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Abstract: In Korea apartment buildings, most energy is consumed as heating energy. In order to
reduce heating energy in apartment buildings, it is required to reduce the amount of energy used in
heating systems. Energy saving in heating systems can be achieved through operation and control
based on efficient operation plans. The efficient operation plan of the heating system should be based
on the predicted heating load. Thus, various methods have been developed for predicting heating
loads. Recently, artificial intelligence techniques (e.g., ANN: artificial neural network) have been used
to predict heating loads. The process for determination of input data variables is necessary to obtain
the accuracy of predicted results using an ANN model. However, there is a lack of studies to evaluate
the accuracy level of the predicted results caused by the selection and combination of input variables.
There is a need to evaluate the performance of an ANN model for prediction of residential heating
loads. Therefore, the purpose of this study is, for a residential building, to evaluate the accuracy
levels of predicted heating loads using an ANN model with various combinations of input variables.
To achieve the study purpose, each case was classified according to the combination of the input
variables and the prediction results were analyzed. Through this, the worst, mean, and best were
selected according to the predicted performance. In addition, an actual case was selected consisting
of variables that can be measured in an actual building. The derived cv(RMSE) of each case resulted
in a percentage value of 38.2% for the worst, 7.3% for the mean, 3.0% for the best, and 5.4% for the
actual. The largest difference between the best and worst resulted in 33.2%, and thus the precision
of the predicted heating loads was highly affected by the selection and combination of the input
variables used for the ANN model.

Keywords: heating load; artificial neural network model; predictive model; input variable

1. Introduction
1.1. Background and Purpose

In 2018, the Intergovernmental Panel on Climate Change (IPCC) recommended sta-
bilizing the increase of the Earth’s surface temperature to within 1.5 ◦C compared to the
period before industrialization [1]. In addition, the achievement of Net Zero, which mini-
mizes anthropogenic carbon emission by 2050, is becoming a common international goal.
To accommodate and accomplish these international goals and perception change, it is
essential to reduce greenhouse gas emissions in the energy sector, which accounts for 86.8%
of the total national greenhouse gas emissions in Korea [2]. Accordingly, there have been
continued nationwide efforts to save energy in the fields of industry, power generation,
buildings, and transportation. In particular, the building sector continues to strengthen
related regulations in an attempt to save energy [3].
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Energy consumption in buildings in Korea stems mostly from energy use in apartment
buildings, hospitals, schools, and commercial buildings (see Figure 1) [4]. Among them,
the energy consumption of apartments is about 17.0%, accounting for the largest percentage.
Therefore, energy saving and efficient energy usage in relation to apartment housings will
have a significant influence on energy maintenance throughout the country. In particular,
about 67.1% of the energy consumed in apartment housings in Korea is used for heating,
so it is required to focus on heating energy reduction [5]. Therefore, the use of high-
efficiency systems that can save energy (district heating systems, geothermal heat pumps,
high-efficiency boilers, etc.) is increasing. However, the performance of these heating
systems can be maximized only when optimal system operation and control are involved.
In general, to operate the systems at an appropriate and optimal level, it is essential to
predict and evaluate the heating load that a heating system must handle. If a demand for
the heating loads is identified in advance and an optimal system operation for the heating
loads is planned, it is possible to prevent overheating and to save energy. Furthermore,
the system operation plan based on the identified heating loads may enhance thermal
satisfaction in indoor spaces. Therefore, it is necessary for the technology on predicting
heating loads to minimize over/under heating usages and to maintain a comfortable indoor
space environment.

Energies 2021, 14, x FOR PEER REVIEW 2 of 20 
 

 

Energy consumption in buildings in Korea stems mostly from energy use in apart-
ment buildings, hospitals, schools, and commercial buildings (see Figure 1) [4]. Among 
them, the energy consumption of apartments is about 17.0%, accounting for the largest 
percentage. Therefore, energy saving and efficient energy usage in relation to apartment 
housings will have a significant influence on energy maintenance throughout the country. 
In particular, about 67.1% of the energy consumed in apartment housings in Korea is used 
for heating, so it is required to focus on heating energy reduction [5]. Therefore, the use 
of high-efficiency systems that can save energy (district heating systems, geothermal heat 
pumps, high-efficiency boilers, etc.) is increasing. However, the performance of these 
heating systems can be maximized only when optimal system operation and control are 
involved. In general, to operate the systems at an appropriate and optimal level, it is es-
sential to predict and evaluate the heating load that a heating system must handle. If a 
demand for the heating loads is identified in advance and an optimal system operation 
for the heating loads is planned, it is possible to prevent overheating and to save energy. 
Furthermore, the system operation plan based on the identified heating loads may en-
hance thermal satisfaction in indoor spaces. Therefore, it is necessary for the technology 
on predicting heating loads to minimize over/under heating usages and to maintain a 
comfortable indoor space environment. 

