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Abstract: In this work, an investigation into the influence of prescribed motion on a body caudal
fin aquatic unmanned vehicle (AUV) energy harvester is carried out. The undulatory–oscillation
locomotion inspired by fishes actuates a composite beam representative of a spinal column with
a piezoelectric patch. Two patch configurations—one at the head and tail—are considered for
the AUV energy harvester, with a length that would not activate a harmonic in the system. An
electromechanical model which accounts for the strain of the prescribed motion and the induced
relative strain is developed. Discretizing the relative strain using Galerkin’s method requires a
convergence study in which the impacts of the prescribed motion, dependent on the undulation
and envelope of the motion, are investigated. The combination of prescribed motion and structural
terms leads to a coupling that requires multiple investigations. The removal of the undulation
of the system produces a more consistent response. The performances of the two different patch
configurations undergoing different prescribed motions are studied in terms of coupled damping
and frequency effects. An uncoupled Gauss law-based model is adopted to compare the performance
of our approach and that of the coupled electromechanical model harvester. It is demonstrated that
there is a complex interaction of the phases of the prescribed and relative motions of the structure
which can lead to the development or destruction of the response of the total motion or voltage
for the system. The results show that the structural damping and type of locomotion are the most
influential parameters on the validity of the uncoupled approach. It is also found that the optimal
resistances for the coupled and uncoupled representations are the same for the two motions and
patch configurations considered.

Keywords: piezoelectric energy harvesting; soft robotic; aquatic unmanned vehicle; locomotion type

1. Introduction

Aquatic unmanned vehicles (AUVs) are being developed and advancing into bioin-
spired body undulating–oscillatory locomotion, replicating fishes [1,2]. Typical aquatic
systems are rigid-bodied, controlled with propellers and often tethered [3]. The advantage
of bioinspiration is the replication of efficient swimming in close-quarter environments
which are less disruptive than rigid propeller-driven systems [3]. The inclusion of soft and
rigid materials helps to realize the structures necessary to generate the desired bioinspired
locomotion [4,5]. The body shapes of these bioinspired AUVs are akin to the animals
from which their motion is inspired [4,6]. These bioinspired body shapes are integrated
with sensors that help monitor their surroundings [4,7,8]. The combination of body shape,
actuation and sensors allows for an effective system [4].

Many species of animals have been used as sources of inspiration. To delineate this
diverse range of animals in an orderly manner, a locomotion categorization has been
proposed by Sfakiotakis et al. [9] and Salazar et al. [10]. A simplified version of this
categorization is shown in Figure 1. Emphasis is placed on the fin oscillation caudal fin
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category because this is the most utilized locomotion type used in bioinspired AUVs [10].
Anguilliform locomotion represents the highly flexible-bodied AUVs that perform an eel-
like swimming action. Subcarangiforms are less flexible-bodied than the Anguilliforms
but allow for faster swimming predators. Carangiforms have a more restricted body
motion and flexibility compared to Anguilliforms and Subcarangiforms, meaning that
these animals are placed higher in the food chain. Thunniforms have very focused body
motion to the peduncle, which creates a very powerful swimming motion for these top
predators. The body composition and structure of individual species allow for the unique
characteristics that cater to their survival.

Figure 1. Locomotion categorization, with emphasis on caudal fin categorization.

More capable fish-like AUVs would have applications in civilian and military missions.
Fish-like robots would be able to complete missions that require close-quarter maneuvering
to monitor delicate or critical structures in coral reef research and oil field infrastructure [11].
Additionally, the more natural formation of these robotic systems would present the
potential for them to integrate more naturally with their biological surroundings, offering
valuable insights into undisrupted behavior [12]. The utility of systems that perform well
in a challenging environment, as well as blending into the environment, offers a unique
platform for a wide range of missions. The challenge of robotic systems operating in remote
environments is the endurance necessary to complete the desired mission.

The endurance challenge of these systems requires a unique solution to increase the
range of these aquatic systems. The flexibility and body actuation of bioinspired AUVs
presents a potential platform for regenerative energy harvesting using an integrated energy
harvesting patch. Works by Cha et al. [13] and Salazar et al. [14,15] have attempted to
investigate this complex problem using a piezoelectric material. Piezoelectric transduction
patches are becoming more commercially viable to be integrated into mechanical structures
such as those found in AUVs. These patches are used to create an electrical potential
when subjected to strain and have the capacity to power sensors that offset the power
requirements of a primary battery. Cha et al. [13] constructed a physical system with
a bimorph patch peduncle tail as a tapered cantilever beam, which was attached to a
rotational spring to connect with the rotational excitation on the joint of this linkage. This
induced bending in the patches on either side of the peduncle beam. Their study developed
a coupled model for this structure and included effects from the aqueous environment.
Salazar et al. [14,15] stated that the desired energy harvester should be excited by a defined
spatio-temporal function that an AUV’s spinal column would move with if biomimetic in
nature. In these works, only the spatio-temporal function was influenced by the electrical
Gauss law equation. It was assumed that the structure would have very high damping and
effectively eliminate the mechanical response to the prescribed motion; thus, the Gauss law
equation would be dependent solely on the prescribed motion.

In this work, the development of an electromechanical piezoelectric energy harvester
integrated into a representative AUV model is proposed in order to study the effect of
damping, the type of locomotion and electromechanical coupling on the performance of
the system. A comparative study between the coupled and uncoupled representations
is carried out in order to determine the limits of applicability of the uncoupled Gauss
law representation and to determine the interaction between the prescribed and relative
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motions of the fish-like robot energy harvesting system. The rest of this work is organized
as follows. Section 2 demonstrates the representative model of the Carangiform motion that
an AUV would be ideally using to swim. Section 3 breaks down the developed piezoelectric
energy harvester model, showing the coupling between the relative and prescribed motions.
Section 4 details the effect of the piezoelectric patch placement on the natural frequencies
and mode shapes. Section 5 presents the results and discusses the phenomena from the
perspective of how the interaction between the prescribed and relative motions of the
AUV influence the effectiveness of the system for different kinds of undulatory–oscillatory
representations. A particular focus is placed on how the structural damping affects the
applicability of the uncoupled modeling. Section 6 concludes the work.

2. Bioinspired Prescribed Motion of Body Caudal Fin Carangiform AUV

AUVs that are developed with bioinspiration in mind commonly focus on the fin
oscillation caudal fin category, as fishes in this category are proficient and very capable
swimmers. The bodies of these animals participate in the kind of locomotion known as body
caudal fin (BCF) swimming. These animals have a skeleton that supports a musculature that
controls excitation from the head to the tail of the animal along a spinal chain. The spinal
chain allows for flexible yet strong support for the body to perform an undulating–oscillatory
motion. The motion of the spinal chain is dependent on the species and the architecture of
these animals’ internal structures. Indeed, the variability of the locomotion categorization is
related to the number of segmentations of the spinal chain, where Anguilliforms tend to
have many and Thunniforms have far fewer segmentation [4,10]. These animals engage
their musculature and translate a moving wave along the body to the tail tip to produce
thrust for swimming. BCF locomotion can be represented as a sinusoidal waveform which
is restricted by a polynomial envelope, as shown in Equation (1). The respective constraints
of this motion are dependent on the animal to be replicated [15].

vp(x, t) = L
(

a0 + a1

( x
L

)
+ a2

( x
L

)2
)

cos
(

Kx
L
−ωpt

)
(1)

The spatio-temporal function, vp(x, t), is the prescribed motion which a bioinspired
AUV would be trying to replicate. The constants a0, a1 and a2 determine the constraining
envelope of the prescribed motion, given as 0.02, −0.0825, and 0.1625 for Carangiform
motion, respectively [16]. The flexibility of the spinal column replicating a periodic wave is
controlled by the undulatory term K, where one periodic wave equates to this undulating
term being 2π/L. This motion has been shown to be capable in AUV designs, and many
systems are being developed to perform this swimming action. AUVs can have rigid
segmented chains or flexible soft structures. The sinusoidal function is manipulated in
accordance with the constraint that only one period should occur over the length, as the
spinal column cannot be too flexible if it is to remain within these constraints of AUV
functional design. The frequency ( fp) of oscillation is defined to be constrained between
2–5 Hz; thus ωp = 12.566–62.832 rad/s. Figure 2 demonstrates multiple time instants
of a defined Carangiform motion with the described envelope terms and one period of
spinal undulation.
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Figure 2. Carangiform motion at multiple time instants with representative quadratic envelopes for
a 1 m fish oscillating at 2 Hz.

3. Piezoelectric Energy Harvester Methods

The development of piezoelectric energy harvesters has reached a transition point,
leading to possible applications [17–19]. Lead zirconium-titanate (PZT) is considered to
be one of the best-performing piezoelectric materials and is suitable for a wide range of
applications [17]. PZT materials depend on the organization of precursor elements into the
desired perovskite structure [20]. The perovskite structure can be doped with additional
elements to boost the percentage of this structure or influence the properties of the material
for better performance [21]. The perovskite structure is organized into larger bulk trans-
duction materials that are integrated into patches of two different structures: thin-film or
macro-fiber composite (MFC). These different patch architectures give a variability of patch
flexibility and performance that is suitable for unique application scenarios depending on
the excitation. The MFC developed by Smart Material Corporation is highly flexible due to
its composite nature and is an ideal selection for excitations that subject these patches to
large strain. Research works that define the properties of materials in piezoelectric energy
harvesters can be found in [22–28]. Next, the coupled and uncoupled representations
for the determination of the levels of the harvested power from the prescribed motion of
fish-like robots are presented.

