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Abstract: Wind power has significant randomness. Probabilistic prediction of wind power is neces-
sary to solve the problem of safe and stable power grid dispatching with the integration of large-scale
wind power. Therefore, this paper proposes a novel nonparametric probabilistic prediction model for
wind power based on extreme learning machine-quantile regression (ELM-QR). Firstly, the ELM-QR
models of multiple quantiles are established, and then the new comprehensive index (NCI) is op-
timized by particle swarm optimization (PSO) to obtain the weighting coefficients corresponding
to the lower and upper bounds of the prediction intervals. The final prediction interval is obtained
by integrating the outputs of ELM-QR models and the weighting coefficients. Finally, case studies
are carried out with the real wind farm operation data, simulation results show that the proposed
algorithm can obtain narrower prediction intervals while ensuring high reliability. Through sensitiv-
ity analysis and comparison with other algorithms, the effectiveness of the proposed algorithm is
further verified.

Keywords: ELM-QR; nonparametric probabilistic prediction; wind power forecasting;
extreme learning machine; quantile regression; comprehensive performance evaluation index;
particle swarm optimization

1. Introduction

Wind power has remarkable uncertainties and randomness. Traditional research
projects about wind power prediction mainly focused on deterministic point predic-
tion [1,2]. Recently, the algorithms of point prediction mainly include convolutional neural
network [3], long short-term memory neural network [4], and gated recurrent neural net-
work [5]. The main focus of these articles is to reduce the prediction errors by combining
or improving some algorithms, but the errors of point prediction are unavoidable and the
results cannot describe the uncertainties of wind power generation quantitatively. Consid-
ering the current real industrial applications, planning, dispatching, safety, and stability
analysis of the power grid involving wind power require a more accurate estimation of
the fluctuation range of wind power. Therefore, a new prediction method that can quan-
titatively reflect the uncertainties of wind power generation is needed to overcome the
defects of traditional point prediction, and probabilistic prediction is an effective way to
solve this problem.

In recent years, research on the probabilistic prediction of wind power have attracted
the attention of many scholars. The modeling objects of probabilistic prediction are usually
divided into two types: wind power itself and the point prediction errors. Conventional
studies on probabilistic prediction are mainly based on the point prediction errors, and it
is assumed that the prediction errors obey the normal distribution [6], β distribution [7],
α-stable distribution [8], exponential distribution [9], and the error distribution function are
obtained by parametric methods to obtain the prediction intervals. The above methods have
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low computational complexity, but they are prone to meet situations with unreasonable
distribution assumptions. In [10], the nonparametric kernel density estimation approach
was used to obtain the distribution of prediction errors, which can avoid the impact of
unreasonable assumptions of prior distribution, but the final probabilistic prediction results
depend on the accuracy of point prediction, which often leads to poor generalization ability.

For the methods of direct probabilistic prediction of wind power, there is no need
to perform point prediction firstly, eliminating the dependence on the point prediction
results. According to the modeling methods, they can also be divided into parametric
and nonparametric methods. Wan et al. [11] used the bootstrap method to resample
the wind power, and assumed that the outputs obeyed the normal distribution to get
the final prediction intervals; in [12], the multi-distribution ensemble method was used
for probabilistic wind power forecasting, three probabilistic forecasting models based
on Gaussian, gamma, and Laplace predictive distributions were adopted to form the
ensemble model; [13–16] used direct quantile regression, joint quantile regression, quantile
regression based on gradient boosting decision trees and support vector quantile regression
respectively to establish the quantile regression models of wind power, and obtained
the nonparametric probabilistic prediction results; in [17], decomposition-based quantile
regression forest was applied to day-ahead short-term load probability density forecasting;
in [18], the Naive Bayesian Classifier was established to obtain the classification of wind
power, and the particle swarm optimization (PSO) algorithm was used to optimize the
weighting coefficients corresponding to the prediction intervals; in [19], the lower and
upper bounds of the prediction intervals were directly treated as the outputs of extreme
learning machine (ELM), and the output weights of ELM were obtained through PSO.
Since the nonparametric methods can avoid unreasonable distribution assumptions in the
parametric methods, the results obtained are more reasonable, but the calculation is often
more complicated. Therefore, it is necessary to seek a modeling method with a simple
structure to improve its practicability.

