A Simplified Method for Modeling of Pressure Losses and Heat Transfer in Fixed-Bed Reactors with Low Tube-to-Particle Diameter Ratio
Abstract
:1. Introduction
2. Research Object and Methods
3. Results and Discussion
3.1. Detailed Geometry Model Results
3.2. Simplified Model Results
3.3. Anisotropic Thermal Conductivity Coefficient
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AWA | area-weighted average |
DEM | discrete element method |
MWA | mass-weighted average |
Symbols and Units
a, b, c | coefficients of the quadratic equation |
A | facet area (m2) |
d | spheres diameter (m) |
D | reactor diameter (m) |
E | energy (J) |
F | body force (N) |
g | standard acceleration due to gravity (m⋅s−2) |
h | enthalpy (J⋅kg−1) |
J | diffusion flux |
l | reactor length (m) |
N | the tube-to-particle-diameter ratio |
p | pressure (Pa) |
S | source term |
T | temperature (K) |
t | time (s) |
v | velocity (m·s−1) |
γ | porosity |
λ | thermal conductivity (W⋅K−1⋅m−1) |
μ | dynamic viscosity (kg⋅m−1⋅s−1) |
ρ | density (kg·m−3) |
τ | stress tensor (N⋅m−2) |
Indexes
f | fluid |
h | solid |
m | mass |
s | solid |
References
- Kilkovský, B. Review of design and modeling of regenerative heat exchangers. Energies 2020, 13, 759. [Google Scholar] [CrossRef] [Green Version]
- Kharmanda, G.; Sayegh, M.A. Reliability-based design optimization for heat flux analysis of composite modular walls using inverse reliability assessment method. Int. J. Thermoflu. 2020, 1–2, 100008. [Google Scholar] [CrossRef]
- Baker, M.J.; Young, P.G.; Tabor, G.R. Image based meshing of packed beds of cylinders at low aspect ratios using 3d MRI coupled with computational fluid dynamics. Comput. Chem. Eng. 2011, 35, 1969–1977. [Google Scholar] [CrossRef]
- Soppe, W. Computer simulation of random packings of hard spheres. Powder Technol. 1990, 62, 189–197. [Google Scholar] [CrossRef]
- Freund, H.; Bauer, J.; Zeiser, T.; Emig, G. Detailed simulation of transport processes in fixed-beds. Ind. Eng. Chem. Res. 2005, 44, 6423–6434. [Google Scholar] [CrossRef]
- Cundall, P.A.; Strack, O.D.L. A discrete numerical model for granular assemblies. Géotechnique 1979, 29, 47–65. [Google Scholar] [CrossRef]
- Nijemeisland, M.; Dixon, A.G. Comparison of CFD simulations to experiment for convective heat transfer in a gas-solid fixed bed. Chem. Eng. J. 2001, 82, 231–246. [Google Scholar] [CrossRef]
- Rebughini, S.; Cuoci, A.; Maestri, M. Handling contact points in reactive CFD simulations of heterogeneous catalytic fixed bed reactors. Chem. Eng. Sci. 2016, 141, 240–249. [Google Scholar] [CrossRef]
- Calis, H.; Nijenhuis, J.; Paikert, B.; Dautzenberg, F.; van den Bleek, C. CFD modelling and experimental validation of pressure drop and flow profile in a novel structured catalytic reactor packing. Chem. Eng. Sci. 2001, 56, 1713–1720. [Google Scholar] [CrossRef]
- Wehinger, G.D.; Eppinger, T.; Kraume, M. Detailed numerical simulations of catalytic fixed-bed reactors: Heterogeneous dry reforming of methane. Chem. Eng. Sci. 2015, 122, 197–209. [Google Scholar] [CrossRef]
- Dixon, A.G.; Nijemeisland, M.; Stitt, E.H. Systematic mesh development for 3d CFD simulation of fixed beds: Contact points study. Comput. Chem. Eng. 2013, 48, 135–153. [Google Scholar] [CrossRef]