3.1. Electromechanical Coupled Piezoelectric AUV Energy Harvester Modeling

The application in a bioinspired AUV energy harvester of a piezoelectric patch on a
spinal column that is flexible has been investigated in [14]. It was demonstrated in [13] that
the optimal piezoelectric patch length is independent of the scale of the AUV. Additionally,
for Carangiform motion, the optimal patch placement is at the location of the greatest strain:
the tail tip. The authors investigated an AUV energy harvester under the assumption that the
shunt damping is negligible due to the huge structural damping in the system’s design; thus,
purely the energy generation is described. However, when neglecting the natural relative mo-
tion of the structure, possible unexpected and damaging phenomena of forced motion could
be overlooked. Therefore, this work investigates the coupling of a piezoelectric transduction
patch application on an AUV backbone substrate subjected to multiple undulating–oscillating
motions to determine the possible occurrences in a bioinspired AUV. The structure of the
proposed AUV energy harvester is shown in Figure 3.
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Figure 3. Diagram of a Carangiform-bioinspired aquatic unmanned vehicle (AUV) with a substrate backbone, with a
potential energy harvester attached on the tail section: (a) side view and (b) top-down view showing the prescribed motion
bending over the length.

This body caudal fin energy harvester (BCFEH) attached at the tail tip undergoes the
prescribed Carangiform motion (vp), as shown in Figure 3b. The natural frequencies of the
BCFEH are dependent on the materials and the structural configuration. Many of the fixed
dimensions are shown in Table 1. Figure 3 shows the patch at the tail tip, in accordance
with the previous work; however, a patch at the head is also considered to compare how
the electromechanical coupling could influence the energy harvester’s performance. The
length of the patch is defined as 0.1 m for both cases to avoid the resonance region and
resulting high-amplitude oscillations. The aim is to consider an off-resonance scenario and
study the impacts of the undulatory–oscillatory motion and electromechanical coupling
on the effectiveness of the system and the validity of the uncoupled modeling when low
damping takes place. The backbone is considered as a cantilever beam with a clamped end
condition at L0 = 0 m.

Table 1. Fixed characteristics of the body caudal fin energy harvester (BCFEH) adopted from [15].

Symbol Parameter Value

bp Width of piezoelectric layer (mm) 7

bs Width of substrate layer (mm) 7

hp Thickness of piezoelectric layer (mm) 0.2

hs Thickness of aluminum substrate (mm) 0.6

Ep
Piezoelectric material Young’s modulus

(GN/m2) 30.336

Es Aluminum Young’s modulus (GN/m2) 69.5

ρs Density of aluminum substrate (kg/cm3) 2700

ρp Density of piezoelectric patch (kg/cm3) 5440

m1 Mass per unit length (0 ≤ x ≤ L1 ) ρsbshs

m2 Mass per unit length (L1 < x ≤ L2 ) ρsbshs + ρpbphp

y Position to the neutral axis Ephp(hp+hs)
2(Ephp+Eshs)

+ hs
2

y1
Position of aluminum relative to the

neutral axis hs − y

y2
Position of piezoelectric layer relative to

the neutral axis (hs + hp)− y

y0
Start of aluminum layer relative to

neutral axis −y

e31 Piezoelectric stress constant
(
C/m2 ) −5.16

εσ
33 Permittivity constant (nF/m ) 12.563
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The response of the piezoelectric materials undergoing stress has commonly been
accounted for in the Gibb’s free energy (G), such as in works by Amin et al. [29], Sherrit
and Mukherjee [30] and Wang et al. [31]. This formulation can be expanded to higher-order
piezoelectric, permittivity and electrostrictive terms, such as in the works of Guyomar
et al. [32,33] and Joshi [34], to be

G = −e31ε11E3 −
1
2
∈σc

33 E2
3 +

1
2

βε11E2
3 −

1
2

γε2
11E3 −

1
6

δE3
3 (2)

where G depends on the piezoelectric strain constant (e31), the strain of the material is
subjected to (ε11), the electric field (E3), permittivity under constant stress (∈σc

33), nonlinear
electrostriction constant (β), nonlinear piezoelectricity constant (γ) and nonlinear permit-
tivity constant (δ). In this study, to focus on the electromechanical coupling effects on the
harvester’s response and its comparison to uncoupled modeling, the higher-order nonlin-
ear terms are neglected, and thus only conventional linear piezoelectric and permittivity
terms are considered as follows:

G = −e31ε11E3 −
1
2
∈σc

33 E2
3 (3)

The electric displacement (D3) is found by deriving the function of Equation (3) with
respect to the electric displacement [34]:

D3 = − ∂G
∂E3

(4)

which yields [35]
D3 = e31ε11+ ∈σc

33 E3 (5)

The stress of the piezoelectric is determined by deriving Equation (3) with respect to
strain, as shown in Equation (6).

σ
p
11 = Epε11 +

∂G
∂ε11

(6)

Thus, the piezoelectric material’s stress response is expressed as [36]

σ
p
11 = Epε11 − e31E3 (7)

The strain of the BCFEH backbone is determined to be dependent on the conventional
Euler–Bernoulli beam theory, as the backbone structure is comparable to a long, thin beam.
Forcing the prescribed fish-like motion onto the structure and incorporating the response
into the strain, Equation (8) is determined as

ε11 = −y
(
v′′r + v′′p

)
(8)

where y is the relationship of the backbone and patch thickness to the structural neutral axis.
To accurately account for the multiple excitations and response of the structure, an

energy model formulation is adopted from [15,37,38]. The kinetic energy (T), shown in
Equation (9), of the BCFEH is dependent on

.
vr and

.
vp, which are the velocity of the relative

and prescribed motion, respectively. Equation (10) is the potential energy (Π) of the BCFEH
as it undergoes motion.

T =
1
2

m
∫ ( .

vr +
.
vp
)2dx (9)

Π =
1
2

[x
σs

11ε11dAsdx +
x

σ
p
11ε11dApdx−

x
E3D3dApdx

]
(10)

The mass, m, is dependent on the location along the length, where m = m1 for the
first section of the backbone without the piezoelectric patch and m = m2 for the tail section
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covered by the piezoelectric patch. The stress of the structure (σs
11) is related through

Hooke’s law. The electric field is related to the voltage generation through the piezoelectric
patch thickness by

E3 = −V(t)
hp

(11)

The relative displacement from the response of the structure is accounted for in a
Galerkin discretization as

vr(x, t) =
N

∑
i=1

φji(x)qi(t) (12)

The displacement is dependent on the mode shape (φji(x)), where subscripts are
dependent on both the section of the beam and mode of vibration; j = 1 or 2 corresponds
to the first or second section of the beam’s length, respectively, and i denotes the vibration
mode number. The number of modes used is determined by N. Modal coordinates are
denoted as qi(t). The natural frequencies and mode shapes are determined for a cantilever
beam with different layer regions by an eigenvalue system of equations considering typical
boundary conditions that satisfy the orthogonality conditions for the systems’ natural
frequencies [22].

Equations (5), (7) and (8) are combined into Equations (9) and (10) with the considera-
tion of Equations (11) and (12). The electromechanical equations of motion are found using
the Euler–Lagrange principle as follows:

d
dt

(
∂L
∂

.
qi

)
− ∂L

∂qi
=

δWnc

δqi
= −2ξωi

.
qi (13)

d
dt

(
∂L

∂
.
λ

)
− ∂L

∂λ
=

δWnc

δλ
=
−V
R

(14)

where (L = T −Π) and V(t) =
.
λ. The damping ratio (ξ) is defined for the structure and R

denotes the load resistance of the circuit.
Using the Euler-Lagrange equations, the following reduced-order model is obtained:

..
qi + 2ξωi

.
qi + ω2

i qi − θ
{

φ′i

(
Lx f

)
− φi

′(Lxi )
}

V(t) = −m1

∫ L1

0

( ..
vpφ1i

)
dx

−m2

∫ L2

L1

( ..
vpφ2i

)
dx− EI1

∫ L1

0

{
v′′pφ

′′
1i
}

dx− EI2

∫ L2

L1

{
v′′pφ

′′
2i
}

dx (15)

Cp
.

V(t) +
V(t)

R
+ θ

∫ Lx f

Lxi

{
N

∑
i=1

φ
′′
i

.
qı

}
dx = −θ

∫ Lx f

Lxi

{ .
v′′p

}
dx (16)

The piezoelectric coupling term and capacitance of the piezoelectric patch are de-
fined as

θ =
e31bp(y2 + y1)

2

Cp =
∈σ

33 bp

(
Lx f − Lxi

)
hp

It should be noted that Equation (15) is dependent on the mode shape and natural
frequency number; thus, a system of (N + 1) coupled equations is constructed. Moreover,
it is clear that the prescribed motion plays an important role in the structurally dominant
Equation (15). Indeed, the prescribed motion is a source of excitation and may result in
the presence of high amplitudes of relative motion, and thus the level of generated voltage
is affected by both relative and prescribed motions, as shown in Equation (16). It follows
from Equation (15) that the prescribed motion results in two kinds of excitations for the
fish-like robot from a structural point of view. The first excitation is due to the acceleration
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of the prescribed motion, and the second source of excitation is due to the undulatory strain
effects of the prescribed motion. These two kinds of excitations are evaluated in the next
sections, as well as how the type of undulatory–oscillatory motion of the fish-like robot
system and structural damping affect the effectiveness of the energy harvesting system.

