85-1005-RE), voltage transformer
(MC-GEN), Advantech PCIE-1816H acquisition card containing an analog-to-digital con-
verter (AD-GEN) and digital output (DO) and a computer (PC-GEN) running the virtual
instrument (CS). AL was connected to the supply network via the RE relay, while MC-GEN—
to the supply network via the L1 and N conductors. The CVC of the type SCT-013-020 type
converts voltageu(t) touAD−GEN(t). Its measuring range is about 120A. Laboratory tests
proved that SCT-013-020 allows for accurate measurements of signals with frequency up to
400 kHz which is enough for the presented HF-GEN method. The voltageuAD−GEN(t) was
fed to the analog input no 0 (AD-GEN) of the acquisition card.

AD-GEN samples voltageuAD−GEN(t) at 250 kS/s. Based on them, CS detects the
voltage phase by actuating a logic signalon. The AL is switched on when the voltageu(t)
reaches the value of300 V. DO converts logic signalon to voltageuSYN(t). The RE becomes
closed when the high state appears onuSYN(t).

4.2. Measurement Procedure

During experiments, the following measurement procedure was implemented:

1. Connecting to the power grid and switching on EA under test;
2. Setting CS so that the GEN generates a pulse signal 150 times (in the case of its

acquisition for quality evaluation) or at least 10 times (for the transients’ dictionary);
3. Setting the SW to acquire all current pulses;
4. Starting the impulse generation and acquisition process;
5. Switching off the tested device.

These steps are performed for each tested EA. A separate series of measurements is
carried out with no EA connected (only steps 2–4 are then taken).

4.3. Analysis of Measured Current Vectors

As a result of measurements for 16 categories (15 types of EA and no-EA),150× 16 =
2400 vectors of current samples were collected. Details of the recorded vectors are in
Table 2. Each current vectori has 300,000 samples (representing duration of 10 ms).

Table 2. Information on recorded current vectors.

Category Number nEA EA Name Type Nominal Power Indexes of Current
Vectors l

0 no EA - - 1 . . . 150
1 vacuum cleaner Zelmer ZVC425HT 1000 W 151 . . . 300
2 slow juicer Eldom PJ400 400 W 301 . . . 450

3 lamp with LED bulb
“Osram” Osram AB42758 11.5 W 451 . . . 600

4 lamp with LED bulb
“Philips” Philips 9290012345C 13 W 601 . . . 750

5 lamp with LED bulb
“Omega” no data 11 W 751 . . . 900

6 wall lamp with four
LED bulbs “Lexman” no data 5 W 901 . . . 1050

7 laptop Dell PP36L 100–240 V ~1.6 A 1051 . . . 1200
8 iron Philips GC 4410 2000–2400 W 1201 . . . 1350
9 sharpener SilverCrest SEAS 20 B1 20 W 1351 . . . 1500

10 grinder Makita GB801 550 W 1501 . . . 1650
11 kettle Zelmer CK1004 1850–2200 W 1651 . . . 1800
12 jigsaw Bosch GST 90 BE 650 W 1801 . . . 1950
13 coffee machine Saeco HD8917 1850 W 1951 . . . 2100

14 air conditioner Cooper&Hunter
CH-S09RX4 2700–2850 W 2101 . . . 2250

15 planer Makita 2012NB 1650 W 2251 . . . 2400
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The current vectors were selected according to Section 2.3. The result were current
vectorsiSEL which length ofNSEL = 120,000 (duration of 4 ms). The vectorsi(l)SEL for selected
examplesl are in Figures 18 and 19.
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The average current valuei(l)SEL depends on the analyzed EA. For instance, examplesl ∈
{151, 1201, 1651, 2251} representing vacuum cleaner, iron, kettle, and planer are character-
ized by relatively high power. The pulses are generated for the voltageu = 300 V when
the instantaneous current levels of EAs are close to the maximum value. Therefore, a high
average current value is observed here.

The direction of the pulse current is always the same. It results from forcing the
voltage phase at the moment of generating the pulse.

All waveforms presented in Figures 18 and 19 are characterized by a rise in the average
current value starting approx. atnSEL = 30,000. In turn, for thenSEL = 34,000 . . . 50,000
current values drop until reaching the level as before the pulse appearance.