For probabilistic prediction evaluation indicators, the prediction interval coverage
probability (PICP) is usually used to evaluate the reliability of the prediction intervals,
the prediction interval normalized average width (PINAW) is often utilized to assess the
sharpness of the prediction intervals [20], and the interval normalized average deviation
(INAD) [21] is generally used to appraise the overall degree of the deviation of actual power
from the intervals when it falls outside the prediction intervals. For the comprehensive
evaluation indices, Shrivastava et al. [22] proposed the coverage width criterion (CWC),
which combines PICP and PINAW in sections, but practical applications showed that this
indicator could not scientifically evaluate the global performance of probabilistic prediction
methods [19]. In [18], PICP and PINAW were simply weighted and summed, and the
structure was simple, but it failed to achieve the adjustment of assessment keypoints under
different conditions. Therefore, it is necessary to find a more reasonable and effective
comprehensive performance evaluation index.

Based on the above analysis, wind power is more suitable to be selected as the model-
ing object than point prediction error, nonparametric modeling is more reasonable than
parametric modeling. Thus, in this paper, a novel wind power nonparametric probabilistic
prediction method based on extreme learning machine-quantile regression (ELM-QR) is
proposed. As a special type of single-hidden layer feedforward neural networks, ELM
has the characteristics of fast learning speed and strong generalization capability. It has
been widely used in recent years [23,24]. In [25], ELM with error correction was used
for short-term wind speed prediction; in [26], the multinomial Bayesian extreme learning
machine (MBELM) was proposed for multi-class classification; on-line sequential outlier
robust extreme learning machine was applied in [27] for probabilistic wind speed forecast-
ing; in [28], a self-adaptive kernel extreme learning machine was proposed for short-term
wind speed forecasting; according to the training time shown in [29], ELM can obtain more
accurate forecasting results with a faster calculation speed than comparison models, its
structural advantages are fully demonstrated. In general, ELM is a powerful algorithm that
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is well suited for further study. As a typical nonparametric estimation method, quantile
regression has been extensively applied in probabilistic prediction [30,31]. Thus, in this
paper, ELM is combined with quantile regression to exert each advantages.

At the same time, in order to better evaluate the overall performance of the proba-
bilistic prediction, this paper proposes the new comprehensive index (NCI), which can
adaptively adjust the assessment keypoints according to different situations. After that,
PSO algorithm is used to maximize the NCI, and the weighting coefficients corresponding
to the lower and upper bounds of the prediction intervals are obtained respectively. Finally,
the outputs of ELM-QR models and the weighting coefficients are integrated to obtain
the final prediction intervals. The method in this paper fully integrates the advantages
of multiple algorithms, it can get rid of the impact of unreasonable assumptions of prior
distribution and the dependence on point prediction results with a simple structure, the
simulation comparison test verifies its superiorities.

The main contents of this article are as follows: Section 2 describes the basic principles
of ELM and quantile regression algorithm based on ELM; Section 3 gives the detailed
definition of the proposed comprehensive performance evaluation index NCI, and intro-
duces the structure of the probabilistic prediction model based on ELM-QR and its detailed
solution steps; Section 4 conducts simulation and comparison studies with actual data; and
the final conclusions are draw in Section 5.

2. Quantile Regression Algorithm Based on Extreme Learning Machine
2.1. Extreme Learning Machine

ELM is a special form of single-hidden layer feedforward neural networks pro-
posed by Huang in [32]. Unlike traditional neural networks, ELM randomly gener-
ates the input weights and biases, and then uses simple matrix operations to obtain
the output weights, which can significantly increase the learning speed and reduce the
computational complexity.

Considering N training samples {(xi, ti)}N
i=1, where xi ∈ Rn is the input vector, and

ti ∈ Rm is the corresponding target vector, for an ELM with K hidden nodes, the model can
be expressed as:

f (xj; w, b,β) =
K

∑
i=1

βig(wi·xj + bi), j = 1, · · · , N (1)

where g(·) is the activation function, wi = [wi1, wi2, · · · , win] is the weight vector between
the input layer and the i-th hidden node, βi = [βi1, βi2, · · · , βim]

T is the weight vector
between the i-th hidden node and the output nodes, and bi is the bias of the i-th hidden
node.