To achieve optimal control of the heating system based on the predicted heating 
loads, the temporal scale of the predicted heating load is important If the temporal scale 
of the heating loads predictive model is the same as the control time (timestep), it is pos-
sible to efficiently control according to variation of the heating demand. 

 
Figure 1. End-use energy statistics for buildings. 

In general, the typical heating load evaluation methods include the equation-based 
load calculation for building facades, simulation programs (EnergyPlus [6], TRANSYS [7], 
DOE-2 [8], etc.), regression models, and artificial intelligence techniques. Among them, 
the equation-based load calculation for building façades and simulation programs require 
various and detailed input parameters for each structure of a building. This significantly 
affects the accuracy and reliability of the heating load calculation result. However, when 
using a regression model and artificial neural network (ANN), relatively simple input 
variables are required. In particular, the ANN model has a high computational speed and 
excellent prediction performance for energy prediction regarding existing buildings [9]. 

Figure 1. End-use energy statistics for buildings.

To achieve optimal control of the heating system based on the predicted heating loads,
the temporal scale of the predicted heating load is important If the temporal scale of the
heating loads predictive model is the same as the control time (timestep), it is possible to
efficiently control according to variation of the heating demand.

In general, the typical heating load evaluation methods include the equation-based
load calculation for building facades, simulation programs (EnergyPlus [6], TRANSYS [7],
DOE-2 [8], etc.), regression models, and artificial intelligence techniques. Among them,
the equation-based load calculation for building façades and simulation programs require
various and detailed input parameters for each structure of a building. This significantly
affects the accuracy and reliability of the heating load calculation result. However, when us-
ing a regression model and artificial neural network (ANN), relatively simple input vari-
ables are required. In particular, the ANN model has a high computational speed and
excellent prediction performance for energy prediction regarding existing buildings [9].
The prediction performance of the ANN model depends on data type and quality. There-
fore, data preprocessing and selection of input and output variables are very important.
When selecting input variables and output variables, how input variables affect output
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variables should be analyzed in advance. Therefore, this study analyzed and evaluated how
the setting of input variables affects the heating load prediction results when predicting
the heating load of an apartment housing using the ANN model.

1.2. Literature Review

To determine the input variables used for an ANN model, this study conducted a
literature review associated with the predicted heating loads, especially using artificial
intelligence techniques. It should be noted that this study did not include previous lit-
eratures based on an equation and/or simulation program since they have fixed input
variables used for the prediction. This study categorized the determined input variables by
the physical thermal relationship. That is, heating loads are generally influenced by the
outdoor/indoor environment, building materials, mechanical heating system, and others.
The determined input variables were divided into four categories: weather, construction,
zone, and system. The summary of the conducted literature review is given in Table 1.

Among the reviewed studies, 16 cases used artificial intelligence (AI) techniques and
8 cases used regression models (Reg). In particular, 13 cases used artificial intelligence
techniques and 6 cases used regression models over the last 7 years (2014–2020). However,
in five out of the six cases that used a regression model, artificial intelligence techniques
were also employed, so only one study used a regression model alone. Based on the
literature review, it was identified that the majority of the prediction methods for the
heating load were the AI techniques.

Weather data was selected to reflect the effect of outdoor thermal conditions, re-
gional characteristics, etc. of buildings on heating loads. Weather data were classified into
outdoor air temperature (OAT), solar radiation (Solar), relative humidity (RH), wind speed
(V), and other items. The outdoor air temperature was used as an input variable in 12 stud-
ies. This was the most frequently used item among the input variables used to predict a
heating load. Solar radiation was used as an input variable in eight cases, relative humidity
in three cases, and wind speed in five studies.

Construction data were selected to reflect the effect of building thermal conditions,
geographic characteristics, etc. of buildings on heating loads. Construction data were classi-
fied into heat permeability (U-value), building area (A: Area), window-to-wall ratio (WWR),
and building orientation (BO). Heat permeability was used as an input variable in two
studies, building area in nine studies, window-to-wall ratio in two studies, and building
orientation in seven studies.

Zone data were selected to reflect heat gain and the operation status of the build-
ing. Zone data, i.e., zone mean air temperature (ZMT), schedule (Sch), and heating load
(HL), were used as input variables in two studies. Zone data were used to reflect the
characteristics of residents’ heating usage.