3.2. Uncoupled Energy Harvesting Modeling

Considering the high damping in the structural design of these types of fish-like robot
is important in order to avoid any source of external excitations. Following the works
presented in [13,14], an uncoupled modeling can be performed based on the Gauss law
equation by assuming that the prescribed motion is the only source of excitation and that
relative motion will not take place, and thus the electromechanical coupling is neglected.
This means that Equation (15) is not needed, and the relative motion effects in Equation
(16) do not exist. In other words, a comparative example of electrical potential harvested
solely from the prescribed motion requires an assumption that there is no coupling from
the structure. The possibility of having a structure with an internal mechanism with high
damping could allow for such a case [39,40]. This would require a damping mechanism
that could silence the induced natural mechanical motion from the prescribed motion but
still allow the structure to move with the prescribed motion. As ξ → ∞ , the mechanical
contribution in Equation (16) decreases until it becomes negligible, and the equation follows
the uncoupled scenario with only the Gauss law equation [13].

The prescribed motion is the only excitation affecting the piezoelectric layer. Following
the work presented in [13], the trigonometric terms are separated to extract the constant
parameters K1 and K2.

K1 =

(
−
[(

a1
L

+
2a2
L

( x
L

) )]
cos(Kx) +

[
K
(

a0 + a1

( x
L

)
+ a2

( x
L

)2
)]

sin(Kx)
)∣∣∣∣Lx f

Lxi

(17)

K2 =

([(
a1
L

+
2a2
L

( x
L

) )]
sin(Kx) +

[
K
(

a0 + a1

( x
L

)
+ a2

( x
L

)2
)]

cos(Kx)
)∣∣∣∣Lx f

Lxi

(18)

A closed-form solution is employed to obtain the steady-state solution. Thus, the final
expression of the generated voltage for the aquatic unmanned fish energy harvester is
given by

V(t) = |θ|ωpR

√√√√ K2
1 + K2

2

1 +
(
CpωpR

)2 sin
(
ωpt + φ

)
(19)

The root mean squared for the generated voltage is obtained for a sinusoidal as

VRMS =
|θ|ωpR
√

2

√√√√ K2
1 + K2

2

1 +
(
CpωpR

)2 (20)

The average power is then determined as

Pavg =
[VRMS]

2

R
=

θ2ω2
pR
(
K2

1 + K2
2
)

2(1 +
(
CpωpR

)2 (21)

The uncoupled VRMS and Pavg in Equations (20) and (21) are compared to the coupled
system found through the Euler–Lagrange methodology.

4. Effect of Patch Placement on Linear Characteristics of the System

The development of the BCFEH requires an understanding of how the various ex-
citations can affect the response of the fish-like energy harvester. If the excitation of the
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prescribed motion or environmental response equals one of the natural frequencies of the
harvester, structural damage could result. The natural frequencies and mode shapes of the
BCFEH are determined based on the cantilever configuration with partial patch coverage
at the head or the tail tip. The partial patch head configuration is considered to correspond
to Lxi = 0 m and Lx f = 0.03 m, and the locations for the tail configuration are Lxi = 0.07 m
and Lx f = 0.1 m. The BCFEH is defined to operate with prescribed frequencies less than 10
Hz. To avoid the natural frequencies of the system causing resonance that could damage
the system during the defined operating conditions, the BCFEH was defined to be 0.1 m in
length, and a patch of 0.03 m in length was attached at the head and tail. Table 2 lists the
first three natural frequencies for the BCFEH with these two respective patch attachment
locations to show that the energy harvester worked in a region that was not susceptible to
resonance. Multiple modes were needed to perform the convergence analysis. Figure 4
shows the first seven mode shapes for the two patch configurations.

Table 2. First three natural frequencies for the different configurations.

L (m) First Natural
Frequency (Hz)

Second Natural
Frequency (Hz)

Third Natural
Frequency (Hz)

0.1
Head Attachment

59.4099 338.3119 898.0767

0.1
Tail Attachment

42.1036 303.1340 874.8842

Figure 4. First seven mode shapes for (a) head and (b) tail patch configurations.

Figure 4a demonstrates that the head patch configuration decreased the non-normalized
amplitude on the first section of the length when compared to the tail configuration shown
in Figure 4b. This is due to the increased stiffness from the patch coverage at the head sec-
tion. Alternatively, the head patch configuration had a larger non-normalized amplitude at
the tail tip, as this section only included substrate and was therefore less stiff. The tail patch
configuration exhibited the opposite phenomenon along the length as the non-normalized
amplitude was larger near the head and reduced near the tail.

5. Importance of Prescribed Motion on Structural Motion and Limits to the
Applicability of the Uncoupled Modeling: Role of Forced Actuation and Damping

The forced actuation that is desired for the BCFEH to perform missions is important
to investigate as it creates more forcing terms in Equations (15) and (16). These additional
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terms depend on how the vp is defined. Table 3 describes the different prescribed motion
classifications that are considered: cases A–C are undulating–oscillatory motion in which
the envelope of the motion is altered, and cases D–F are oscillatory motion in which the
undulatory term K equals 0, and the envelope of the motion alters incrementally as in
Cases A–C.

Table 3. Classifications of vp cases.

Case Equation Description

A L
(

ao + a1
( x

L
)
+ a2

( x
L
)2
)

cos
(
Kx−ωpt

) Undulating–oscillatory motion with original backbone
polynomial.

B L
(
ao + a1

( x
L
))

cos
(
Kx−ωpt

) Undulating–oscillatory motion with linear backbone
constraint as a2 = 0.

C L(ao) cos
(
Kx−ωpt

) Undulating–oscillatory motion with constant backbone
constraint as a2 = a1 = 0.

D L
(

ao + a1
( x

L
)
+ a2

( x
L
)2
)

cos
(
ωpt

)
Oscillatory motion with original backbone polynomial.

E L
(
ao + a1

( x
L
))

cos
(
ωpt

)
Oscillatory motion with linear backbone envelope.

F L(ao) cos
(
ωpt

)
Oscillatory motion with constant backbone constraint.

Figure 5 presents visualization of the cases of motion defined in Table 3 for multiple
time instants. Case A is shown in Figure 5a, which is the undulation–oscillatory motion
defined for Carangiform fishes. Envelope terms a0, a1 and a2 and the undulatory term K
are defined based on this biological motion. Case B shown in Figure 5b occurs when a2 = 0;
thus, a linear envelope is achieved. Case C in Figure 5c is when a1 = a2 = 0, creating a
constant envelope constraint for the undulation–oscillatory motion. Figure 5d exhibits the
oscillatory motion of Case D as K = 0 and is constrained by the original envelope terms.
Since this case has a quadratic envelope, the beam is still forced with bending but does not
have the undulatory motion present in cases A–C. Figure 5e shows that case E has a linear
envelope and that there is no bending actuation as in case D. Figure 5f shows case F and
has a constant envelope within which the beam oscillates. Cases E and F would generate
the more common base excitation forcing terms in Equation (15).

5.1. Convergence Analysis Investigation for Undulatory–Oscillatory Prescribed Motion

When discretizing the equations of motion, it is essential to investigate the conver-
gence of the BCFEH response for both head and tail patch configurations while undergoing
the prescribed motion cases in Table 3. The prescribed motion interacts with the rela-
tive structural motion and requires a defined number of modes to obtain a consistent
response for the fish-like energy harvester. The maximum relative displacement, average
harvested power and generated voltage responses are investigated for the coupled BCFEH
considering N = 1→ 7 . Case A motion is considered first in the convergence analysis.
Figures 6 and 7 show the induced relative motion and harvested power for the head and
tail patch configurations, respectively. For the excitation frequency, fp, the range considered
is 0.25–10 Hz, ξ = 0.3 and R = 105 Ω. The time histories consider fp = 5 Hz and a time
length of 15 s. The uncoupled average harvested power is also shown for comparison. It
should be mentioned that only off-resonance scenarios are considered in order to check the
validity of the uncoupled modeling versus low values of damping for the coupled system.
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Figure 5. Examples of motions of (a) case A, (b) case B, (c) case C, (d) case D, (e) case E and (f) case F.
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Figure 6. Head attachment for case A: (a) maximum vr(L), (b) Pavg, (c) vr(L) time history and (d) voltage time history for
N = 1→ 7 , R = 105 Ω and ξ = 0.3.

Figure 6a shows that the maximum vr(L) in response to the prescribed motion is two
times larger than that of the defined vp(L) amplitude of 0.01 m. The case A patch attached
at the head vr(L) does not converge to a single response. The Pavg performance does reach
more of a convergence with a higher number of modes, as depicted in Figure 6b. The time
history shows that the number of modes affects not only the amplitude but also the phase
of the response, as shown in Figure 6c,d. The coupled system exhibits higher amounts of
harvested power than the uncoupled case for all numbers of modes.

Figure 7 shows the tail attachment configuration BCFEH response for case A. Re-
garding the head patch configuration, the relative displacement for this tail configuration
under the prescribed motion in case A exhibits a larger amplitude than the input 0.01
m tail amplitude. The relative displacement and average power do not reach complete
convergence. The Pavg approaches a convergence at lower values than the uncoupled case.
The time histories for the relative displacement and average harvested power show that the
amplitude and phase approach convergence with a higher number of modes, as the head
patch configuration did. However, the tail patch coupled system is more affected by the
number of modes. Clearly, case A undulatory–oscillatory prescribed motion affects both
forcing terms in Equation (15), which requires the reduced-order model to have a higher
number of modes in the Galerkin discretization, although the system of equations is linear.
It is clear that the activation of the second derivative of the prescribed motion in case A
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means that the forcing is highly dependent on the mode number. More investigation on
this is shown in the following sections.