For N training samples, if the outputs of ELM can approximate targets with nearly
zero deviation, then:

K

∑
i=1

βig(wi·xj + bi) = tj, j = 1, · · · , N (2)

Equation (2) can be further rewritten as:

Hβ = T (3)

where H is the hidden layer output matrix of the ELM, which can be expressed as:

H =

 g(w1·x1 + b1) · · · g(wK·x1 + bK)
... · · ·

...
g(w1·xN + b1) · · · g(wK·xN + bK)


N×K

(4)

β = [β1,β2, · · · ,βK]
T is the output weight matrix and T = [t1, t2, · · · , tN ]

T is the
target matrix. ELM will randomly generate the input weights and the corresponding biases
at the beginning of learning, and the values will remain unchanged throughout the learning
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processes. It can be seen that the value of H will be determined at the beginning of learning
and remain unchanged according to Equation (4). ELM obtains the optimal output weights
β∗ by seeking the unique smallest norm least-squares solution of Equation (3). According
to the generalized inverse theory of matrix, the solution can be expressed as:

β∗ = H†T (5)

where H† represents the Moore-Penrose generalized inverse matrix of H, which is usually
obtained by using singular value decomposition (SVD).

Since ELM does not need repeated iterations with the gradient descent method, it can
overcome the problems of overfitting and local optimal solutions that exist in the traditional
gradient-based neural networks. At the same time, it only requires simple matrix operations
to solve Equation (5), significantly reducing the computational complexity of the solving
processes [33].

2.2. Quantile Regression Based on Extreme Learning Machine

Given N sets of wind power input and output samples {(xi, ti)}N
i=1, the quantile qτ

i
with nominal proportion τ of the outputs can be expressed as:

P(ti ≤ qτ
i ) = τ (6)

The mapping relationship between the input and output variables can be expressed
by Equation (7).

ti = φ(xi,θ) (7)

where θ is the model parameter, and the estimation problem of the regression parameters of
the τ-th quantile can be transformed into the optimization problem shown in Equation (8):

min
θτ

N
∑

i=1
ρτ(ti − qτ

i ) = min
θτ

N

∑
i=1

ρτ(ti − φ(xi,θτ)) (8)

where ρτ(·) is the test function, and its expression is shown as follows:

ρτ(x) =
{

τx i f x ≥ 0
(τ − 1)x i f x < 0

(9)

The parameters that make the objective function reach the minimum are the τ-th

quantile regression coefficients
^
θ

τ

.
According to the derivation processes of ELM above, ELM can randomly generate the

input weights and biases. If the values of the input variables are known, H in Equation (3)
is uniquely determined. And the relationship between the output weights to be solved and
the output variables can be regarded as linear. Substituting the multi-input single-output
ELM model into Equation (8), the objective function of the extreme learning machine-
quantile regression (ELM-QR) can be obtained:

min
βτ

N
∑

i=1
ρτ(ti −Hiβ

τ) (10)

where Hi is the i-th row of the matrix H.
The current methods for solving the linear quantile regression problems mainly

include simplex method, interior point method and smoothing algorithm. Due to its high
efficiency and numerical stability, the interior point method has been widely used. In this
paper, the interior point method is used to acquire the quantile regression model with ELM.
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Introducing slack variables ξ+i and ξ−i , the optimization problem (10) can be con-
verted into:

min
βτ

N
∑

i=1
τξ+i + (1− τ)ξ−i

s.t.
−ξ−i ≤ ti −Hiβ

τ ≤ ξ+i
ξ−i ≥ 0

ξ+i ≥ 0

(11)

Then it can be transformed into a standard linear programming form:

min(cTd)
s.t.Ad ≤ b

(12)

where:

A =


−H −I 0
H 0 −I
0 −I 0
0 0 −I


c = [0, τE, (1− τ)E]T

E = [1, 1, · · · , 1]1×N

d = [βτ , ξ+1 , ξ+2 , · · · , ξ+N , ξ−1 , ξ−2 , · · · , ξ−N ]
T

b = [−TT , TT , 0, 0]T

(13)

Using the interior point method to solve the above linear programming, the τ-th
quantile regression parameters βτ can be obtained.