System data were selected to reflect heating loads according to facility operation.
System data were classified into supply water temperature (SWT), mass flow rate (

.
m),

and return water temperature (RWT) and were used as input variables in three studies.
This study selected input variables based on prior studies, evaluated the prediction

performance based on the combination of each input variable, and defined the combination
of input variables. For this, each variable of weather, construction, zone, and system data
was selected, where a variable that is frequently used in each item was used as an input
variable. OAT and solar were selected for the weather data and A and BO were selected for
the construction data. These four variables were the second most used variables in prior
studies. Regarding zone data and system data, all variables were considered because all
the variables were used in the same number of prior studies. Therefore, ZMT, Sch, and HL
were selected for the zone data and SWT, RWT, and m were selected for the system data.
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Table 1. Literature review of the prediction of heating load.

Refs Year Method
Input Variable

Output Variable Accuracy
Weather Data Construction Data Zone Data System Data

A.I. Reg Etc OAT Solar RH V Etc U-Value A WWR BO Etc ZMT Sch HL SWT RWT
.

m HL1 CL2 Etc R2 RMSE3 MAE4 MSE5 MRE6 EEP7 MAPE8 Etc

[10] 1997 • • • • • 0.999

[11] 2001 • • • • • • • • 0.991

[12] 2008 • • • • Note1

[13] 2012 • • • • • 2.14 9.87 9.41

[14] 2012 • • • • • • • • 2.30%

[15] 2014 • • • • 0.977 5.06

[16] 2014 • • • • • • • 3.00%

[17] 2015 • • • • • • 0.798 24.2

[18] 2015 • • • • • • 37.7

[19] 2016 • • • • • • • 3.43%

[20] 2016 • • • • • • 0.795

[21] 2016 • • • • 0.9983 3.20%

[22] 2017 • • • • • • • • 9.20%

[23] 2017 • • • • • • • 1.2 0.98

[24] 2018 • • • • • • • 98.6%

[25] 2018 • • • • • • • • • 2.44 27.46

[26] 2018 • • • • • • • • 0.82%

[27] 2019 • • • • • • Note2

[28] 2019 • • • • • • 0.908 2.78 2.01

[29] 2019 • • • • • 0.97 1.63 0.5

[30] 2020 • • • • • • Note3

[31] 2020 • • • • • • Note4

CL: Cooling Load; RMSE: Root Mean Square Error; MAE: Mean Absolute Error; MSE: Mean Square Error; MRE: Mean Relative Error; EEP: Equal Error Protection; MAPE: Mean Absolute Percentage Error;
cv(RMSE): Coefficient of Variation Root Mean Square Error. Note 1: Heat load coincidence factor 0.98; Note 2: Relative error 0.4%; Note 3: RMSE 2.48%; Note 4: cv(RMSE) 11%.
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In addition, when reviewing prior studies, studies, except for [14] and [22], predicted
the current heating load based on the current timestep data. Those two studies, i.e., [14]
and [22], used past data based on the past heating load history. However, variables other
than the past heating load history were used based on the current timestep data. Therefore,
the prior studies referenced in this study cannot predict the current heating load if the
current timestep data cannot be obtained. In general, it is required to understand a heating
load in advance to devise an efficient operation plan of a heating system. For this, it is
necessary to predict the current heating load based on the past timestep data. Therefore,
in this study, the ANN model that predicts a heating load based on the past data was used
to analyze the effect of input variables and a model that predicts a heating load based on
the past data was developed.

2. Methodology
2.1. Overall Study Process

This study evaluated the influence of input variables on the ANN model when pre-
dicting a heating load and analyzed the predicted heating load. Figure 2 shows the overall
flowchart of this research.
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To configure the input variables of the ANN model, previous studies on building load
prediction were reviewed (see Section 1.2). Input variables were selected based on the
reviewed previous studies.

A case-study simulation model that can simulate the thermal behavior of an actual
building was developed to produce a dataset of the ANN model. The case-study model
was developed based on an apartment housing located in Daejeon, Korea. EnergyPlus was
used to develop the model. The case-study model was verified by comparing its result
with the heating load value of an actual apartment building. Data of the selected input
variables and the heating load were extracted through the case-study model and a dataset
was developed based on the results. To develop the ANN model, this study utilized the
Neural Network toolbox included in MATLAB [32].

The input variables selected to configure the input variables of the ANN model were
classified into essential variables and optional variables. Each case was classified according
to the combination of optional variables. Weather data that can be easily measured and
which have been widely used in prior studies were used as essential variables. The ANN
model predicted a heating load using the input variables of each case. The error rate
was analyzed based on the predicted data. The prediction results were analyzed by
selecting three cases (worst, mean, and best) based on the calculated error rate. In addition,
the prediction results were analyzed by selecting an actual case consisting of input variables
that can be measured in an actual apartment building.