For examplesl ∈ {1, 1201, 1501}, the multiple contact of the RE is visible in the form
of many similar oscillations which quickly converge to the average current valuei(l)SEL. For
category 0 (no EA), this oscillation is visible for thenSEL = 29, 400, while for category 8
(iron) it is fornSEL = 30,000, and for category 10 (grinder), 4 such oscillations are visible
fornSEL ∈ { 28,800, 29,500, 30,000, 30,500 }.

The starting point for further analysis is the current vector obtained for category
0 when no EA is connected. The shape of the pulse for the examplel = 1 (Figure 18a)
is the impulse response of AL after switching on the supply voltage. All other current
vectors are the impulse response of the system in which two electricity receivers are
simultaneously connected to the power supply: AL and the tested EA. The change in the
shape of the current waveformi(l)SEL is proportional to the influence of the tested EA on the
total impedance of these two parallelly connected loads in the supply network.

Examplesl ∈ {751, 901, 1051}, i.e., lamp with bulb “Omega”, wall lamp with four
bulbs ”Lexman” and kettle are similar to the examplel = 1. Examplesl = 451 (lamp with
bulb ”Osram”) andl = 601 (lamp with bulb ”Philips”) are distinguished by the lack of the
minimum of the 2A-amplitude instantaneous current fornSEL = 30,300.

The examplel = 1951 recorded for the coffee machine has a characteristic shape,
especially in the areanSEL = 30, 000 . . . 31, 000, where rapid changes in the instantaneous
current values are visible, and the characteristic for many other examples of quasi-periodic
oscillations cannot be found.

A vacuum cleaner(l = 151), slow juicer(l = 301), jigsaw(l = 1801), and planer(l = 2251)
reduce the frequency of current oscillations, and increase the number of visible oscilla-
tions, which is unique for each EA. Specifically, for examplel = 151, five oscillations have
period of approximately 940 samples corresponding to a frequency of 31.9 kHz. For the
examplel = 301(slow juicer), four periods exist (923 samples each) which corresponds to
a frequency of 32.5 kHz. For the examplel = 1801 (jigsaw), five periods of 500 samples
correspond to a frequency of 60 kHz. For the examplel = 2251 (planer), there are six
periods, each 610 samples long, which corresponds to a frequency of 49.2 kHz. All these
categories have motors, which may shape the current pulse.

4.4. Dictionary of Transients

The measurement data for the transient dictionary does not coincide with the mea-
surement data used to train and test the classification algorithms. The set of measurement
data used in the transient state dictionary was prepared independently of the data set
described in Section 4.3. Selection of current vectors for the dictionary does not disturb the
obtained classification results.

To prepare the dictionary of transients, the procedure presented in Section 2.4 was
used. For each of sixteen categories, 10 examples of transient currenti were collected, from
which current vectorsiSEL were obtained. The resulting dictionary of transients is presented
in Table 3. The most important fragments of current vectorsi(lD)DIC for selected categories are
in Figures 20–23.
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Table 3. Information about the transient dictionary.

Category
Numberx Device Name Indexes of Current Vectors lD

Signature Features
Related to the Dictionary Examples

0 no EA 1 . . . 10 COR_0_A . . . COR_0_J
1 vacuum cleaner 11 . . . 20 COR_1_A . . . COR_1_J
2 slow juicer 21 . . . 30 COR_2_A . . . COR_2_J
3 lamp with bulb “Osram” 31 . . . 40 COR_3_A . . . COR_3_J
4 lamp with bulb “Philips” 41 . . . 50 COR_4_A . . . COR_4_J
5 lamp with bulb “Omega” 51 . . . 60 COR_5_A . . . COR_5_J

6 wall lamp with five “Lexman”
bulbs 61 . . . 70 COR_6_A . . . COR_6_J

7 Laptop 71 . . . 80 COR_7_A . . . COR_7_J
8 Iron 81 . . . 90 COR_8_A . . . COR_8_J
9 Sharpener 91 . . . 100 COR_9_A . . . COR_9_J

10 Grinder 101 . . . 110 COR_10_A . . . COR_10_J
11 Kettle 111 . . . 120 COR_11_A . . . COR_11_J
12 Jigsaw 121 . . . 130 COR_12_A . . . COR_12_J
13 coffee machine 131 . . . 140 COR_13_A . . . COR_13_J
14 air conditioner 141 . . . 150 COR_14_A . . . COR_14_J
15 Planer 151 . . . 160 COR_15_A . . . COR_15_J
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Figure 23. Current vectorsiDIC for dictionary elements for the planer category (x = 15).