Figure 7. Tail attachment for case A: (a) maximum vr(L), (b) Pavg, (c) vr(L) time history and (d) voltage time history for
N = 1→ 7 , R = 105 Ω and ξ = 0.3.

The convergence of cases B and C was also investigated in the same manner; however,
the results were unrealistic and are omitted from this investigation. Amplitudes for the
vr(L) and Pavg were too large and were unrealistic. The combination of the mode shapes
with the altered polynomial envelope produced terms that influenced the system too much.
This unrealistic behavior is discussed below. Therefore, case A serves as an appropriate
case for further investigation to determine the impacts of the K undulatory term when
N = 7. Next, the investigation of case D is considered in Figures 8 and 9 to determine
the effects of prescribed motion on the system’s response when the undulatory term is
considered to be zero. The values of fp and ξ are considered to be the same as in case A.
Time histories consider an fp value of 5 Hz and a time length required for a response to
steady state which is found to be longer than for case D.
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Figure 8. Head attachment for case D: (a) vr(L) max, (b) Pavg, (c) vr(L) time history and (d) voltage time history for
N = 1→ 7 , R = 105 Ω and ξ = 0.3.

The convergence head patch configuration considering case D motion is shown in
Figure 8. A very different response of the system to case A is evident. For this motion case,
the relative displacement is much less affected and deviates slightly from a constant re-
sponse for all prescribed frequencies considered. The average harvested power approaches
a converged response that is higher than the uncoupled case. The phase of the vr(L) and
voltage time history are not affected in the same manner as in case A. This demonstrates
that the undulatory term, K, has a more complex influence on the system’s response. The
tail patch configuration has a very similar response to the head patch case, as shown in
Figure 9.

Cases E and F are representative of a typical base excitation. It is found that when
the complexity of the undulation and the forced curvature of the polynomial envelope
are removed, the system generates a converged response in a few modes due to the linear
characteristics of the reduced-order model. Since the uncoupled power model requires
at least a quadratic envelope constraint, the estimated response of the system is zero.
Therefore, to compare the uncoupled system to a coupled case, case D is selected for
further investigation.
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Figure 9. Tail attachment for case D: (a) vr(L) max, (b) Pavg, (c) vr(L) time history and (d) voltage time history for
N = 1→ 7 , R = 105 Ω and ξ = 0.3.

Table 4 gives values for N of 6 and 7 in cases A and D for the two patch configurations.
A single prescribed frequency of 5 Hz is selected. This table shows that the variation
between these higher modes in case A is larger for vr(L) and Pavg than case D. The vr(L)
difference between the head and tail configurations is perceived to be because of the mode
shape. The head configuration is more flexible in the tail region and could lead to a slightly
larger difference in the relative displacement. The tail configuration is stiffer at the tail,
and thus a more rigid system is created that converges with a smaller number of modes
at this point. There is a definite impact of the undulation term K that can be seen in the
case A Pavg values. The case A tail patch configuration shows the greatest variation of
harvested power out of all the cases investigated at 11.45%. When K = 0, the impact on
the harvested power variation for the higher modes is reduced. Further investigation is
required to explain this phenomenon.



Energies 2021, 14, 693 16 of 32

Table 4. Table of convergence for case D: maximum vr(L) and Pavg, fp = 5 Hz and ξ = 0.3.

Head Tail

vr(L)×10−2 (m) |Diff|
ValN=6

vr(L)×10−2 (m) |Diff|
ValN=6

Case A
R = 105 Ω

N = 6 2.1668
0.99%

2.2029
0.93%

N = 7 2.1453 2.1824

Case D
R = 105 Ω

N = 6 1.6198
0.12%

1.6207
0.093%

N = 7 1.6217 1.6222

Head Tail

Pavg (W) |Di f f |
ValN=6

Pavg (W) |Di f f |
ValN=6

Case A
R = 105 Ω

N = 6 3.3166× 10−3
2.62%

4.5115× 10−3
11.45%

N = 7 3.4035× 10−3 3.9949× 10−3

Case D
R = 105 Ω

N = 6 3.3612× 10−4
3.68%

3.4205× 10−4
1.49%

N = 7 3.4849× 10−4 3.4715× 10−4

To examine the factors influencing the BCFEH, the forcing terms in Equation (15) are
clarified in terms of their magnitude depending on the considered motion case and are
detailed in Tables 5 and 6. These terms are dependent on the number of modes, and each of
these terms is identified by its mode number (i). These terms are found by separating the
prescribed motion components that depend on x and time. Magnitudes of these constant
terms from the length evaluation are denoted for the double prime term as D and from the
double dot term as Λ. For case A prescribed motion, D has the largest magnitude, and the
tail configuration offers the largest variation of these values, as shown in Table 6. Cases
B–D all have an incrementally reduced magnitude when components of the envelope or K
are removed from the prescribed motion for head and tail patches. Typically, Λ is found
for base-excited systems and for excitations that are out of resonance; it can be seen for all
cases that these magnitudes are small for all values of i. The variation of the Λ magnitude
for the head case is smaller than the tail case, as is true for D.

Further investigation was carried out to try and explain the impacts of the terms
in Tables 5 and 6. Equation (16) contains a coupling term to Equation (15) along with
another excitation from the prescribed motion. The prescribed motion excitation term is
independent of the mode number and is known to be able to give us the uncoupled case if
the damping is very high. This coupling term is of interest as it has been shown to impact
the harvested power and is influenced by the number of modes, this term is defined as

γ =

(∫ L2

L1

{
N

∑
i=1

φ
′′
i

.
qı

}
dx

)
(22)
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Table 5. Table of forcing terms depending on mode number for the head patch.

D0 = D1 cos(ωt) + D2sin(ωt) = Dcos(ωt + φ1); where D =
√

D2
1 + D2

2

Λ0 = Λ1ω2
pL cos(ωt) + Λ2ω2

pLsin(ωt) = Λω2
pLcos(ωt + φ2); where Λ =

√
Λ2

1 + Λ2
2

Head

Case A Case B Case C Case D Case E Case F

i = 1
D = 51.0491

Λ =
1.5124× 10−5

D = 27.6550
Λ =

2.5322× 10−5

D = 38.3298
Λ =

1.7342× 10−5

D = 34.9648
Λ =

1.3927× 10−4

D = 0
Λ =

1.0514× 10−4

D = 0
Λ =

5.2968× 10−5

i = 2
D = 376.2971

Λ =
6.0085× 10−5

D = 349.5832
Λ =

5.9494× 10−5

D = 337.7887
Λ =

1.8576× 10−5

D = 66.2740
Λ =

1.2492× 10−5

Λ =
2.4546× 10−6

Λ =
3.4066× 10−5

i = 3

D =
1.3211× 103

Λ =
8.6913× 10−5

D =
1.1278× 103

Λ =
5.4179× 10−5

D = 829.2084
Λ =

5.6216× 10−5

D = 143.2050
Λ =

1.4790× 10−5

Λ =
1.0209× 10−5

Λ =
2.1958× 10−5

i = 4

D =
3.5329× 103

Λ =
1.7550× 10−5

D =
2.7855× 103

Λ =
2.7622× 10−5

D = 678.1077
Λ =

2.9229× 10−5

D = 256.9345
Λ =

7.6621× 10−6

Λ =
9.8027× 10−6

Λ =
1.5544× 10−5

i = 5

D =
4.1794× 103

Λ =
2.1318× 10−5

D =
1.7432× 103

Λ =
1.3214× 10−5

D = 777.3526
Λ =

1.7981× 10−5

D = 167.5726
Λ =

9.3540× 10−6

Λ =
8.8458× 10−6

Λ =
1.2392× 10−5

i = 6

D =
4.2146× 103

Λ =
7.8878× 10−6

D =
3.1910× 103

Λ =
1.941× 10−5

D = 967.2774
Λ =

1.5006× 10−5

D = 352.5435
Λ =

7.3019× 10−6

Λ =
7.7865× 10−6

Λ =
1.0187× 10−5

i = 7

D =
5.5492× 103

Λ =
1.0522× 10−5

D =
2.9218× 103

Λ =
9.7966× 10−6

D = 721.7400
Λ =

1.0481× 10−5

D = 446.7825
Λ =

6.9745× 10−6

Λ =
6.6603× 10−6

Λ =
8.3223× 10−6

The piezoelectric coupling term θ is not considered for the definition of this term. The
effects of case D motion on γ are shown in Figure 10. This figure shows the maximum
value of these time-dependent terms to determine the N mode number effect for a range of
frequencies. Figure 10 demonstrates that there are impacts on the convergence in Equation
(16) for the different configurations of the patch under case D motion. Figure 10a shows
that the variation in the maximal values of γ for the head patch configuration converges
with a small variation when increasing the number of modes. Figure 10b demonstrates
that, for the tail patch attachment, there is a clear convergence for N = 6 and 7 with a
large variation between the modes under consideration. Table 7 gives insight into γ for
different load resistances and cases of motion for N = 1→ 7 . The unclear convergence
phenomenon of the maximal value of γ for the head patch can be observed for the case A
values for the three load resistances used and in case D for the two other load resistances.
The transition of results to convergence in the tail patch case is perceived for the three
electrical load resistances for case D. This suggests that seven modes are possibly enough
to approximate the performance of the system for case D. Case A could potentially present
issues for the power harvester due to the undulatory terms impacting the system and
causing a larger variation in the tail patch configuration. The load resistance has been
proven to have some impact on the convergence of these systems, but it is considered
minimal compared to the case of motion.
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Table 6. Table of forcing terms depending on mode number for the tail patch.