2.2. Case-Study Simulation Modeling

This study developed a case-study model that can realize the thermal behavior of
an actual apartment building to produce a dataset of the ANN model. For this objec-
tive, this study developed a simulation model based on apartment A in Daejeon, Korea.
The heating system of apartment A uses district heating as a heat source. The zone configu-
ration was classified according to the outer wall insulation characteristics of the location of
each household in the case-study building, where A and F were sidewall households, B was
the middle household, and C and E were households facing the non-heating spaces and
middle households. The case-study model used Daejeon weather data for the simulation
obtained from IWEC2 (International Weather Files for Energy Calculation 2.0) weather
files [33]. Table 2 presents the monthly outdoor air temperatures during the heating pe-
riod, including the minimum, maximum, and average values of the Daejeon weather data.
The lowest average temperature, −1.2 ◦C, was observed in January, and this month had a
minimum of −18.8 ◦C and a maximum of 10.3 ◦C.

Table 2. Monthly outdoor air temperatures during the simulation period in Daejeon, South Korea.

Outdoor Air Temperatures (◦C) Oct Nov Dec Jan Feb Mar

Minimum 1.7 −7.9 −12.0 −18.8 −13.0 −6.4

Maximum 24.4 21.5 11.4 10.3 13.0 18.2

Average 14.2 7.5 0.2 −1.2 0.9 6.2

EnergyPlus was used to develop a case-study model that reflects the characteristics of
apartment A. The produced model consists of the ground floor, middle floor, and top floor
to reflect the load characteristics of low, middle, and high floors of an apartment housing
by varying the thermal boundary conditions of the floors and ceilings of each three floors.
The remaining simulation conditions were produced based on apartment A. Table 3 shows
the simulation parameters. Figure 3 shows the zone configuration of the actual apartment
building and the shape of the case-study model.
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Table 3. Simulation model conditions.

Parameters Inputs

Building

Building type High-rise residential building

Region Daejeon

Gross area (m2) 982.32

Number of floors 3

Floor-to-floor height (m) 2.7

Orientation South facing

Constructions

Exterior wall U-value (W/m2·K) 0.377

Interior wall U-value (W/m2·K) 0.500

Floor wall U-value (W/m2·K) 0.498

Roof wall U-value (W/m2·K) 0.269

Window wall U-value (W/m2·K) 1.600

Solar heat gain coefficient (SHGC) 0.450

Window-to-wall ratio 45%

Space conditions

Heating setpoint (◦C) 23

People 2

Lighting power density (W/m2) Weekdays: 6.0/Weekends: 5.4

Zone infiltration (ACH) 0.5

Simulation setting Run period 1 Week (1/13–1/19)

Timestep 6 (10 min)
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2.3. Development of Artificial Neural Network Model for Heating Load Prediction

In this study, a dataset was created to develop the ANN-based heating load prediction
model. The dataset used data from 13 January to 19 January. The resultant data extracted
from EnergyPlus simulation for the case-study model were used for the dataset to develop
the ANN model.

In addition, since the ANN model predicted the future heating loads using current
input data, the datasets were arranged. The temporal scale of the predicted heating loads
was set as the next timestep (10 min). Figure 4 is the timestep of the input values and target
values of the ANN model designed in this study.
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In this study, the ANN model was developed to determine input variables. Table 4
shows the information of the ANN model. The ANN model was developed using MAT-
LAB’s Neural Network toolbox. The number of hidden layers (NHLs) was set to one
layer. The number of hidden neurons (NHNs) value was calculated using Equation (1) [34],
where N is the sum of the input and output variables. Therefore, in this study, NHN was
set to 23 by using all input and output variables. The learning rate (LR) and momentum
constant (MC) were set to 0.3, epochs to 1000, and goals to 0.001. In ANN, arbitrary values
are used for variables other than NHN because there are no defined criteria when setting
structural parameters and parameters.

Number o f hidden neurons = 2N + 1 (1)

Table 4. ANN model parameters.

ANN Model Factor Range Value

Number of hidden layers 1-n 1
Number of hidden neurons 1-n 23

Momentum constant 0.1 ≤ n ≤ 1 0.3
Learning rate 0.1 ≤ n ≤ 1 0.3

Epochs 1-n 1000
Goals n 0.001

The input variables of the ANN model for heating load prediction were selected
through prediction performance evaluation depending on the combination of each variable
of weather data, construction data, zone data, and system data. The cv(RMSE) (coefficient of
variation of the root mean square error) was used for prediction performance evaluation.
The cv(RMSE) is a relative error obtained by dividing the root mean square error (RMSE),
which is the difference between the predicted value and the measured value, by arithmetic
means. Equations (2) and (3) are the equations to calculate RMSE and cv(RMSE):