Despite ensuring similar conditions for generating impulses, the current vectorsiDIC
for the no-EA category (Figure 20) differ from each other. The first difference between
examples is the multiple contact phenomenon described in Section 4.3, visible for the
exampleslD ∈ {5, 6, 10}.

In all waveforms, a quasi-periodic oscillation is present, disappearing after about
three periods. A characteristic of these vectors is a rising edge on which the oscillation is
located. In the examplelD = 7, the slope is visible fornDIC = 1 . . . 2000. The rising edge is a
characteristic feature of applied AL.

For dictionary examples representing the vacuum cleaner (Figure 21), three types of
waveforms can be distinguished. They differ mainly in the shape of the initial part of the
vectoriDIC (nDIC = 1 . . . 1000). The first type is present in exampleslD = 11 andlD = 19. The
second type is visible in exampleslD ∈ {14, 15, 18}, while the third one—in exampleslD ∈
{12, 13, 16, 17, 20}. The oscillation frequency in the second part of the vectoriDIC is lower
than in the no EA case (category 0 in Figure 20). Duration of the oscillation between
samplesnDIC = 1000 andnDIC = 4000 is the same for all vectors in this category with period
of about 940 samples, which corresponds to a frequency of 31.9 kHz.
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Waveforms in Figure 22 represent lamps with the “Osram” bulb. Here, the multiple-
contact phenomenon of the relay is visible, especially for the examplelD = 40, where four
similar oscillations are present in the first part of the current vector.

Vectors for the planer (Figure 23) are different from other appliances, and at the same
time, they are similar to each other. Their distinguishing feature is the shape of the first
part of the vectoriDIC(nDIC = 1 . . . 300). Here exampleslD ∈ {151, 153, 154, 155} have one
maximum above the slope of the oscillation. It is present around the samplenDIC = 100.
ExampleslD ∈ {152, 156, 157, 158, 159, 160} have two visible maxima, one fornDIC = 90 and
the other one atnDIC = 190. In all examples for the planer, at least five periods of oscillation
with a period of about 610 samples are present, corresponding to a frequency of about 49.2
kHz.

4.5. Signature Parameters

Based on the determined correlation vectors for each pair of the transition (forl =
1 . . . 2400) and the dictionary examplelD = 1 . . . 160, the values of features in the signatureS
were determined. For each examplel, the signature contains 160 features. Values of two
characteristic features for each category are presented in Figures 24 and 25.
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The COR_1_A feature (Figure 24) can be used to distinguish between three categories:
1 (vacuum cleaner), 2 (slow juicer), and 13 (coffee machine). A majority of examples
belonging to these categories have the value of the COR_1_A in the range between 0.97
and 1.0. Almost all observations of the remaining categories assume values of this feature
in the range 0.85–0.97, so it is not suitable for distinguishing between them.

The COR_9_F (Figure 25) feature is characterized by high values for almost all exam-
ples. Only three vectors from category 3 (lamp with the “Osram” bulb) have COR_9_F
values below 0.85. Observations for all other categories assume values of this feature in
the range 0.85–1. Even though the COR_9_F feature was determined for the dictionary
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examples belonging to the grinder category, the value distribution of this feature is similar
for each category. Therefore it is not useful in most cases.

4.6. Classification Results

This section presents results of three classifiers’ operation for the available data parti-
tioned using the K-fold cross validation (where K = 10).

4.6.1. Neural Network

The application of ANN required selecting the optimal number of neurons in the
hidden layer. For that purpose, the network was trained many times, with the number of
neurons in the hidden layer ranging from 1 to 24. The classification error as a function of
the number of neurons in the hidden layer is in Figure 26.
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The total classification error is minimal for 15 neurons in the hidden layer. Further
increase of this parameter does not significantly affect the classification error.

The confusion matrixCNN and the classification accuracyηnEA, NN for 16 examined
categories in the optimal ANN structure are presented in Table 4.