D0 = D1 cos(ωt) + D2sin(ωt) = Dcos(ωt + φ1); where D =
√

D2
1 + D2

2

Λ0 = Λ1ω2
pL cos(ωt) + Λ2ω2

pLsin(ωt) = Λω2
pLcos(ωt + φ2); where Λ =

√
Λ2

1 + Λ2
2

Case A Case B Case C Case D Case E Case F

i = 1
D = 30.3592

Λ =
9.2471× 10−6

D = 15.4722
Λ =

2.1167× 10−5

D = 22.1269
Λ =

1.7064× 10−5

D = 20.8087
Λ =

1.7440× 10−4

D = 0
Λ =

1.3018× 10−4

D = 0
Λ =

6.0188× 10−5

i = 2
D = 358.4153

Λ =
8.0113× 10−5

D = 286.2125
Λ =

7.1840× 10−5

D = 278.1450
Λ =

2.9552× 10−5

D = 84.7969
Λ =

1.9829× 10−5

Λ =
3.4405× 10−6

Λ =
3.0193× 10−5

i = 3

D =
1.5766× 103

Λ =
9.5397× 10−5

D =
1.4662× 103

Λ =
6.3837× 10−5

D = 850.3386
Λ =

5.0922× 10−5

D = 170.8961
Λ =

1.3764× 10−5

Λ =
8.1347× 10−6

Λ =
1.7421× 10−5

i = 4

D =
4.1452× 103

Λ =
2.7765× 10−5

D =
3.1095× 103

Λ =
2.9907× 10−5

D = 841.8907
Λ =

2.2707× 10−5

D = 292.5798
Λ =

5.3014× 10−6

Λ =
7.7336× 10−6

Λ =
1.2410× 10−5

i = 5

D =
5.2101× 103

Λ =
2.2700× 10−5

D =
2.6451× 103

Λ =
8.2872× 10−6

D = 912.0545
Λ =

1.3641× 10−5

D = 408.3896
Λ =

7.9469× 10−6

Λ =
6.7128× 10−6

Λ =
9.4904× 10−6

i = 6

D =
5.7004× 103

Λ =
3.6307× 10−6

D =
3.8640× 103

Λ =
9.8558× 10−6

D =
1.2206× 103

Λ =
1.1583× 10−5

D = 433.8227
Λ =

5.3117× 10−6

Λ =
5.9012× 10−6

Λ =
7.7706× 10−6

i = 7

D =
6.9111× 103

Λ =
8.8546× 10−6

D =
3.8624× 103

Λ =
8.0644× 10−6

D =
1.1560× 103

Λ =
8.0925× 10−6

D = 379.4358
Λ =

5.6015× 10−6

Λ =
5.2992× 10−6

Λ =
6.6733× 10−6

Figure 10. Maximum value of γ for case D: (a) head attachment and (b) tail attachment for N = 1→ 7 , R = 105 Ω and
ξ = 0.3.
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Table 7. Values for γmax for fp = 5 Hz and ξ = 0.3.

Head
R=103 Ω

Head
R=105 Ω

Head
R=108 Ω

Tail
R=103 Ω

Tail
R=105 Ω

Tail
R=108 Ω

Case A

N = 1 4.977 4.969 4.775 0.2392 0.2404 0.1825

N = 2 5.589 5.574 5.604 1.862 1.868 1.523

N = 3 5.494 5.479 5.605 7.071 7.086 7.121

N = 4 2.648 2.629 2.826 14.727 14.740 14.884

N = 5 4.661 4.639 4.854 19.109 19.118 19.349

N = 6 4.244 4.227 4.472 21.213 21.222 21.412

N = 7 3.769 3.754 4.030 21.705 21.725 21.909

Case D

N = 1 3.401 3.396 3.271 0.164 0.163 0.157

N = 2 2.809 2.811 2.691 0.587 0.586 0.555

N = 3 2.823 2.821 2.693 1.175 1.171 1.110

N = 4 3.037 3.042 2.889 1.788 1.785 1.695

N = 5 2.959 2.962 2.811 2.248 2.241 2.130

N = 6 2.992 2.996 2.845 2.432 2.438 2.329

N = 7 3.031 3.035 2.881 2.479 2.477 2.369

5.2. Case Motion Impacts the Interaction between Prescribed and Relative Motions

During the convergence analysis investigation, vr(L) for case A motion is perceived
to be larger than the maximal prescribed value at this location. During case D motion,
vr(L) also increased relative to the same value of the prescribed motion. It is necessary to
determine how the total displacement is affected to distinguish if the system is moving
outside the bounds of the desired envelope of the motion. Time histories are used to help
explain this phenomenon, as shown in Figure 11. It is obvious in Figure 11 that the relative
displacement is larger for cases A and D for the two patch configurations. However, the
phase of vr results in a more constructive build in case A and destructive loss in case D
compared to the prescribed motion. This results in a total amplitude (vt) that is larger than
vp for case A and smaller in case D. Table 8 details the values for prescribed, relative and
total displacement for varying prescribed frequencies. The larger total motion for case A
remains true for the frequency range, as well the smaller total motion in case D.

Similar to the displacement time history investigation, an investigation into γ and
the prescribed term in Equation (16) is carried out to determine how the coupled motion
case affects the interaction of the terms in this equation. Figure 12 details the response of
the coupled systems for fp = 5 Hz. These time histories are observed for the amplitude
and phase for the γ and prescribed term. Figure 12a,c demonstrates that the amplitude
for γ and the prescribed term are very similar for the tail patch configurations. For the
tail configurations, the amplitude for these terms vary, as shown in Figure 12b,d. The
prescribed term and γ tend to be out of phase for the head patch and in phase for the tail
patch. The values of the amplitude are detailed in Table 9 for varying frequencies.
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Figure 11. Time history for v (L) case A, (a) head attachment and (b) tail attachment, and case D, (c)
head attachment and (d) tail attachment, for N = 7, R = 105 Ω and ξ = 0.3.

Table 8. Maximum v(L) (m) amplitude for R = 105 Ω and ξ = 0.3.

Head Tail

Case A

Frequency (Hz)
Prescribed (vp)
×10−2

Relative (vr)
×10−2

Total motion
(vt) ×10−2

Prescribed (vp)
×10−2

Relative (vr)
×10−2

Total motion
(vt) ×10−2

1 1 2.1174 1.4586 1 2.1230 1.4580

2 1 2.1232 1.4558 1 2.1365 1.4571

3 1 2.1298 1.4355 1 2.1507 1.4574

4 1 2.1371 1.4510 1 2.1662 1.4603

5 1 2.1453 1.4488 1 2.1824 1.4623

6 1 2.1534 1.4524 1 2.2017 1.4683

7 1 2.1634 1.4528 1 2.2212 1.4749

8 1 2.1704 1.4457 1 2.2347 1.4828

9 1 2.1827 1.4568 1 2.2639 1.4934

Case D

Prescribed (vp)
×10−2

Relative (vr)
×10−2

Total motion
(vt) ×10−3

Prescribed (vp)
×10−2

Relative (vr)
×10−2

Total motion
(vt) ×10−3

1 1 1.62093 6.21132 1 1.62121 6.21545

2 1 1.62096 6.21779 1 1.62121 6.22787

3 1 1.62175 6.22957 1 1.62256 6.24913

4 1 1.62145 6.24256 1 1.62174 6.28299

5 1 1.62169 6.26169 1 1.62220 6.31971

6 1 1.62418 6.28476 1 1.62745 6.36952

7 1 1.62488 6.30981 1 1.62995 6.42618

8 1 1.62523 6.33117 1 1.63273 6.47224

9 1 1.62769 6.38672 1 1.63534 6.56591
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Figure 12. Time history for γ in case A, (a) head attachment and (b) tail attachment, and case D, (c) head attachment and
(d) tail attachment, for N = 7, R = 105 Ω and ξ = 0.3.

5.3. Impacts of Load Resistance and Damping on the System’s Performance

All previous studies were done using a fixed load resistance or damping ratio. The
two configurations of patches and motion are used to investigate their performance impacts
on the BCFEH when responding to a variation of these terms, as shown in Figure 13. A
performance table is then presented to detail characteristics of the respective configuration.
The performance of the BCFEH is known to be highly dependent on the kind of motion.
Figure 13a,c,e shows the vr(L) response to the variation of the load resistance. The relative
motion undergoes the shunt damping phenomenon when the load resistance for optimal
power harvesting occurs. Figure 13b,d,f presents the harvested power for the four configu-
rations. The relative motion for the head patch in case A shows an increase in amplitude
after the shunt damping impact, which can be attributed to the undulatory term affecting
the motion. The tail patch in case A demonstrates a reduction in amplitude and does
not exhibit the same phenomenon; thus, the structural stiffness over the length possibly
has an impact. The relative motion in case D is more impacted by different ξ values than
the power harvested, as shown in Figure 13e,f, respectively. The head and tail patches
undergoing case D motion are very similar, and so only the tail patch results are shown.
Values for the case A motion can be found in Table 10, and values for case D motion are
shown in Table 11.
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Table 9. Current investigation in Gauss law terms for R = 105 Ω and ξ = 0.3.