3. Probabilistic Prediction Model of Wind Power
3.1. New Comprehensive Index

According to the definition of prediction interval (PI), the interval Ĩ(α)t (xi) with PI
nominal confidence (PINC) 100(1 − α)%, can be expressed as:

Ĩ(α)t (xi) =
[

L̃(α)
t (xi), Ũ(α)

t (xi)
]

(14)

where L̃(α)
t (xi) and Ũ(α)

t (xi) represent the lower and upper bounds of the prediction inter-
val, respectively.

The traditional prediction interval evaluation indices mainly include reliability and
sharpness. Based on this, this paper proposes a new type of comprehensive performance
evaluation index.

3.1.1. Reliability

The PI coverage probability (PICP) is usually used to express the reliability of the
prediction intervals, reflecting the probability that the actual prediction output ti falls in
Ĩ(α)t (xi), which can be calculated by Equation (15):

PICP =
1

Ntest

Ntest

∑
i=1

ci (15)

where Ntest is the number of the test samples, ci can be determined by Equation (16):

ci =

{
1 ti ∈ Ĩ(α)t (xi)

0 ti /∈ Ĩ(α)t (xi)
(16)
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In order to ensure the high reliability of the prediction intervals, the value of PICP
should be as close as possible to PINC. Another related indicator is the average coverage
error (ACE), which is defined as:

ACE = PICP− PINC (17)

Correspondingly, ACE should be as close to zero as possible to ensure the reliability
of the prediction intervals.

3.1.2. Sharpness

With a wider prediction interval, the corresponding reliability is higher. However,
excessively wide intervals are useless in practical applications, and they cannot truly
reflect the uncertain information of the output variables, so it is necessary to introduce the
evaluation index of the width of the prediction intervals.

The width of the prediction intervals δ
(α)
t (xi) can be expressed as:

δ
(α)
t (xi) = Ũ(α)

t (xi)− L̃(α)
t (xi) (18)

In order to better evaluate the performance of the prediction intervals, interval score
S(α)

t (xi) [8] is introduced, and its calculation is shown in Equation (19):

S(α)
t (xi) =


−2αδ

(α)
t (xi)− 4[L̃(α)

t (xi)− ti] if ti < L̃(α)
t (xi)

−2αδ
(α)
t (xi) if ti ∈ Ĩ(α)t (xi)

−2αδ
(α)
t (xi)− 4[ti − Ũ(α)

t (xi)] if ti > Ũ(α)
t (xi)

(19)

The interval score can be calculated for each prediction output. For all test data, the
global interval score can be obtained by Equation (20):

S(α)
t =

1
Ntest

Ntest

∑
i=1

S(α)
t (xi) (20)

The interval score not only considers the width of the prediction intervals, but also
takes into account the cumulative deviation outside the prediction intervals, so that it can
express the performance of the prediction intervals more reasonably.

3.1.3. New Comprehensive Index

In practical applications, the expected prediction intervals should be highly reliable
(ACE is as close to zero as possible) and their interval scores are high, so that they will be
more meaningful for subsequent optimization. For the comprehensive evaluation index, it
should be able to balance the reliability and sharpness, and be able to adaptively assign the
key points of assessment under different circumstances. Based on the above purposes, this
article proposes the new comprehensive index (NCI), and its expression is:

NCI = −
(

γ · RIS + λ ·
∣∣∣Sα

t

∣∣∣
norm

)
RIS = 1

1+e−[η∗(|A
α
t |+σ)]