The overall classification accuracy was as follows:

ηALL, NN =
1

16

15

∑
nEA=0

ηnEA,NN = 78.6%. (9)

The accuracy of at least 95% was obtained for nine appliances: 1 (vacuum cleaner),
2 (slow juicer), 7 (laptop), 8 (iron), 11 (kettle), 12 (jigsaw), 13 (coffee machine), 14 (air
conditioner), and 15 (planer). Signatures for EAs 11–15 significantly differ from all oth-
ers, which makes them easily identifiable (see columns 11–15). The lowest classification
accuracy (24%) was achieved for category 9 (sharpener) and for category 3 (lamp with the
“Osram” bulb) at the level of 28%. Total 56 (37%) examples of category 9 were incorrectly
assigned to category 10. More than a half (51%) of examples of category 4 (lamp with the
“Philips” bulb) were incorrectly assigned to category 5 (lamp with the “Omega” bulb). This
is because categories 4 and 5 have similar signatures.

4.6.2. Decision Tree

None of the categories was faultlessly identified by DT (see Table 5). The best score of
97% was obtained for appliances 12 (jigsaw), 13 (coffee machine), 14 (air conditioner), and
15 (planer). For category 1 (vacuum cleaner), the accuracy was 95%. Categories 12 and 15
have very few examples from other incorrectly assigned categories. The worst classification
result (29%) was obtained for category 3 (lamp with “Osram” bulb). There are also two
groups of indistinguishable appliances. The first one consists of categories 0 (no EA), 3
(lamp with the “Osram” bulb), 6 (wall lamp with four “Lexman” bulbs), 9 (sharpener), and
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10 (grinder). The second group consists of category 4 (lamp with bulb “Philips”) and 5
(lamp with bulb “Omega”). The overall classification efficiency was as follows:

ηALL, DT =
1

16

15

∑
nEA=0

ηnEA, DT = 76.2%. (10)

Table 4. Confusion matrix and the classification accuracy of the neural network for 15 neurons in the hidden layer.

Assigned Category
ηnEA, NN

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Tr
ue

C
at

eg
or

y

0 89 0 0 14 0 0 15 0 2 20 9 0 0 0 1 0 59%

1 0 147 3 0 0 0 0 0 0 0 0 0 0 0 0 0 98%

2 0 3 146 0 0 0 0 0 0 0 0 0 0 0 0 1 97%

3 40 0 0 42 0 0 6 1 0 30 31 0 0 0 0 0 28%

4 0 0 0 0 73 76 0 0 1 0 0 0 0 0 0 0 49%

5 0 0 0 0 32 117 0 0 0 0 0 1 0 0 0 0 78%

6 31 0 0 8 0 1 106 0 0 3 1 0 0 0 0 0 71%

7 0 0 0 0 0 1 0 148 1 0 0 0 0 0 0 0 99%

8 0 0 0 0 4 2 0 0 142 1 1 0 0 0 0 0 95%

9 21 0 0 30 0 0 5 1 1 36 56 0 0 0 0 0 24%

10 11 0 0 13 0 0 2 0 0 31 93 0 0 0 0 0 62%

11 0 0 0 0 0 1 0 0 0 0 0 149 0 0 0 0 99%

12 0 0 0 0 0 0 0 0 0 0 0 0 150 0 0 0 100%

13 0 0 0 0 0 0 0 0 0 0 0 0 0 150 0 0 100%

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 150 0 100%

15 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 149 99%

Table 5. Confusion matrix and classification accuracy for the decision tree algorithm.

Assigned Category ηnEA , DT
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Tr
ue

C
at

eg
or

y

0 60 0 0 25 3 1 28 1 3 25 4 0 0 0 0 0 40%
1 0 143 3 0 0 0 0 0 0 0 0 0 0 4 0 0 95%
2 0 5 140 0 0 0 0 3 0 0 0 1 0 1 0 0 93%
3 29 0 0 44 0 0 14 1 0 36 26 0 0 0 0 0 29%
4 0 0 0 0 111 33 2 2 1 0 0 0 0 0 1 0 74%
5 1 0 0 0 39 105 2 0 1 0 0 0 0 0 2 0 70%
6 23 0 0 11 2 1 100 2 0 9 2 0 0 0 0 0 67%
7 2 0 2 0 0 0 1 136 3 2 3 0 0 1 0 0 91%
8 2 0 2 1 4 1 0 0 134 1 0 3 0 0 2 0 89%
9 25 0 0 33 1 1 7 2 2 57 22 0 0 0 0 0 38%

10 8 0 0 30 0 0 6 0 0 28 78 0 0 0 0 0 52%
11 0 0 2 0 0 0 0 3 5 0 0 139 1 0 0 0 93%
12 0 0 0 0 0 1 0 0 1 0 0 0 145 0 2 1 97%
13 0 3 0 0 0 0 0 1 0 0 0 0 0 146 0 0 97%
14 1 0 0 0 0 0 0 0 3 1 0 0 0 0 145 0 97%
15 0 0 0 0 1 2 0 0 0 0 0 1 0 0 0 146 97%

4.6.3. The kNN Algorithm

To identify the most significant predictors, the DT was first trained for all 2400 exam-
ples of transients. In the DT training process, 82 signature features were selected as the
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most significant ones. Using selected features, a classification was made for each of the 10
cross-validation attempts. The confusion matrixCkNN for all cross-validation trials and the
classification accuracyηnEA, kNN is presented in Table 6.