Head Tail

Case A

Frequency
(Hz)

{
.

vp
′
∣∣∣L1

0

}
RMS

{γ}RMS Total icRMS

{
.

vp
′
∣∣∣L
L1

}
RMS

{γ}RMS Total icRMS

1 0.8288 0.7578 0.0726 5.3298 2.9888 7.7665

2 1.6575 1.5163 0.1508 10.6585 6.0014 15.4966

3 2.4865 2.2633 0.2252 15.9895 9.0109 23.2152

4 3.3151 3.0114 0.3174 21.3006 12.0326 30.9158

5 4.1441 3.7537 0.4406 26.6258 15.0815 38.5161

6 4.9727 4.4988 0.6031 31.9756 18.1303 46.2722

7 5.8018 5.2470 0.7164 37.3089 21.2052 53.9468

8 6.6302 5.9799 0.8135 42.6012 24.3132 61.5902

9 7.4595 6.7297 1.0927 47.9686 27.4530 69.1966

Case D{
.

vp
′
∣∣∣L1

0

}
RMS

{γ}RMS Total icRMS

{
.

vp
′
∣∣∣L
L1

}
RMS

{γ}RMS Total icRMS

1 0.6126 0.6049 0.0153 0.6126 1.4386 0.8263

2 1.2252 1.2106 0.0417 1.2252 2.8771 1.6524

3 1.8378 1.8199 0.0764 1.8378 4.3324 2.4954

4 2.4456 2.4317 0.1306 2.4456 5.7776 3.3320

5 3.0631 3.0347 0.1959 3.0630 7.1980 4.1493

6 3.6757 3.6473 0.2639 3.6756 8.6734 5.0050

7 4.2882 4.2407 0.3434 4.2882 10.1217 5.8525

8 4.8912 4.8481 0.4551 4.8912 11.5482 6.7341

9 5.5134 5.4692 0.5765 5.5134 13.0296 7.5890

Figure 13. Cont.
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Figure 13. Case A: (a) head max vr(L), (b) head Pavg, (c) tail vr(L), (d) tail Pavg; case D: (e) tail vr(L), (f) tail Pavg for N = 7
and fp = 5 Hz varying resistance and multiple ξ.

Table 10. Case A motion values of vr(L) and Pavg with corresponding resistances for different ξ and patch configuration
when f = 5 Hz.

Damping
Value Case A Head Case A Tail

ξ = 0.1

vr(L) max =
2.1354× 10−2 m

vr(L) min =
1.9605× 10−2 m

Pavgmax = 3.5709× 10−3 W
PavgUnc = 1.6347× 10−3 W

Rvrmax = 5.1506× 102 Ω
Rvrmin = 2.3598× 106 Ω
RPmax = 2.3598× 106 Ω

RPUnc =
2.3598× 106 Ω

vr(L) max =
2.1539× 10−2 m

vr(L) min =
1.7670× 10−2 m

Pavgmax = 4.3121× 10−2 W
PavgUnc = 6.7598× 10−2 W

Rvrmax = 2.8683× 105 Ω
Rvrmin = 4.9535× 107 Ω

RPmax =
2.3598× 106 Ω

RPUnc =
2.3598× 106 Ω

ξ = 0.3

vr(L) max =
2.1596× 10−2 m

vr(L) min =
1.9809× 10−2 m

Pavgmax = 3.6815× 10−3 W
PavgUnc = 1.6347× 10−3 W

Rvrmax = 4.0753× 102 Ω
Rvrmin = 2.3598× 106 Ω

RPmax =
2.3598× 106 Ω

RPUnc =
2.3598× 106 Ω

vr(L) max =
2.1821× 10−2 m

vr(L) min =
1.7929× 10−2 m

Pavgmax = 4.3041× 10−2 W
PavgUnc = 6.7598× 10−2 W

Rvrmax = 1.4208× 105 Ω
Rvrmin = 1× 109 Ω

RPmax =
2.3598× 106 Ω

RPUnc =
2.3598× 106 Ω

ξ = 0.5

vr(L) max =
2.1795× 10−2 m

vr(L) min =
2.0035× 10−2 m

Pavgmax = 3.7978× 10−3 W
PavgUnc = 1.6347× 10−3 W

Rvrmax = 5.1506× 102 Ω
Rvrmin = 2.3598× 106 Ω
RPmax = 2.3598× 106 Ω

RPUnc =
2.3598× 106 Ω

vr(L) max =
2.2057× 10−2 m

vr(L) min =
1.8238× 10−2 m

Pavgmax = 4.2499× 10−2 W
PavgUnc = 6.7598× 10−2 W

Rvrmax = 2.8683× 105 Ω
Rvrmin = 1× 109 Ω

RPmax =
2.3598× 106 Ω

RPUnc =
2.3598× 106 Ω
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Table 11. Case D values of vr(L) and Pavg with corresponding resistances for different ξ and patch configuration when
f = 5 Hz.