RMSE =

√
∑ (S − M)2

Preiod
N

(2)

cv(RMSE) =
RMSE
APreiod

[%] (3)
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Regarding weather data, the outdoor air temperature (OAT), diffuse horizontal irradi-
ance (DHI), direct normal irradiance (DNI), and ratio of outdoor air temperature (ROAT)
were selected because they were the most frequently used variables in prior studies. The ra-
tio of outdoor air temperature, i.e., a variable proposed in this study to improve prediction
performance, is the change rate of outdoor air temperature during 3 timesteps (i.e., 30 min).
Equation (4) is the equation to calculate the ratio of outdoor air temperature, where t is the
current timestep and t−3 is the data 3 timesteps (i.e., 30 min) before:

ROAT =
OATt − OATt−3

3
(4)

Based on the prior 12 studies that predicted a heating load using construction data,
A and BO, which were used most frequently, were selected as input variables. However,
most of the studies referenced in this study were conducted to predict a heating load de-
pending on the change of the variable value of a building structure. Therefore, in this study,
there is no change with the variable of a building structure, so the selected construction
data were not used as an input data.

The zone data of prior studies were reviewed in order to select a zone data for this
study. As a result, the prior studies predicted a heating load using the zone mean air
temperature, previous heating load, and schedule. Since measured heating load data could
not be obtained for the target building, the previous heating load was excluded for the
selected input variables in this study. In addition, the building operation schedule was also
excluded for the input variable selection. The reason was that the developed case-study
simulation model was validated against the certified load data obtained from the target
building using a constant schedule value (i.e., always on). Accordingly, only the zone mean
air temperature was used as an input variable among the selected zone data variables.

In the case-study simulation, district heating was used as a heat source. In general,
a heating system using district heating as a heat source that consists of a primary side
loop that supplies water from the heat source production site to the machine room of an
apartment housing and a secondary side loop that sends water from the machine room
of the apartment housing to households (Figure 5). Since this study was conducted for
apartment buildings, the system data of the secondary side loop connected to an apartment
housing was used. Accordingly, the supply water temperature, mass flow rate, and return
water temperature were used as system data.

Energies 2021, 14, x FOR PEER REVIEW 10 of 20 
 

 

also excluded for the input variable selection. The reason was that the developed case-
study simulation model was validated against the certified load data obtained from the 
target building using a constant schedule value (i.e., always on). Accordingly, only the 
zone mean air temperature was used as an input variable among the selected zone data 
variables. 

In the case-study simulation, district heating was used as a heat source. In general, a 
heating system using district heating as a heat source that consists of a primary side loop 
that supplies water from the heat source production site to the machine room of an apart-
ment housing and a secondary side loop that sends water from the machine room of the 
apartment housing to households (Figure 5). Since this study was conducted for apart-
ment buildings, the system data of the secondary side loop connected to an apartment 
housing was used. Accordingly, the supply water temperature, mass flow rate, and return 
water temperature were used as system data. 

To configure input variables, each input variable of weather, zone, and system data 
was selected. For the combination of selected input variables, they were classified into 
essential and optional variables, where the weather data, i.e., a variable that can be easily 
measured and is widely used in prior studies, was selected as an essential variable. The 
zone and system data were selected as optional variables. The input variables were de-
fined by evaluating the prediction performance depending on the combination of selected 
optional variables. 

 
Figure 5. Conceptual diagram of the district heating system. 

Table 5 shows the input parameters of the ANN model. Table 5 presents value ranges 
for the determined input variables based on the EnergyPlus simulation results, and these 
ranges were considered as the environment and system operation values used for the 
ANN model. The value range of each selected input variable is different. In general, if the 
value range of an input variable of the ANN model is different, the predicted value is 
dependent on the variable with a larger value range [35]. Therefore, this study used a 
normalization technique to adjust the value range of an input variable to a common range. 
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Figure 5. Conceptual diagram of the district heating system.

To configure input variables, each input variable of weather, zone, and system data
was selected. For the combination of selected input variables, they were classified into
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essential and optional variables, where the weather data, i.e., a variable that can be eas-
ily measured and is widely used in prior studies, was selected as an essential variable.
The zone and system data were selected as optional variables. The input variables were de-
fined by evaluating the prediction performance depending on the combination of selected
optional variables.

Table 5 shows the input parameters of the ANN model. Table 5 presents value ranges
for the determined input variables based on the EnergyPlus simulation results, and these
ranges were considered as the environment and system operation values used for the ANN
model. The value range of each selected input variable is different. In general, if the value
range of an input variable of the ANN model is different, the predicted value is dependent
on the variable with a larger value range [35]. Therefore, this study used a normalization
technique to adjust the value range of an input variable to a common range. For this,
Equation (5) was used, and it employs the min-max normalization technique, where x is an
original value, x_min is a minimum value of the original value, and x_max is a maximum
value of the original value.

xNomalized =
x − xmin

xmax − xmin
(5)

Table 5. Input parameters.