(21)

where RIS is the reliability index score, |·| represents the absolute value, γ and λ are the
weights of the reliability index score and the interval score, Aα

t stands for the ACE value
of the prediction intervals under the nominal probability 100(1 − α)%, η, σ are used to
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adjust the characteristics of RIS.
∣∣∣Sα

t

∣∣∣
norm

is the normalized value of
∣∣∣Sα

t

∣∣∣, can be calculated
by Equation (22): ∣∣∣Sα

t

∣∣∣
norm

=

∣∣∣Sα
t

∣∣∣− ∣∣∣Sα
t

∣∣∣
min∣∣∣Sα

t

∣∣∣
max
−
∣∣∣Sα

t

∣∣∣
min

(22)

where
∣∣∣Sα

t

∣∣∣
min

is set to zero, and
∣∣∣Sα

t

∣∣∣
max

is set to 2α.
The curve of RIS changing with ACE is shown in Figure 1. For NCI, the reliability

evaluation is mainly achieved by introducing the sigmoid function. When ACE fluctuates
in a small range near 0, RIS approaches 0, which has little impact on the overall performance
index. At this time, the key point of the assessment is the interval score. When the deviation
between ACE and 0 is large, RIS will increase suddenly, which will have a greater impact
on NCI. At this time, the main assessment is the reliability. Therefore, the NCI proposed in
this paper can adaptively adjust the assessment keypoints according to diverse situations.
When the reliability is poor, the reliability is mainly evaluated, and when the reliability is
high, the interval score is primarily considered.

Figure 1. Curve of RIS changing with |ACE|.

3.2. Probabilistic Prediction Model Based on ELM-QR
3.2.1. Structure of the Probabilistic Prediction Model

This paper proposes a novel probabilistic prediction model based on the ELM-QR and
its structure is shown in Figure 2.

Figure 2. Structure of the proposed novel probabilistic prediction model.
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It can be seen from the structure diagram that in order to obtain the lower and upper
bounds of the prediction intervals, a certain number of quantile regression models are first
trained, and then the outputs of these models are weighted and summed to obtained the
corresponding lower and upper bounds of the intervals. In this structure, the quantiles
τ1 ∼ τk, τ1 > τ2 > · · · > τk on which the upper bound depends and the quantiles
τk+1 ∼ τk+n, τk+1 > τk+2 > · · · > τk+n on which the lower bound depends do not cross,
and τk > τk+1.

3.2.2. Solution of the Probabilistic Prediction Model

In the novel probabilistic prediction model, selection of the weighting coefficients
will directly affect the range of the prediction intervals, so the setting of the weighting
coefficients will be an important part of the probabilistic prediction processes.

PSO is widely used in various optimization scenarios for its simplicity, superior
robustness, and fast convergence speed. In this paper, PSO algorithm is used to obtain the
optimal weighting coefficients by maximizing NCI. In order to avoid overfitting, this paper
divides the dataset into three categories: Dtrain, Dvalid, and Dtest. Among them, Dtrain is
used to construct the ELM-QR model, Dvalid and Dtrain are introduced jointly to optimize
the weighting coefficients to enhance generalization ability and avoid overfitting, and Dtest
is used to verify the effectiveness of the algorithm finally.

The calculation process of the wind power probabilistic prediction model based on
ELM-QR is shown in Figure 3.

Figure 3. Calculation flowchart of the proposed wind power probabilistic prediction model.
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The solution steps are as follows:
Step 1: Collect the actual data of the wind farm, remove dead pixels, construct the

input and output data pairs, and normalize the data pairs to [−1,1], divide them into three
parts, Dtrain, Dvalid and Dtest;

Step 2: Set the number of quantile points and the corresponding quantile values, use
Dtrain with the interior point method to obtain the quantile regression models;

Step 3: Initialize the weighting coefficient ht, set γ and λ in the objective function,
and initialize the PSO parameters (population number, maximum iteration number, initial
velocity and initial position);

Step 4: Use the PSO algorithm to optimize and obtain the weighting coefficients based
on Dtrain and Dvalid;

While the maximum number of iterations or sufficiently good fitness has not been
reached, perform the following:

(a) For each particle in the population, calculate the corresponding PI and NCI over Dtrain
and Dvalid, NCI is used as the fitness.

(b) Compare the fitness of particle’s current position with its historical best position
(pbest), and update the historical best position with the current position if the fitness of
current position is higher.

(c) Compare the fitness of particle’s current position with the fitness of global best
position (gbest). If the fitness of the current position is higher, the global best position
is updated with the current position.