Damping
Value Case D Head Case D Tail

ξ = 0.1

vr(L) min =
1.6262× 10−2 m

vr(L) min =
1.5277× 10−2 m

Pavgmax = 3.7462× 10−3 W
PavgUnc = 8.9291× 10−4 W

Rvrmax = 1.6103× 104 Ω
Rvrmin = 4.5204× 107Ω
RPmax = 2.3598× 106 Ω

RPUnc = 2.3598×
106 Ω

vr(L) max =
2.1823× 10−2 m

vr(L) min =
1.7929× 10−2 m

Pavgmax = 3.7788× 10−3 W
PavgUnc = 8.9291× 10−4 W

Rvrmax = 1.2690× 105 Ω
Rvrmin = 1× 108 Ω

RPmax = 2.3598× 106 Ω
RPUnc =

2.3598× 106 Ω

ξ = 0.2

vr(L) max =
1.6246× 10−2 m

vr(L)avgmin
=

1.5266× 10−2 m
Pavgmax = 3.7588× 10−3W
PavgUnc = 8.9291× 10−4 W

Rvrmax = 6.7233× 102 Ω
Rvrmin = 6.2102× 107Ω

RPmax =
2.3598× 106 Ω

RPUnc =
2.3598× 106 Ω

vr(L) max =
1.6276× 10−2 m

vr(L) min =
1.5106× 10−2 m

Pavgmax = 3.7617× 10−3 W
PavgUnc = 8.9291× 10−4 W

Rvrmax = 1.0826× 103

Rvrmin = 3.8566× 107 Ω
RPmax = 2.3598× 106 Ω

RPUnc =
2.3598× 106 Ω

ξ = 0.3

vr(L) max =
1.6222× 10−2 m

vr(L) min =
1.5248× 10−2 m

Pavgmax = 3.7245× 10−3 W
PavgUnc = 8.9291× 10−4 W

Rvrmax = 100 Ω
Rvrmin = 3.8566× 107 Ω
RPmax = 2.3598× 106 Ω

RPUnc =
2.3598× 106 Ω

vr(L) max =
1.6233× 10−2 m

vr(L) min =
1.5070× 10−2 m

Pavgmax = 3.7181× 10−3 W
PavgUnc = 8.9291× 10−4 W

Rvrmax = 1.6102× 102 Ω
Rvrmin = 3.8566× 107Ω
RPmax = 2.3598× 106 Ω

RPUnc =
2.3598× 106 Ω

ξ = 0.4

vr(L) max =
1.6194× 10−2 m

vr(L) min =
1.5216× 10−2 m

Pavgmax = 3.7091× 10−3 W
PavgUnc = 8.9291× 10−3 W

Rvrmax = 2.8072× 103 Ω
Rvrmin = 6.2102× 107 Ω
RPmax = 2.3598× 106 Ω

RPUnc =
2.3598× 106 Ω

vr(L) max =
1.6197× 10−2 m

vr(L) min =
1.5034× 10−2 m

Pavgmax = 3.7117× 10−3 W
PavgUnc = 8.9291× 10−4 W

Rvrmax = 1.0826× 103 Ω
Rvrmin = 6.2102× 107 Ω
RPmax = 2.3598× 106 Ω

RPUnc =
2.3598× 106 Ω

ξ = 0.5

vr(L) max =
1.6156× 10−2 m

vr(L) min =
1.5191× 10−2 m

Pavgmax = 3.7048× 10−3 W
PavgUnc = 8.9291× 10−4 W

Rvrmax = 1.7433× 103 Ω
Rvrmin = 2.3950× 107 Ω
RPmax = 2.3598× 106 Ω

RPUnc =
2.3598× 106 Ω

vr(L) max =
1.6176× 10−2 m

vr(L) min =
1.5020× 10−2 m

Pavgmax = 3.6945× 10−3 W
PavgUnc = 8.9291× 10−4 W

Rvrmax = 2.8072× 103 Ω
Rvrmin = 1× 108 Ω

RPmax = 2.3598× 106 Ω
RPUnc =

2.3598× 106 Ω

ξ = 0.6

vr(L) max =
1.6148× 10−2 m

vr(L) min =
1.5179× 10−2 m

Pavgmax = 3.6970× 10−3 W
PavgUnc = 8.9291× 10−4 W

Rvrmax = 2.5929× 102 Ω
Rvrmin = 1× 108 Ω

RPmax = 2.3598× 106 Ω
RPUnc =

2.3598× 106 Ω

vr(L) max =
1.6138× 10−2 m

vr(L) min =
1.4985× 10−2 m

Pavgmax = 3.6741× 10−3 W
PavgUnc = 8.9291× 10−4 W

Rvrmax = 4.1753× 102 Ω
Rvrmin = 3.8566× 107 Ω
RPmax = 2.3598× 106 Ω

RPUnc =
2.3598× 106 Ω

ξ = 0.7

vr(L) max =
1.6113× 10−2 m

vr(L) min =
1.5166× 10−2 m

Pavgmax = 3.6842× 10−3 W
PavgUnc = 8.9291× 10−4 W

Rvrmax = 2.8072× 103 Ω
Rvrmin =

2.3950× 107 Ω
RPmax = 2.3598× 106 Ω

RPUnc =
2.3598× 106 Ω

vr(L) max =
1.6084× 10−2 m

vr(L) min =
1.4944× 10−2 m

Pavgmax = 3.6434× 10−3 W
PavgUnc = 8.9291× 10−4 W

Rvrmax = 1.6102× 102 Ω
Rvrmin = 2.3950× 106 Ω
RPmax = 2.3598× 106 Ω

RPUnc =
2.3598× 106 Ω

Case A motion presents harvested power curves which should be considered to be
uncertain, especially for the tail patch configuration. The power harvested for the head
patch in case A is dramatically higher than the uncoupled power harvester results, which
can be seen in the convergence investigations. Compared to the tail patch in case A, the
head patch could potentially harvest a similar amount to the tail patch configuration,
as shown in Table 10. The harvested power appears to be very similar for both patch
configurations case D motion, as indicated in Table 11.
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The importance of damping on the relative displacement shown in Tables 10 and 11
needs some more detailed discussion. The head patch placement for the BCFEH under
case D motion considering ξ = 0.1 shows a maximum relative displacement amplitude of
1.6262× 10−2 m. When ξ = 0.7, this maximum amplitude is 1.6113× 10−2 m. It is clear
that the increase in damping results in a decrease in amplitude. Therefore, the minimum
relative displacement values for ξ = 0.1 and 0.7 are 1.5277× 10−2 m and 1.5167× 10−2 m,
respectively, and thus follow the same logic. Regarding the tail patch placement for
the BFCEH under case D motion, the maximum relative displacement is more affected
by the change of damping. For values of ξ equal to 0.1 and 0.7, relative displacement
values of 2.1823× 10−2 m and 1.6084× 10−2 m, respectively, are obtained. The minimum
relative displacements of the tail tip are 1.7929× 10−2 m and 1.4944× 10−2 m. The tail
patch configuration is more sensitive to the variations of the damping that affects the
tip displacement.

The harvested power is only slightly affected by the damping variation. The kind of
motion and patch configuration do not largely affect the load resistance response of the
energy harvester. The slight variation can be seen for the average powers for the head patch
and tail patch, considering ξ = 0.1 and 0.7, which are 3.7462× 10−3 W and 3.6842× 10−3 W
and 3.7788 × 10−3 W and 3.6434 × 10−3 W, respectively. Since the uncoupled system
is unaffected by damping and the energy harvester exhibits a very similar interaction
with motion, the maximum Pavg for the uncoupled head and tail patch configuration is
8.9291× 10−4 W. Comparing the coupled and uncoupled powers, the case D motion patch
configurations are shown to be able to harvest more power. The head patch coupled case
exhibits less variation from the uncoupled power. The tail patch configuration is more
sensitive to the damping and presents cases where it harvests less power for higher values
of damping.

Investigating the load resistances which correspond to these values, it is clear that
there is an equal optimal load resistance for the coupled and uncoupled harvested power.
The resistance related to the maximum or minimum relative displacement does not have
this unity. Previous energy harvester works have shown that the resistance that relates to
maximal power is an optimal resistance of Ropt ≈ 1/Cpω. For the two patch configurations
forced with fp = 5 Hz, Ropt ≈ 2.3959× 106 Ω for both cases as the same length of patch is
used in both configurations, and thus Cp is equivalent.

To investigate how the change in ξ could possibly alter the total motion, the methods
employed in Section 5.3 are reutilized for three values of damping. The results are organized
into Table 12. The impact of the damping on the total motion is not dramatic.

5.4. Prescribed Frequency Impacts on Harvester Performance

It is known that frequency can have an impact on the performance of the system when
the BCFEH is operating at prescribed excitations. In this section, we aim to explain how
different operating conditions could alter the displacement and power along with identi-
fying load resistances which relate to these values. Figure 14 organizes this investigation
for the combinations of patch placement and motion, as done for previous investigations.
Additionally, uncoupled harvested power results are compared to the coupled results as
in Section 5.3. Again, the head and tail patches undergoing case D motion exhibit very
similar results, and so only the tail patch case is shown.



Energies 2021, 14, 693 26 of 32

Table 12. Impacts on max v(L) for varying ξ when R = 105 Ω and fp = 5 Hz.

Head Tail

Case A

ξ
Prescribed
(vp) ×10−2

Relative
(vr) ×10−2

Total
motion

(vt) ×10−2

Prescribed
(vp) ×10−2

Relative
(vr) ×10−2

Total
motion

(vt) ×10−2

0.1 1 2.1207 1.4587 1 2.1525 1.4736

0.3 1 2.1453 1.4488 1 2.1824 1.4623

0.5 1 2.1654 1.4437 1 2.2203 1.4488

Case D

Prescribed
(vp) ×10−2

Relative
(vr) ×10−2

Total
motion

(vt) ×10−3

Prescribed
(vp) ×10−2

Relative
(vr) ×10−2

Total
motion

(vt) ×10−3

0.1 1 1.6251 6.2513 1 1.6295 6.2953

0.3 1 1.6217 6.2617 1 1.6222 6.3197

0.5 1 1.6150 6.2735 1 1.6165 6.3477

Figure 14. Case A (a) head attachment root mean squared (RMS) vr(L) and (b) head attachment Pavg, and (c) tail attachment
RMS vr(L) and (d) tail attachment Pavg, and Case D (e) tail attachment RMS vr(L) and (f) tail attachment Pavg for N = 7,
varying resistances and multiple frequencies with ξ = 0.3.
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Indeed, the phenomena seen for fp = 5 Hz from the damping investigation are still
present. Two outlier prescribed frequency values are used: fp = 2 Hz for a low operating
frequency and fp = 8 Hz for excessive frequency operation. These three values are used to
give a range of responses. Figure 14 shows that the frequency is influential in the values for
the relative displacement and power. Relative displacement is shown in Figure 14a,c for
the head and tail configuration in case A, and similarly for case D in Figure 14e,f. Power is
categorized in the same manner, with values for case A presented in Figure 14b,d and for
case D presented in Figure 14f for the head and tail patch, respectively. There is variation
in the relative displacement and power for these three prescribed frequencies, which can
be more easily perceived in Tables 13 and 14 for case A and case D motion, respectively.

Table 13. Case A: table of values for vr(L) and Pavg considering different fp.

Case A Head Case A Tail

vr(L) (m) Power (W) vr(L)× 10−2(m) Power (W)

fp = 2 Hz

(Max)
Amp: 2.1288× 10−2

Res: 4.0753× 102 Ω
(Min)

Amp: 1.9577× 10−2

Res: 6.0209× 106 Ω

(Max)
Amp: 1.4356× 10−2

Res: 6.0209× 106 Ω
(Uncoupled Max)

Amp: 6.5269× 10−4

Res: 6.0209× 106 Ω

(Max)
Amp: 2.1390× 10−2

Res: 5.7904× 105 Ω
(Min)

Amp: 1.7606× 10−2

Res: 1× 108 Ω

(Max)
Amp: 1.7226× 10−2

Res: 6.0209× 106 Ω
(Uncoupled Max)

Amp: 2.6988× 10−2

Res: 6.0209× 106 Ω

fp = 5 Hz

(Max)
Amp: 2.1594× 10−2

Res: 4.0753× 102 Ω
(Min)

Amp: 1.9855× 10−2

Res: 2.3598× 106 Ω

(Max)
Amp: 3.6815× 10−2

Res: 2.3598× 106 Ω
(Uncoupled Max)

Amp: 1.5739× 10−3

Res: 2.3595× 106 Ω

(Max)
Amp: 2.1824× 10−2

Res: 1.4208× 105 Ω
(Min)

Amp: 1.7929× 10−2

Res: 1× 108 Ω

(Max)
Amp: 4.2388× 10−2

Res: 2.3598× 106 Ω
(Uncoupled Max)

Amp: 6.5084× 10−2

Res: 2.3598× 106 Ω

fp = 8 Hz

(Max)
Amp: 2.1945× 10−2

Res: 2.5514× 102 Ω
(Min)

Amp: 2.0168× 10−2

Res: 1.4774× 106 Ω

(Max)
Amp: 6.0035× 10−2

Res: 1.4474× 106 Ω
(Uncoupled Max)

Amp: 2.5777× 10−3

Res: 1.4774× 106 Ω

(Max)
Amp: 2.2356× 10−2

Res: 2.7585× 104 Ω
(Min)

Amp: 1.8371× 10−2

Res: 5.6234× 107 Ω

(Max)
Amp: 6.6487× 10−2

Res: 1.4474× 106 Ω
(Uncoupled Max)

Amp: 1.0659× 10−1

Res: 1.4774× 106 Ω

Table 14. Case D: table of values for vr(L) and Pavg considering different fp.