- Dixon, A.G.; Nijemeisland, M. CFD as a design tool for fixed-bed reactors. Ind. Eng.Chem. Res. 2001, 40, 5246–5254. [Google Scholar] [CrossRef]
- Guardo, A.; Coussirat, M.; Larrayoz, M.A.; Recasens, F.; Egusquiza, E. CFD flow and heat transfer in nonregular packings for fixed bed equipment design. Ind. Eng. Chem. Res. 2004, 43, 7049. [Google Scholar] [CrossRef]
- Guardo, A.; Coussirat, M.; Recasens, F.; Larrayoz, M.A.; Escaler, X. CFD study on particle-to-fluid heat transfer in fixed bed reactors: Convective heat transfer at low and high pressure. Chem. Eng. Sci. 2006, 61, 4341–4353. [Google Scholar] [CrossRef]
- Eppinger, T.; Seidler, K.; Kraume, M. DEM–CFD simulations of fixed bed reactors with small tube to particle diameter ratios. Chem. Eng. J. 2011, 166, 324–331. [Google Scholar] [CrossRef]
- Kuroki, M.; Ookawara, S.; Street, D.; Ogawa, K. High-fidelity CFD modeling of particle-to-fluid heat transfer in packed bed reactors. In Proceedings of the European Congress of Chemical Engineering (ECCE-6), Copenhagen, Denmark, 16–20 September 2007. Paper No. 1102, Corpus ID: 16325382. [Google Scholar]
- Ookawara, S.; Kuroki, M.; Street, D.; Ogawa, K. High-fidelity DEM-CFD modeling of packed bed reactors for process intensification. In Proceedings of the European Congress of Chemical Engineering (ECCE-6), Copenhagen, Denmark, 16–20 September 2007. Paper No. 1105, Corpus ID: 10898373. [Google Scholar]
- Dong, Y.; Sosna, B.; Kroup, O.; Rosowski, F.; Horn, R. Investigation of radial heat transfer in a fixed-bed reactor: CFD simulations and profile measurements. Chem. Eng. J. 2017, 317, 204–214. [Google Scholar] [CrossRef]
- de Klerk, A. Voidage variation in packed beds at small column to particle diameter ratio. AIChE J. 2003, 49, 2022–2029. [Google Scholar] [CrossRef]
- Ansys Fluent Theory Guide & User’s Guide; Ansys Inc.: Canonsburg, PA, USA, 2011; Release 14.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Świeboda, T.; Krzyżyńska, R.; Bryszewska-Mazurek, A.; Mazurek, W.; Wysocka, A. A Simplified Method for Modeling of Pressure Losses and Heat Transfer in Fixed-Bed Reactors with Low Tube-to-Particle Diameter Ratio. Energies 2021, 14, 784. https://doi.org/10.3390/en14030784
Świeboda T, Krzyżyńska R, Bryszewska-Mazurek A, Mazurek W, Wysocka A. A Simplified Method for Modeling of Pressure Losses and Heat Transfer in Fixed-Bed Reactors with Low Tube-to-Particle Diameter Ratio. Energies. 2021; 14(3):784. https://doi.org/10.3390/en14030784
Chicago/Turabian StyleŚwieboda, Tymoteusz, Renata Krzyżyńska, Anna Bryszewska-Mazurek, Wojciech Mazurek, and Alicja Wysocka. 2021. "A Simplified Method for Modeling of Pressure Losses and Heat Transfer in Fixed-Bed Reactors with Low Tube-to-Particle Diameter Ratio" Energies 14, no. 3: 784. https://doi.org/10.3390/en14030784
APA StyleŚwieboda, T., Krzyżyńska, R., Bryszewska-Mazurek, A., Mazurek, W., & Wysocka, A. (2021). A Simplified Method for Modeling of Pressure Losses and Heat Transfer in Fixed-Bed Reactors with Low Tube-to-Particle Diameter Ratio. Energies, 14(3), 784. https://doi.org/10.3390/en14030784