(d) Update particle position and rate according to pbest and gbest.
(e) Increment the iteration counter.

Step 5: Substitute the inputs of Dtest into each quantile model to obtain the corre-
sponding outputs, and then determine the prediction intervals according to the weighting
coefficients obtained from PSO, and calculate the evaluation indices finally.

4. Case Study
4.1. Simulation Data and Parameter Setting

The actual operating data used in this article is from a wind farm in Hebei province,
North China, which covers the period from July to August in 2018 and 2019 with a
15 min sampling period. The wind farm has a combined generating capacity 200.1 MW
consisting of 87 wind turbines of 2.3 MW. The wind speed is measured by 70-m-high wind
tower and the wind power data is collected by supervisory control and data acquisition
(SCADA) system.

Generally, there are some abnormal data points in the raw data due to sensor failure
or communication interruption in daily operation of wind farm. Thus, data processing is
required after data collection to ensure high data quality. The data processing method used
in this paper is to remove bad points and replace them with liner interpolation data. The
raw data and processed data which covers the period from July to August in 2018 is shown
in Figure 4, where x-axis is average wind speed measured by wind towers and y-axis is the
power of the entire wind farm. It can be seen from Figure 4 that there is a strong mapping
relationship between wind speed and power. In [18], the historical wind speed and the
historical wind farm power are used as inputs of probabilistic prediction model. However,
when the multi-step prediction is performed, the cumulative error will occur because the
model input contains the wind farm power (which cannot be obtained from the weather
forecast). Therefore, this paper only uses historical wind speed (data covers 8 sampling
periods before current time) as input and wind farm power (data at the next sampling
period) as output to construct the data pairs for one-step ahead forecasting, and normalizes
them to [−1,1]. The subsequent simulations are all based on historical operation data to
verify the effectiveness of proposed method. Since the model input is wind speed, which
can be easily obtained by weather forecast, so the proposed model is easy to be extended
to multi-step prediction through weather forecast data in practical application.
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Figure 4. Wind speed-power diagram: (a) the raw data; (b) the processed data.

This article mainly tests the prediction results at the nominal confidence level 90% and
80%. For PINC = 90%, set the upper bounds dependent quantiles as 0.90–0.99, and the lower
bounds dependent quantiles as 0.01–0.10. For PINC = 80%, the upper bounds dependent
quantiles range is chosen as 0.85–0.95, and the lower bounds dependent quantiles range is
chosen as 0.05–0.15. The change interval is chosen as 0.01.

Dtrain contains 4000 sets of data, using data from July to August 2018; Dvalid contains
480 sets of data from July to August 2019 to increase the generalization ability; Dtest includes
960 sets of data in 2019.

4.2. Prediction Results

Figure 5 shows the value of NCI with different iteration numbers over training data
which is optimized by PSO. With the increases of iteration number, the value of NCI
tends to be optimal. Figures 6 and 7 show the prediction results of the test data with
PINC = 90% and PINC = 80%, respectively, and Table 1 shows calculation results of the
detailed performance indices. It can be seen intuitively from the results in these figures that
the obtained prediction intervals are narrow, and the points falling outside the intervals are
also close to the interval boundaries. The detailed performance indices calculation results
show that the ACE is quite close to 0, and the scores of the interval score and the NCI
are also high, which fully shows that the proposed algorithm can obtain a more effective
prediction interval.

Table 1. Performance indices calculation results.

PINC PICP ACE Score NCI

90% 89.17% −0.83% −3.73% −0.234
80% 79.69% −0.31% −5.96% −0.154
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Figure 5. The value of NCI with different iteration numbers over training data: (a) At 80% nominal confidence; (b) at 90%
nominal confidence.

Figure 6. Prediction results at the nominal confidence level 90%.

Figure 7. Prediction results at the nominal confidence level 80%.
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4.3. Comparative Analysis

Since in the proposed novel probabilistic prediction model, the lower and upper
bounds are obtained by weighted sum of different quantile regression models, in order to
further prove the superiorities of this structure, this paper conducts sensitivity analysis
on the quantile regression model prediction results, obtain the performance indices of the
prediction intervals and compare with the results of the proposed structure. Figure 8 shows
the prediction results of some typical quantiles.