Variables Value Ranges Unit Timestep

Input

Outdoor air temperature −20–10.8 ◦C

t−1

Diffuse horizontal irradiance 0–268 W/m2

Direct normal irradiance 0–816 W/m2

Zone mean air temperature 21.1–25.4 ◦C
Supply water temperature 43–63 ◦C

Heating mass flow rate 0.05–1.05 m3/s
Return water temperature 27.0–32.4 ◦C

Output Heating loads 0–61,895 W t

3. Results
3.1. Validation of the Case-Study Simulation Model

This section explains the validation of the EnergyPlus case-study model developed
for the actual apartment buildings. To verify the case-study model, it was compared to
the annual heating loads of an actual building. The mean absolute error (MAE) and mean
absolute percentage error (MAPE) were used as indices for evaluation. The case-study
model was compared to the annual heating loads of three floor types of the apartment
building. The results are shown in Table 6. The MAE value for each floor type was about
2.4 for 39A type, about 0.7 for 39C type, and about 30.6 for 46A type and the MAE value
for all floors was about 5329. The MAPE value was about 1% for 39A type, about 0.2% for
39C type, and about 14% for 46A type, and the overall average MAPE value of all floors
was about 7%.

Table 6. Comparison of heating energy requirement.

Type
Area
(m2) Household

Annual Heating Loads (MJ/m2·year)

Certified * Simulated MAE MAPE

39A 39 70 279 276 2 1.0%

39C 39 70 297 297 1 0.2%

46A 46 170 221 191 31 14.0%

Sum - 310 77,873 72,545 5329 7.0%
The * from the table suggests that the certified load data obtained from national Building Energy Efficiency
Certification [36] for the actual apartment building.
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3.2. Heating Load Prediction using the Developed Artificial Neural Network Model for

Input variables were classified into essential variables and optional variables and
they were classified into each case according to the combination of optional variables
where the weather data was set as an essential variable and the zone data and system
data were set as optional variables. Using the prediction performance results of each case,
the worst case (the lowest prediction performance), the mean case (the middle), and the
best case (the highest prediction performance) were selected. In addition, the combination
of variables that can be measured in an actual apartment building was selected as an actual
case. The combination of input variables and prediction performance results of each case
are summarized in Table 7. When evaluating the prediction performance depending on
optional variables, the prediction performance of case 1 was the lowest with a cv(RMSE)
value of about 38.2%. This was selected as the worst case and the input variables were
OAT, DHI, DNI, and ROAT. The prediction performance of case 2 was about 7.3% based
on cv(RMSE) and it was selected as the mean case, which is the middle level among all
cases. Its input variables were OAT, DHI, DNI, ROAT, and ZMT. The best case was case
16, where the cv(RMSE) value was about 3.0%. The input variables of the best case were
OAT, DHI, DNI, ROAT, ZMT, SWT

.
m, and RWT. The actual case is a case using variables

that can be measured in an actual apartment building. The actual apartment building
referenced in this study does not have a flow meter installed in its machine room due to
cost issues. Therefore, input variables that can be measured were selected as OAT, DHI,
DNI, ROAT, ZMT, SWT, and RWT (i.e., case 13). The prediction accuracy was about 5.4%
based on cv(RMSE). In this study, four cases were selected depending on the prediction
performance and measurable variables. As a result, case 1, 2, 16, and 13 were selected as
the worst, mean, best, and actual case, respectively.

Table 7. Comparison of the heating energy requirement.

Case
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16Variables

Essential
Weather

OAT • • • • • • • • • • • • • • • •
DHI • • • • • • • • • • • • • • • •
DNI • • • • • • • • • • • • • • • •
ROAT • • • • • • • • • • • • • • • •

Optional

Zone ZMT • • • • • • • •

System

SWT • • • • • • • •
.

m • • • • • • • •
RWT • • • • • • • •

cv(RMSE) (%) 38.2 7.3 37.9 14.6 9.9 5.5 6.6 6.2 10.8 9.7 10.0 4.1 5.4 4.6 9.5 3.0

4. Analysis and Discussion

The heating load prediction results of the four selected cases were analyzed. Figure 6
shows the comparison results between EnergyPlus and the predicted loads using the ANN
model of the worst, mean, best, and actual case in order from (a) to (d), where the X-axis
represents the EnergyPlus result data and the Y-axis represents the predicted load using
the ANN model. In addition, a trend line and R2 are displayed on each graph, where R2

is a value between 0 and 1 and the X-axis value and Y-axis value are the same when R2 is
1. R2 of each case was 0.5983 for the worst case, 0.9854 for the mean case, 0.9976 for the
best case, and 0.9921 for the actual case. Therefore, the predicted data of the mean, best,
and actual cases were similar to the trend of the reference data value. However, in the
worst case, the trend of the reference data was not reflected well in the predicted data.
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Figure 6. Comparison of heating loads (referenced data vs. predicted data).