Table 6. Confusion matrix and classification accuracy for the k-nearest neighbors algorithm.

Assigned Category
ηnEA, kNN

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Tr
ue

C
at

eg
or

y

0 70 0 0 38 0 1 14 2 1 17 7 0 0 0 0 0 47%

1 0 149 1 0 0 0 0 0 0 0 0 0 0 0 0 0 99%

2 0 3 147 0 0 0 0 0 0 0 0 0 0 0 0 0 98%

3 38 0 0 65 0 0 3 0 1 21 22 0 0 0 0 0 43%

4 1 0 0 0 120 29 0 0 0 0 0 0 0 0 0 0 80%

5 3 0 0 0 31 113 2 0 0 0 0 0 0 0 1 0 75%

6 19 0 0 11 1 0 107 1 0 7 4 0 0 0 0 0 71%

7 1 0 0 1 0 0 0 145 1 2 0 0 0 0 0 0 97%

8 0 0 0 1 0 2 0 0 145 1 0 0 0 0 1 0 97%

9 25 0 0 26 0 0 6 0 3 59 31 0 0 0 0 0 39%

10 10 0 0 29 0 0 1 0 0 25 85 0 0 0 0 0 57%

11 0 0 0 0 0 1 0 0 0 0 0 149 0 0 0 0 99%

12 0 0 0 0 0 0 0 0 0 0 0 0 150 0 0 0 100%

13 0 0 0 0 0 0 0 0 0 0 0 0 0 150 0 0 100%

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 150 0 100%

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 150 100%

The k-nearest neighbors algorithm classified nine categories with an accuracy of at
least 95%. These are: 1 (vacuum cleaner), 2 (slow juicer), 7 (laptop), 8 (iron), 11 (grinder),
12 (jigsaw), 13 (coffee machine), 14 (air conditioner), and 15 (planer). Categories 11, 12, 13,
and 15 have been identified flawlessly. The worst classification result (39%) was obtained
for category 10 (grinder). There are two groups of similar categories: (0, 3, 6, 9, 10) and (4,
5). The overall classification efficiency is as follows:

ηALL, kNN =
1

16

15

∑
nEA=0

ηnEA, kNN = 81.4%. (11)

5. Summary

The paper presented the system for NILM task based on the transient features of the
generated pulse analysis. It exploits mutual influence between devices operating in the
same power circuit to identify the moment of introducing the new one.

The pulse signal generator was designed. Its task is to generate current pulses at
predetermined time intervals in a fixed phase of the supply voltage. The measurement
system acquires current pulses and stores them as sample vectors. A method for processing
current signals was designed to determine their characteristic features based on the cross-
correlation calculated for each pair of EAs. The method uses information about the phase
and amplitude of all (periodic and non-periodic) components of the current pulse appearing
in the transient state of the device turned on. The processing result is a signature with
features characterizing the EA. The signature quality was verified using three different
classifiers.

The presented experiments show that devices connected to one circuit of the supply
network influence each other. A significant impact of a background device in the steady
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state on the current pulse on another device being turned on was observed. When a known
load is switched on under repeated conditions, the change in the shape of this pulse may
be characteristic for a device operating in the background. Results of the classification
show that in the best case, 9 out of 15 EAs are recognizable with an accuracy of at least
97%. Satisfying results were obtained for majority of tested EAs. There are types of EA
for which this method fails. Therefore multiple different identification methods should be
implemented simultaneously.

In practical application of NILM system the changing set of devices operating at the
same time must be considered. This makes the task difficult, as the change of the pulse
shape will be a certain superposition of all working EA. Therefore additional research are
required to approach this challenge. Results of presented experiments show that in the
highly controlled environment (especially when only a single appliance is operating) the
proposed approach provides high identification accuracy Its applicability should be further
investigated in the future.
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