Figure 8. Prediction results of some typical quantiles.

The sensitivity coefficient κ is introduced, and its calculation formula is shown in
Equation (23), where τ, τ are the quantile points corresponding to the upper and lower
bounds of the intervals. Calculate various performance indices under different sensitivities
and make subsequent comparisons:

τ − τ= 1− α
κ= 1− τ − τ

(23)

Figure 9 and Table 2 show the NCI results and the detailed performance indices under
different sensitivities respectively. From the calculation results, it can be seen that the
NCI of the proposed structure is better than the NCI at any sensitivity. With 90% nominal
confidence, the ACE and interval scores of the proposed structure are the best; and with
80% nominal confidence, the ACEs with −0.04 and −0.02 sensitivity are better than the
proposed structure, but the corresponding interval scores are lower. Considering both of
these two situations, the final NCI of the proposed structure is still higher.

Figure 9. The NCI results with different sensitivities.
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Table 2. Detailed performance indices under different sensitivities.

PINC κ PICP ACE Score NCI

90%

−0.04 87.71% −2.29% −4.01% −1.173
−0.02 86.98% −3.02% −3.97% −1.197

0 88.85% −1.15% −3.92% −0.365
0.02 88.44% −1.56% −3.98% −0.769
0.04 88.85% −1.15% −3.92% −0.365

80%

−0.04 80.10% 0.10% −6.20% −0.157
−0.02 80.10% 0.10% −6.08% −0.155

0 79.06% −0.94% −6.14% −0.227
0.02 79.06% −0.94% −6.27% −0.230
0.04 78.75% −1.25% −6.25% −0.401

Table 3 shows the calculation results of other typical algorithms. Among them, BELM
is the algorithm combining bootstrap and ELM in [11], and KDE is the prediction inter-
val obtained by non-parametric kernel density estimation of the prediction errors and
combined with the point prediction results. Since KDE depends on the accuracy of point
prediction and estimations of the distribution of prediction errors are usually not accurate,
so the prediction results are not stable enough. According to the results in Table 3, the ACE
of KDE with 90% nominal confidence is high, but the ACE with 80% nominal confidence
is low, and they all have a wide prediction interval. For BELM, it assumes that the final
result satisfies normal distribution, but this assumption of prior distribution is also not
reasonable. At 90% nominal confidence, the result is not as good as that of KDE with almost
the same width of prediction interval, but at 80% nominal confidence, the overall result
is better than KDE. Combining the calculation results in Table 1, it can be seen that the
algorithm proposed in this paper is superior to the above two algorithms in all indicators,
which can obtain narrower prediction intervals while ensuring high reliability. The model
proposed in this paper can overcome the shortcomings of the above two algorithms, which
can get rid of the impact of unreasonable assumptions of prior distribution, and achieve
more reasonable and effective prediction intervals based on NCI optimization.

Table 3. Detailed performance indices of different algorithms.

PINC Methods PICP ACE Score NCI

90%
BELM 88.02% −1.98% −4.74% −1.133
KDE 91.52% 1.52% −4.76% −0.807

80%
BELM 79.79% −0.21% −7.33% −0.186
KDE 78.96% −1.04% −7.28% −0.295

5. Conclusions

In order to obtain effective wind power probabilistic prediction results, this paper
proposes a novel type of nonparametric probabilistic prediction method based on ELM-QR.
Its main features include:

(1) Make full use of the fast learning and strong generalization ability of ELM to obtain
the quantile regression models effectively.

(2) A novel comprehensive performance evaluation index is proposed, which can adjust
the assessment keypoints adaptively according to different situations, so as to balance
reliability and sharpness more reasonably.

(3) A new model structure is proposed. Based on NCI, the weighting coefficients are
obtained through PSO, which fully integrates the advantages of multiple algorithms.

Simulation research and comparative analysis are carried out using actual wind
farm operating data. The results show that compared with typical probabilistic prediction
methods, the proposed method in this paper can provide more accurate prediction intervals,
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its comprehensive performance has remarkable advantages, and it can provide effective
data support for the safe and stable operation of the power grid.
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