Figure 7 shows the comparison results between the predicted data and referenced
data of each case over time, where SWT is 52 ◦C and

.
m is 0.55 kg/s. These are the predicted

results on 13 January. The prediction results of the worst case were inaccurate in general.
The predicted data changes according to the large change trend of the referenced data,
but the value difference was inaccurate at an average of about 2610 W. In addition, it did
not reflect the fluctuation of a load that changes in a short period of time. Therefore, it is
unlikely that the prediction results of the worst case will be reliable.

The prediction result of the mean case was similar to that of the referenced data.
However, when a load changes within a short period of time, such as from 02:40 to 03:10,
from 03:30 to 04:10, or from 06:30 to 07:10, the prediction accuracy deteriorated. The value
difference between the referenced data and predicted data was about 516 W on average.

The best case gave a very accurate prediction result. The prediction results were
excellent even with the changing trend of the referenced data and a load changing within a
short period of time. The value difference between the referenced data and predicted data
was about 13 W on average.

The prediction result of the actual case also reflected the change trend of the referenced
data. However, the prediction accuracy declined when a load changed within a short period
of time just like the mean case.

Therefore, when predicting a daily load, it is likely that the prediction accuracy can be
secured for the cases other than the worst case. However, it is likely that accurate prediction
will be possible only in the best case when predicting a heating load for a short period
of time.
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4.1. Analysis of the Prediction Results According to the Supply Water Temperature

The ANN model developed in this study was designed to predict a heating load
when the SWT was controlled between 43 ◦C and 63 ◦C. Therefore, the heating prediction
value and referenced data of each case were analyzed according to SWT using a box plot
(see Figure 8). As a result, the range of the predicted heating load value in the worst case
was similar to the referenced data based on the data between 25% and 75% in the range
of 43 to 45 ◦C and the value was different from the reference data in other temperature
ranges. However, the prediction accuracy was the lowest based on cv(RMSE) when the
SWT was 43 ◦C. In the mean case, the prediction performance was the best at 48 ◦C and it
was the lowest at 63 ◦C. In the best case, the prediction performance was the best at 47 ◦C
and the cv(RMSE) was about 2.41%. The SWT with the lowest prediction performance in
the best case was 63 ◦C. In the actual case, the prediction performance was the best with a
cv(RMSE) value of about 4.15% at 45 ◦C. The prediction accuracy was the lowest at 63 ◦C
in the actual case.
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Figure 9 is the result of cv(RMSE) analysis by temperature of each case. In the worst
case, cv(RMSE) decreased as SWT increased. In the mean case and best case, cv(RMSE)
decreased as SWT increased from 43 to 48 ◦C. However, when the temperature increased
from 48 to 63 ◦C, cv(RMSE) decreased. In the actual case, when SWT increased, cv(RMSE)
decreased to 45 ◦C, and cv(RMSE) increased as the temperature increased in other sections.
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From the analysis results, all cases except the worst case showed an excellent prediction
performance in general and the prediction accuracy was lowest at 63 ◦C. On the other hand,
the worst case showed the best prediction performance at 63 ◦C.

When predicting a heating load according to SWT, cv(RMSE) for each SWT in the mean
case where SWT was not used as an input variable was a maximum of 9.20%, a minimum
of 6.04%, and an average of 7.21%. This means that load fluctuation according to SWT
change is indirectly reflected. Therefore, it is likely that selecting ZMT as an input variable
will help improve the prediction performance if it is difficult to obtain SWT data.

4.2. Analysis of the Prediction Results According to the Heating Mass Flow Rate

Figure 10 is a box plot of the heating load distribution predicted at intervals of 0.1 kg/s
for the mass flow rate ranging from 0.05 to 1.05 kg/s. The worst case did not respond to
the change in the flow rate and the change of the predicted heating load was insignificant
when the flow rate changed from 0.05 to 1.05 kg/s. Here, it was impossible to predict the
heating load because the cv(RMSE) was about 256.2% when the flow rate was 0.05 kg/s.
In the mean case, the prediction accuracy was the lowest with a cv(RMSE) value of about
8.7% at 0.35 kg/s and the prediction accuracy was the highest with cv(RMSE) of 3.1% at
0.15 kg/s. The cv(RMSE) for each flow rate in the best case was a minimum of 1.7% to a
maximum of 3.7%. The prediction accuracy of the actual case was from a minimum of 3.7%
to a maximum of 5.8% based on cv(RMSE), the prediction accuracy regarding which was
about 2% lower than the best case. In addition, the minimum cv(RMSE) was 0.6% higher
than the mean case but about 3% lower than the maximum value.