Case D Head Case D Tail

vr(L) (m) Power (W) vr(L)× 10−2(m) Power (W)

fp = 2 Hz

(Max)
Amp: 1.6212× 10−2

Res: 1× 102 Ω
(Min)

Amp: 1.5245× 10−2

Res: 7.9123× 107 Ω

(Max)
Amp:1.4979× 10−3

Res: 6.0209× 106 Ω
(Uncoupled Max)

Amp: 3.5650× 10−4

Res: 6.0209× 106 Ω

(Max)
Amp: 1.6216× 10−2

Res: 1.1242× 105 Ω
(Min)

Amp: 1.5065× 10−2

Res: 1× 108 Ω

(Max)
Amp:1.4897× 10−3

Res: 6.0209× 106 Ω
(Uncoupled Max)

Amp: 3.5650× 10−4

Res: 6.0209× 106 Ω

fp = 5 Hz

(Max)
Amp: 1.6225× 10−2

Res: 4.0753× 102 Ω
(Min)

Amp:1.5247× 10−2

Res: 3.9194× 107 Ω

(Max)
Amp: 3.6557× 10−3

Res: 2.3598× 106 Ω
(Uncoupled Max)

Amp: 8.5969× 10−4

Res: 2.3598× 106 Ω

(Max)
Amp: 1.6325× 10−2

Res: 2.0187× 102 Ω
(Min)

Amp: 1.5069× 10−2

Res: 1.9415× 107 Ω

(Max)
Amp: 3.6695× 10−3

Res: 2.3598× 106 Ω
(Uncoupled Max)

Amp: 8.5969× 10−4

Res: 2.3598× 106 Ω

fp = 8 Hz

(Max)
Amp: 1.6260× 10−2

Res: 3.3529× 103 Ω
(Min)

Amp: 1.5271× 10−2

Res: 3.9194× 107 Ω

(Max)
Amp: 5.7958× 10−3

Res: 1.4774× 106 Ω
(Uncoupled Max)

Amp: 1.4079× 10−3

Res: 1.4774× 106 Ω

(Max)
Amp: 1.6347× 10−2

Res: 5.1506× 102 Ω
(Min)

Amp: 1.5149× 10−2

Res: 4.935× 107 Ω

(Max)
Amp: 5.7732× 10−3

Res: 1.4774× 106 Ω
(Uncoupled Max)

Amp: 1.4079× 10−3

Res: 1.4774× 106 Ω
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The impact of the prescribed frequency is readily apparent when looking at the
percentage of value variation when fp = 2 and 8 Hz. The relative displacement variation is
taken between the determined maximal values, while the maximum power is compared
for the coupled and uncoupled methods for each of the different frequencies. Case A’s
maximum relative displacement percentage variations are 2.99% and 4.32% for the head
and tail patch; the minimum value variation is 2.93% and 4.16%. Case D’s variations for
the maximum values are 0.3% and 0.8%, and the minimum variations are 0.17% and 0.55%
for the head and tail patch configuration at the two outlier frequencies.

The effect on the harvested power is investigated by considering the variation of
uncoupled versus coupled values for individual prescribed frequencies, and then uncou-
pled maximum comparisons for fp = 2 and 8 Hz. Case A motion causes the harvested
power to be dramatically different to the uncoupled case for the head patch and the power
for the tail to be uncertain due to lack of convergence; thus, the percentage variation is
not investigated. For case D motion and fp = 2 Hz, the variations of harvested power
for the head and tail configuration are 320.17% and 317.87%, values for fp = 5 Hz are
325.23% and 326.84%, and values for fp = 8 Hz are 309.05% and 310.06%. The variations
of the uncoupled values for fp values of 2–5 and 5–8 Hz are 59.3% and 36.93% for the head
coupled system and 59.4% and 36.44% for the tail coupled system.

As seen in Section 5.3, the load resistance which corresponds to the value for the
maximal power in the coupled and uncoupled cases is in unity depending on the prescribed
frequency. This continually supports the assumption that Ropt ≈ 1/Cpω, which can be
considered for the BCFEH regardless of the motion case but is dependent on the patch
characteristics and the prescribed frequency. Clearly, an increase in the prescribed frequency
is followed by a decrease in the optimal value of the load resistance.

5.5. Prescribed Frequency and Damping with Optimal Resistance

Sections 5.3 and 5.4 have shown that the optimal resistance can be approximated by
1/Cpωp. Indeed, this value influences the system, but by considering this optimal case, the
sensitivity of the BCFEH to the damping and prescribed frequency can be more thoroughly
investigated for harvesting under optimal circuitry conditions. Figure 15 shows how these
terms vary the performance of the head and tail patch configurations for Case D. Case
A motion results for this optimal resistance configuration are not included in Figure 15
but are presented in Table 15. The relative motion is affected by ξ and fp, but as shown
in Sections 5.3 and 5.4, these values are predominately affected by a growth of amplitude
for decreasing values of the damping and increasing prescribed frequency. The effects of
damping and prescribed frequency are perceived to behave as a more normal dynamical
system. With increasing values of ξ, the relative displacement amplitude decreases, while
increasing fp increases the relative displacement amplitude.

Figure 15. Cont.
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Figure 15. Case D: optimal resistance results for (a) head vr(L), (b) head patch Pavg, (c) tail vr(L), (d) tail patch Pavg for
varying ξ and fp.

Table 15. Maximum and minimum values for case A and D motion and head and tail patch placement
for optimal resistances and variable ξ and fp.

Case A Head Case A Tail

vr(L) (m)

(Max)
2.0601× 10−2

(Min)
1.9444× 10−2

(Max)
2.1044× 10−2

(Min)
1.9549× 10−2

Pavg (W)

(Max)
6.5542× 10−2

(Min)
3.5219× 10−3

(Uncoupled Max)
2.6159× 10−3

(Uncoupled Min)
1.6350× 10−4

(Max)
6.9594× 10−2

(Min)
4.2724× 10−3

(Uncoupled Max)
1.0817× 10−1

(Uncoupled Min)
6.7606× 10−3

Case D Head Case D Tail

vr(L) (m)

(Max)
1.5764× 10−2

(Min)
1.5413× 10−2

(Max)
1.5755× 10−2

(Min)
1.5055× 10−2

Pavg (W)

(Max)
6.0246× 10−3

(Min)
3.7043× 10−4

(Uncoupled Max)
1.4288× 10−3

(Uncoupled Min)
8.9302× 10−5

(Max)
6.0971× 10−3

(Min)
3.7046× 10−4

(Uncoupled Max)
1.4288× 10−3

(Uncoupled Min)
8.9302× 10−5

Table 15 details the maximum and minimum values for motion of cases A and D under
the Ropt ≈ 1/Cpωp condition. Case A motion has been shown to be extremely impactful
on the motion and harvested power. The K term causes the relative motion to be larger
when considered to be the defined 2π/L than when zero. This undulatory term causes
the harvested power to be exceptionally high with values varying with an exponential
power difference compared to when it is considered zero. The relative amplitude of the
head patch is smaller for case A and larger for case D motion when compared to the tail
patch values. The tail patch harvests more power than the head patch for cases A and D.
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The comparison of results for the uncoupled versus coupled BCFEH show that K
has a large impact on the system. These systems harvest the largest amount of energy
when fp = 8 Hz. For case A, the head patch harvests 6.5542 × 10−2 W and 2.6159 ×
10−3 W for the coupled and uncoupled systems, and the coupled and uncoupled tail
patch harvests 6.9594× 10−2 W and 1.0817× 10−1 W. In the coupled system, the head
and tail patch harvest similar amounts of power, but the uncoupled system has a large
variability of results. The maximum power for the head patch coupled system is larger
than the uncoupled case. The tail patch uncoupled power is larger than the coupled
system. For case D, the coupled and uncoupled head patch harvests 6.0246× 10−3 W and
1.4288× 10−3 W, and the tail patch harvests 6.0971× 10−3 W and 1.4288× 10−3 W. The
coupled power is greater than the uncoupled system for both patches undergoing case
D motion.

6. Conclusions

The development of a coupled electromechanical model for a body caudal fin energy
harvester undergoing a forced body undulatory–oscillation actuation presents challenges
that require multiple investigations. The undulatory controlling term influences the modal
summation, in combination with terms that dramatically influence and affect the coupled
system. The results show that many modes are required to get a semblance of convergence.
Seven modes were used in this study, as mathematical challenges appeared when deter-
mining the mode shape solution for higher mode numbers. The Gauss law component
of the coupled system has a forcing term depending on the motion, which is atypical for
conventional energy harvesting systems. For high values of the structural damping term,
the Gauss law component can be rearranged into a previously used uncoupled model that
is used to investigate only the potential voltage harvesting of the motion.

Comparing the results of the coupled and uncoupled representations in terms of
their energy harvesting potential for different cases of motion gave us an insight into how
these systems could react to different configurations. The importance of this investigation
lies in the identification that a structure that is successfully designed to move with a
forced undulatory motion may be susceptible to additional effects resulting from the
motion interacting with the structure. By removing the impactful undulating term, the
performances of the patch at the head and tail locations become more alike as the complexity
is reduced and the motion at these locations becomes more similar. The adaptation of a
high damping architectonic approach could decouple the system and lead to a pure forced
motion–electrical response that is more predictable; this could be recommended for pursuit
as a possible method to reduce complexities in these prescribed actuation systems. The
coupled system considering low damping leads to the coupling of the prescribed motion
and structural response, which is very complex even when out of resonance. This creates a
limitation of scope. If the system were designed in a way that the natural harmonics of the
structure would become more influential, it would be possible for the motion–structure
coupling to be damaging.
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