Figure 11 shows the cv(RMSE) analysis results according to the mass flow rate of each
case. From the cv(RMSE) analysis, the heating load prediction was very inaccurate when

.
m

was less than 0.25 kg/s in the worst case. However, in other cases, the cv(RMSE) was a
minimum of 22.7% and a maximum of about 25.6%, enabling accurate prediction compared
to the prediction result according to SWT. Therefore, it is likely that it is impossible to
predict if

.
m is less than 0.25 kg/s when predicting a heating load using only weather data.

The mean cv(RMSE) of the mean case was about 6.7%, which is about 1.6% higher than that
of the actual case, but it was about 0.6% lower than the actual case when

.
m is 0.15 kg/s.

The average cv(RMSE) for each mass flow rate in the best case and actual case was about
2.8% and 5.1%, respectively.
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Therefore, the average cv(RMSE) of each flow rate in the mean case and actual case
without

.
m as an input variable was about 6.7% and 5.1%, respectively. Therefore, it is likely

that ZMT, SWT, and RWT can indirectly reflect the effect of
.

m on a heating load. However,
in the actual case, a heating load according to

.
m was analyzed based on the prediction

result when both SWT and RWT were used simultaneously. Therefore, it is necessary to
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analyze the heating load according to
.

m by using a case (refer to cases 6 and 8) when either
SWT or RWT is used as an input variable separately.
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5. Summary and Conclusions

As there is an increasing demand for accurate heating load prediction, there have been
continued research initiatives conducted with regard to accurate heating load prediction.
In particular, there are an increased number of studies using an ANN model. To obtain
proper predictive performance for ANN model applications, the process for the determina-
tion of input variables is critical. However, there is a lack of studies evaluating the resultant
predictive performance according to the selection and combination of input variables.
Therefore, this study aimed mainly to evaluate the precision of the heating loads predicted
from an ANN model by various combinations of residential input variables. The input
variables were classified into essential variables and optional variables and prediction
performance was evaluated based on the combination of optional variables. Based on the
prediction performance analysis results, the worst, mean, and best cases were selected and
an actual case consisting of measurable data was selected. The prediction results of each
selected case were analyzed. Based on the analysis results, the results of this study are
as follows.

• This study developed a case-study model to create the dataset of the ANN model.
The case-study model was developed based on an actual apartment building. To verify
the case-study model, it was compared with the annual heating loads of an actual
apartment building. As a result, the MAPE was about 7%.

• Various inputs were selected based on the prior studies. The selected input variables
were classified into essential variables and optional variables and a total of 16 cases
were created according to the combination of optional variables. The heating loads
were predicted according to the combination of input variables of each case. The pre-
diction accuracy of a predicted heating load was analyzed using cv(RMSE). The worst,
mean, and best cases were selected based on the prediction performance, and an
actual case consisting of measurable input variables in an actual apartment building
was selected.

• The prediction performance of each selected case was analyzed according to the supply
water temperature and mass flow rate. In the worst case, it was impossible to predict
the heating loads in general. In the mean case, the load fluctuation according to the
influence of the supply water temperature and mass flow rate, which were not used
as input variables, was reflected in the prediction results. Accordingly, it is likely that
ZMT, i.e., the input variable of the mean case, can indirectly reflect the effect of SWT
and

.
m on the heating loads. The best case predicted the heating loads using all input

variables, so its prediction performance was the best. In the actual case, it was possible
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to predict the heating loads according to the mass flow rate change, which was not
used as an input variable. Therefore, ZMT may contribute to an improvement of the
prediction performance if it is difficult to obtain SWT and

.
m data.

This study predicted a heating load using the ANN model based on simulation data
and evaluated the influence of input variables. The maximum and minimum differences
between the best and worst cases were observed in 33.2% and 1.1%, respectively. Therefore,
combinations of the selected input variables led to a significant impact on the heating load
prediction performance. It can be concluded that the determination process for appropriate
input variables should be accomplished when using an ANN model to predict residential
heating loads. However, it should be noted that the evaluated results conducted in this
study were based on simulation data driven by the EnergyPlus program. To solidify
these results, therefore, additional study using an ANN model with actual measured data
is recommended.
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